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Abstract

In this paper, asymptotic distribution of Cramér-von Mises goodness-of-fit test statistic is investigated when contami-
nation exists. We first derive the asymptotic distribution of the Cramér-von Mises statistic when the observations are
contaminated with noise as a mixture. The result is extended to the case where the parameters are estimated by the min-
imum distance estimator, which minimizes the Cramér-von Mises statistic. In both cases the asymptotic distribution of
the Cramér-von Mises statistic is given by that of the weighted infinite sum of non-central χ2

1 variables and the effect of
contamination appears only in the non-centrality of the variables. We also demonstrate the robustness of the goodness-
of-fit test by Monte Carlo simulations when the parameters are estimated by the minimum distance estimator and the
maximum likelihood estimator. Numerical experiments indicate that the use of the minimum distance estimator makes
the test insensitive to contamination whereas the power is retained almost the same as that of the maximum likelihood
estimator.
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1. Introduction

Let X1, X2, . . . , Xn be independent and identically distributed observations, and X( j), j = 1, 2, . . . , n be their order statistics.
In this paper, we assume that the distribution is contaminated as

Fε(x, θ) =
(
1 − ε√

n

)
F(x, θ) +

ε
√

n
G(x),

where F(x, θ) is a continuous distribution with the parameter θ = (θ1, θ2, . . . , θm)⊤ ∈ Θ ⊂ Rm, and G(x) is the distribution
of the contamination, where the rate of contamination is ε ≥ 0. We hereafter assume that both distributions F(x, θ)
and G(x) have bounded and smooth densities f (x, θ) and g(x), respectively. We are interested in the behavior of the
goodness-of-fit test statistic,

W2
n (θ) =

n∑
j=1

(
F(X( j), θ) −

j
n + 1

)2

.

The asymptotic behavior of W2
n (θ) when no contamination exists has been thoroughly investigated, including the case

when an estimation of the parameter θ is involved (for example, Shorack & Wellner, 1986). However, only a few works
have been performed for cases where contamination exists. We first derive the asymptotic distribution of W2

n (θ) in a
general frame work via an elementary matrix calculation. We next employ the minimum distance estimator θ̂ which
minimizes W2

n (θ) as an estimate of θ. There are two reasons why we are interested in the use of the minimum distance
estimator. The first is due to the fact that the estimator shares the same loss function with W2

n (θ). It therefore seems
natural to employ the same loss function for both parameter estimation and goodness-of-fit tests. The other reason is
that θ̂ is robust as an estimator, as shown in Millar (1981), for example. Woodward, Parr, Schucany & Lindsey (1984)
demonstrated via numerical experiments that the minimum distance estimator is better than the maximum likelihood
estimator under symmetric departures from normality for each component in normal mixture models. Since then, the
minimum distance estimator is often used in practice for mixture models (Beutner & Bordes, 2011; Garcia-Dorado &
Marin, 1998).

The rest of this paper is organized as follows. In Section 2 the asymptotic distribution of W2
n (θ) is derived. The effect

of contamination appears only in the non-centrality of the weighted infinite sum of non-central χ2
1 variables. In Section
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3 the result is extended to the case where the parameters are estimated by the minimum distance estimator. The result is
useful not only for knowing the effect of contamination to the asymptotic distribution, but also for obtaining the weights
and non-centralities of χ2

1 variables of finite sample sizes. The method described here is much simpler than solving the
integral equation, as in the case of no contamination. The robustness of the test when the minimum distance estimator is
used is demonstrated by computer simulations in Section 4. All proofs are given in the Appendix.

2. Asymptotic Distribution When the Parameters Are Known

We rewrite W2
n (θ) as W2

n (θ) = ∥(n + 1)S nUn∥2 by introducing an n × (n + 1) matrix

S n =

(
1

n + 1

(
1 j≥k −

j
n + 1

)
, 1 ≤ j ≤ n, 1 ≤ k ≤ n + 1

)
and an n + 1 dimensional vector

Un =
(
F

(
X( j), θ

)
− F

(
X( j−1), θ

)
; 1 ≤ j ≤ n + 1

)⊤
.

Here we define F
(
X(0), θ

)
= 0 and F

(
X(n+1), θ

)
= 1 for convenience. We also define a diagonal matrix B with diagonal

elements, b1 = b2, and

b j+1 =
f (F−1

ε ( j
n+1 , θ), θ)

fε(F−1
ε ( j

n+1 , θ), θ)
, j = 1, 2, . . . , n,

where fε(x, θ) and F−1
ε (u, θ) = x are the density function and the inverse function of Fε(x, θ), respectively.

Taylor expansion yields an approximation of Un as

B
(
U∗n −

1
n + 1

(1 − cn)
)
,

where U∗n =
(
Fε

(
X( j), θ

)
− Fε

(
X( j−1), θ

)
; 1 ≤ j ≤ n + 1

)⊤
with the convention Fε

(
X(0), θ

)
= 0 and Fε

(
X(n+1), θ

)
= 1 and

the first element of cn is (n + 1)F(F−1
ε ( 1

n+1 , θ), θ)/b1 and all others are equal to 1.

We now see that it is enough to know the distribution of
∑n

j=1 λn j(Vn j + µn j)2 in place of W2
n (θ), where

Vn = (Vn1,Vn2, . . . ,Vnn)⊤ = (n + 1)Λn
− 1

2 P⊤n S nB
(
U∗n −

1
n + 1

1
)

and

µn = (µn1, µn2, . . . , µnn)⊤ = Λn
− 1

2 P⊤n S nBcn.

Here Λn is a diagonal matrix of eigenvalues λn1 ≥ λn2 ≥ . . . ≥ λnn, and Pn is an orthogonal matrix of eigenvectors p(n)
j ,

j = 1, 2, . . ., of S nB2S ⊤n .

Proposition 1. For any fixed j > 0, as n tends to infinity λn j converges to λ j = 1/( jπ)2 and
√

np(n)
⌈nu⌉ j converges to

f j(u) =
√

2 sin(π ju) for 0 < u < 1, which are the eigenvalues and the eigenfunctions of the integral equation

λ f (u) =
∫ 1

0
ρ0(u, v) f (v)dv,

where ρ0(u, v) = min(u, v) − uv, p(n)
k j is the kth element of p(n)

j and ⌈x⌉ is the minimum integer, which is greater than, or
equal to, x.

Note that the eigenvalues and the eigenvectors become independent of the contamination in this limit.

Proposition 2. Any finite-dimensional random vector
(
Vn j1 ,Vn j2 , . . . ,Vn jp

)⊤
converges in distribution to a normally dis-

tributed random vector
(
V j1 ,V j2 , . . . ,V jp

)⊤
with mean 0 and variance Ip as n tends to infinity.

Combining these results, we see that
∑p

j=1 λn j(Vn j + µn j)2 converges to
∑p

j=1 λ j(V j + µ j)2, where V1,V2, . . . ,Vp are given
in the proof of Proposition 2. On the other hand,

∑n
j=1 λn jµ

2
n j converges to

∑∞
j=1 λ jµ

2
j because of the boundedness of∑n

j=1 λn jµ
2
n j. We therefore have the following Theorem 1.
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Theorem 1. The distribution of W2
n (θ) converges in distribution to that of

∑∞
j=1 λ j(V j + µ j)2, where V1,V2, . . . , are inde-

pendent and identically distributed random variables with a standard normal distribution and

µ j = ελ
− 1

2
j

∫ 1

0

∫ 1

0
f j(u)(1u≥v − u)

(
1 − g(F−1(v, θ))

f (F−1(v, θ), θ)

)
dudv, j = 1, 2, . . . .

We see that contamination is only effective for µ j’s with the proportion ε. Theorem 1 reduces to the well-known result
when no contamination exists, which is derived as an application of the theory of empirical processes. A closely related
result to Theorem 1 is given by Guttorp & Lockhart (1988). They developed a general theory for an asymptotic distribution
of quadratic forms of order statistics from a uniform distribution under contiguous alternatives, where densities are of the
form 1 + δη(u)/n

1
2 under the condition

∫ 1
0 η(u)2du = 1. For η(F(x, θ)) = g(x)/ f (x, θ) − 1, the same result as in Theorem 1

can be derived from their theory. However a major difference is that Theorem 1 is free from the constraint
∫ 1

0 η(u)2du < ∞.
We have used only the fact that f (x, θ) and g(x) are probability density functions for the proof.

3. Asymptotic Distribution When Parameters Are Estimated via the Minimum Distance Estimator

3.1 Asymptotic Distribution

We need the following assumptions in order to derive the asymptotic distribution of W2
n (θ̂) when the parameters are

estimated by the minimum distance estimator θ̂.

Assumption 1 (Identifiability).

lim
n→∞

∫ ∞

−∞
(F(x, θn) − F(x, θ))2 dF(x, θ) = 0

implies the convergence of θn to θ in Θ.

Assumption 2 (Regularity).

• F(x, θ) is differentiable with respect to θ.

• gk(u, θ) = ∂
∂θk

F(x, θ), k = 1, 2, . . . ,m, are all continuous and square-integrable with respect to u ∈ (0, 1), where
u = F(x, θ).

• The matrix A =
(∫ 1

0 g j(u, θ)gk(u, θ)du, 1 ≤ j, k ≤ m
)

is of full rank.

• ∂
∂θk

g j(u, θ), j, k = 1, 2, . . . ,m exist and are continuous for u in (0, 1).

• sup0<u<1

∣∣∣∣ ∂∂θl gk(u, θ)
∣∣∣∣ < ∞ for any k, l = 1, 2, . . . ,m.

• sup0<u<1

∣∣∣ ∂
∂u gk(u, θ)

∣∣∣ < ∞ for any k = 1, 2, . . . ,m.

Define λ̄n1(θ) ≥ λ̄n2(θ) ≥ . . . ≥ λ̄n n−m(θ) and q(n)
1 , q

(n)
2 , . . . ,q

(n)
n−m are the eigenvalues and the eigenvectors of the matrix

Dn(θ) = Λn
1
2

[
I − P⊤n Zn(θ)

{
Zn(θ)⊤Zn(θ)

}−1
Zn(θ)⊤Pn

]
Λn

1
2 ,

where

Zn(θ) =
(

1
√

n
gk

( j
n + 1

, θ
)
, 1 ≤ j ≤ n, 1 ≤ k ≤ m

)
.

Without loss of generality, we may assume that Zn(θ) is of full rank for each n, in view of the third assumption in
Assumption 2.

Since the minimum distance estimator θ̂ is the solution of

n∑
j=1

(
F(X( j), θ) −

j
n + 1

)
g(X( j), θ)

∣∣∣∣∣∣∣∣
θ=θ̂

= 0,
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for g(u, θ) = (g1(u, θ), g2(u, θ), . . . , gm(u, θ))⊤, the estimation error
√

n(θ̂ − θ) is approximated as

−
√

n

 n∑
j=1

g(X( j), θ)g⊤(X( j), θ)

−1  n∑
j=1

(
F(X( j), θ) −

j
n + 1

)
g(X( j), θ)

 .
It is further approximated as

−(n + 1)
(
Zn(θ)⊤Zn(θ)

)−1
Zn(θ)⊤S nUn.

If we note that W2
n (θ̂) is asymptotically equivalent to

W2
n (θ) − n(θ̂ − θ)⊤

(
Zn(θ)⊤Zn(θ)

)
(θ̂ − θ),

we see that it is enough to derive the asymptotic distribution of

(Vn + µn)⊤ Dn(θ) (Vn + µn) =
n−m∑
j=1

λ̄n j(θ)(Yn j + µ̄n j(θ))2,

where Yn j = q(n)
j Vn and µ̄n j(θ) = q(n)

j µn, j = 1, 2, . . . , n − m.

Proposition 3. For any fixed j > 0, λ̄n j(θ) converges to λ̄ j and q(n)
j converges to q j, where λ̄ j and q j = (q1 j, q2 j, . . .)⊤ are

the jth eigenvalue and eigenvector of the following infinite-dimensional matrix.

D∞(θ) =
(
λ

1
2
j λ

1
2
k

(∫ 1

0

∫ 1

0
f j(u)h(u, v) fk(v)dudv

)
, 1 ≤ j, k < ∞

)
,

where h(u, v) = δ(u − v) − g⊤(u, θ)A−1 g(v, θ) with the Dirac delta function δ(u).

Proposition 4. Any finite-dimensional random vector
(
Yn j1 ,Yn j2 , . . . ,Yn jp

)
converges in distribution to a normally dis-

tributed random vector
(
Y j1 ,Y j2 , . . . ,Y jp

)
with a mean 0 and variance Ip as n tends to infinity.

If we note that
∑n−m

j=1 λ̄n j(θ)µ̄2
n j(θ) ≤

∑n
j=1 λn jµ

2
n j, we have the following theorem, which is similar to that seen in Theorem

1.

Theorem 2. The distribution of W2
n (θ̂) converges to that of

∑∞
j=1 λ̄ j(Y j + µ̄ j)2 in distribution as n tends to infinity, where

Y1,Y2, . . . , are independent and identically random variables distributed as a standard normal distribution, and

µ̄ j =

∞∑
l=1

ql jµl, j = 1, 2, . . . ,

where the µl terms are the same as those in Theorem 1.

In the case where no estimation is involved, the asymptotic distribution derived in Theorem 2 is consistent with the
classical result that is derived from the theory of a Brownian bridge (Shorack & Wellner, 1986). In fact, the eigenvalues
λ̄ js are consistent with those of the integral equation with the kernel function

ρ(s, t) =
∫ 1

0

∫ 1

0
h(s, u)h(t, v)ρ0(u, v)dudv.

However, it is well known that it is not trivial to solve such an integral equation accurately with any reasonable cost of
computation. The result above gives us an alternative and simplified way to perform the calculation.

3.2 The Distribution for Finite n

To evaluate the distribution of W2
n (θ) or W2

n (θ̂) for finite n, the proofs in the Appendix suggest a good way of performing the
calculation. In the case of Theorem 1, finding the eigenvalues and the eigenvectors of S nB2S ⊤n , then

∑p
j=1 λn j(Y j + µn j)2

gives us a good approximation of W2
n (θ) for an appropriate choice of p < n. In the case of Theorem 2, finding the

eigenvalues and eigenvectors of Dn(θ̂), then
∑n−m

j=1 λ̄n j(θ̂)(Y j + µ̄n j(θ̂))2 gives us a good approximation of W2
n (θ̂) for an
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appropriate value of p < n−m. The replacement of θ by θ̂ in the calculation is justified by the consistency of θ̂ irrespective
of the existence of contamination. In fact,

n−m∑
j=1

λ̄n j(θ̂)
(
Y j + µ̄ j(θ̂)

)2 −
n−m∑
j=1

λ̄n j(θ)
(
Y j + µ̄ j(θ)

)2

converges to 0 in probability as n tends to infinity. It follows from the strong consistency of θ̂ and Lemma A 1 in the
Appendix.

4. Investigation of Robustness by Simulations

It is still unclear how advantageous the use of the minimum distance estimator is over other estimators, for example, the
maximum likelihood estimator. In this section, via Monte Carlo simulations we demonstrate that the power curves remain
almost identical when no contamination exits, but the rejection probability is significantly affected by the existence of
contamination when the maximum likelihood estimator is used.

The sample size here is fixed at 200, and the significance level is 0.1. The solid line in each panel is for the case of the
minimum distance estimator and the dotted line is for the case of the maximum likelihood estimator.

The power curves given in Figure 1 suggest that there is no significant difference between the minimum distance and the
maximum likelihood estimator when no contamination exists. The left panel shows the power curves for Exponential
against Gamma with the parameter ν, and the right panel shows them for Normal against Student’s t with the parameter
ν = 1/d, where d is the number of degrees of freedom.

On the other hand, if contamination exists, the rejection probability quickly increases for the maximum likelihood esti-
mator, but it does not increase for the minimum distance estimator. Two examples are shown in Figure 2. The results
indicate that the use of the minimum distance estimator makes the goodness-of-fit test robust to contamination.
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(a) Exponential against Gamma.
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(b) Normal against Student’s t test.

Figure 1. Power curves.
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(b) Normal

Figure 2. Rejection probability against the rate of contamination ε.
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5. Concluding Remarks

The asymptotic distributions of the Cramér-von Mises statistic are derived when the observations are contaminated. Nu-
merical experiments indicate that the use of the minimum distance estimator makes the test less sensitive to contamination,
although the power stays almost the same as that of the maximum likelihood estimator. Such insensitivity would be harm-
ful when the aim of the test is to detect the existence of contamination. However, it becomes advantageous if the aim
of the test is to check whether the underlying distributional model is usable or not. It often happens in practice that the
hypothesis testing is not a goal but a beginning of the analysis. Then, a goodness-of-fit test statistic which is insensitive
to small number of contaminations is preferred.

We leave any other problems for further investigations, including a more explicit analysis of sensitivity to the contamina-
tion and extension of the theorems for other types of estimators. Also extension to multivariate case would be interesting,
although the distribution of the statistic becomes much more complicated even when the parameters are known (Rosen-
blatt, 1952).
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Appendix

A lemma for the proofs. Before giving the proofs of the propositions, we will make sure that the convergence of the
eigenvalues and the eigenvectors appear there. The following lemma can be derived from the theorem on page 372 of
Riesz & Nagy (1955), which states that eigenvalues and the eigenfunctions of an integral equation are continuous with
respect to the kernel function as far as it belongs to the space

L2(ν × ν) =
{

k(x, y);
∫ ∫

k2(x, y)dν(x)dν(y) < ∞
}

with the norm ∥·∥, where ν is a sigma finite measure.

Lemma A 1. Let λn j and f ( j)
n (u) be the jth eigenvalue and eigenfunction of the integral equation, respectively

λ f (u) =
∫

kn(u, v) f (v)dν,

and λ j and f ( j)(u) be the jth eigenvalue and eigenfunction of the integral equation, respectively

λ f (u) =
∫

k(u, v) f (v)dν.

If kn(x, y) is a compact operator and ∥kn − k∥ converges to 0 as n tends to infinity, then λn j converges to λ j and
∥∥∥∥ f ( j)

n − f ( j)
∥∥∥∥

converges to 0 as n tends to infinity for j = 1, 2, . . . when f ( j)
n and f ( j) are properly normalized, including their signs.
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Proof of Proposition 1. We first rewrite the equation λn j p(n)
j = S nB2S n

⊤ p(n)
j as the integral equation

λn j f ( j)
n (u) =

∫
kn(u, v) f ( j)

n (v)dν,

by using the kernel

kn(u, v) =
n

(n + 1)2

n+1∑
l=1

(
1⌈nu⌉≤l −

⌈nu⌉
n + 1

)
b2

l

(
1⌈nv⌉≤l −

⌈nv⌉
n + 1

)

and the eigenfunction f ( j)
n (u) =

√
np(n)
⌈nu⌉ j. Then, if kn(u, v) is written in the form of an integral, the convergence to

ρ0(u, v) =
∫ 1

0 (1u≤s − u) (1v≤s − v) ds is clear from the fact |kn(u, v)| ≤ 1 for any 0 ≤ u, v ≤ 1. The desired result follows
from Lemma A1. Note that the eigenvalues and eigenfunctions of the integral equation for the kernel ρ0(u, v) are 1/( jπ)2

and
√

2 sin(π ju), respectively, j = 1, 2, . . .. �

Proof of Proposition 2. We first note that the kth element of Un can be replaced by Ek/
∑n+1

j=1 E j, where E j, j = 1, 2, . . . , n+
1, are independent and identically distributed exponential variables with a mean of one. Let c jk be the ( j, k) element of

Λ
− 1

2
n P⊤n S nB. Then, it is enough to show that for any t = (t1, t2, . . . , tp) ∈ Rp,

n + 1∑n+1
j=1 E j

p∑
j=1

t j

n+1∑
k=1

c jk(Ek − 1) =
n + 1∑n+1

j=1 E j

n+1∑
k=1

 p∑
j=1

t jc jk

 (Ek − 1)

converges to a normally distributed random variable V = t⊤V with a mean of 0 and variance t⊤ t. It is easily seen that the
Lindeberg condition is satisfied for

Vn =

n+1∑
k=1

 p∑
j=1

t jc jk

 (Ek − 1).

In fact, the inequality

1
t⊤ t

n+1∑
k=1

E
[
V2

n 1|Vn |>ε
√

t⊤ t

]
≤ H

(
ε
√

pcn

)
implies the desired result, where the function

H(x) = E
[
(Ek − 1)2 1|Ek−1|>x

]
is a monotone decreasing to 0, and

cn = max
1≤ j≤p,1≤k≤n

∣∣∣c jk

∣∣∣ ≤ bkλ
− 1

2
n j

n + 1

 n∑
l=1

(
1l≥k −

l
n + 1

)2
1
2

.

�

Proof of Proposition 3. By taking ν as a counting measure in Lemma A1, Dn(θ) and D∞(θ) can be considered as compact
operators on L2(ν). The first term on the right hand side of

∥Dn(θ) − D∞(θ)∥ ≤
p∑

j=1

p∑
k=1

(
d(n)

jk − d jk

)2
+ 2

n∑
j=1

n∑
k=p+1

(
d(n)

jk − d jk

)2
+ 2

∞∑
j=1

∞∑
k=n+1

d2
jk

converges to 0 for any fixed p, since the ( j, k) element of Dn(θ) converges to that of D∞(θ). The convergence of the second
term to 0 can be shown as the following

n∑
k=p+1

 n∑
j=1

d(n)
jk

2
+

n∑
j=1

d2
jk

 ≤

 n∑

j=1

λn j

 n∑
k=p+1

λn j + α

 n∑
j=1

λ j

 n∑
k=p+1

λk

 , (1)
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where α = max j,k λ
− 1

2
j λ

− 1
2

k

∣∣∣d jk

∣∣∣. Here
∑∞

j=1 λ j = 1/6 and

n∑
j=1

λn j = trace
(
S nB2S ⊤n

)
=

n∑
j=1

n+1∑
k=1

(
1 j≥k −

j
n + 1

)2

b2
k ≤

1
6

(
1 − ε√

n

)−2

,

because 0 ≤ f (x, θ)/ fε(x, θ) ≤ (1 − ε/
√

n)−1 for any x and ε2 < n. Therefore, by taking a large enough value of p, the
right hand side of (1) will be sufficiently small. The convergence of the last term is clear from the inequality

∞∑
j=1

∞∑
k=n+1

d2
jk ≤

1
6
α2

 ∞∑
k=n+1

λk

 .
If we note that Dn(θ) is a compact operator, the proof is complete from Lemma A1.

�

Proof of Proposition 4. Using a similar argument to that given in the proof of Proposition 2, it is enough to show that

max
1≤ j≤p,1≤k≤n

∣∣∣∣∣∣∣
n∑

l=1

q(n)
l j clk

∣∣∣∣∣∣∣
converges to 0 as n tends to infinity. Using the fact in A.3 that cn = max1≤l≤p,1≤k≤n |clk | converges to 0 as n tends to infinity,
we see that the first term on the right hand side of∣∣∣∣∣∣∣

n∑
l=1

q(n)
l j clk

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

p′∑
l=1

q(n)
l j clk

∣∣∣∣∣∣∣ +
 n∑

l=p′+1

q(n)2
l j


1
2
 n∑

l=p′+1

c2
lk


1
2

converges to 0 as n tends to infinity for any p′ < n. If we note that
∑n

l=1 q(n)2
l j = 1,

∑n
l=1 c2

lk ≤ 1 and Lemma A1, the proof
is complete. �
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