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Abstract

Partially linear additive model is a popular multivariate nonparametric fitting technique. This paper considers estimation
for the semiparametric model in the presence of multicollinearity. Combining the profile least-squares method and prin-
cipal components regression technique, we propose a novel biased estimator for the regression coefficients, and provide
the asymptotic bias and covariance matrix of the proposed estimator. A Monte Carlo simulation study is conducted to
examine the performance of the proposed estimators and the results are satisfactory.
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1. Introduction

In using the linear regression models, we often encounter the problem of multicollinearity, and its statistical consequences
are very well known in econometrics and statistics. in the last decade, estimation of semiparametric regression model
by the biased estimate approach to solve the problem of multicollinearity has received much attention in the literature.
Hu (2005) and Akdeniz and Tabakan (2009) applied ridge estimator and restricted ridge estimator for the regression
coefficients. The asymptotic properties of restricted ridge estimators were discussed by Roozbeh and Arashi (2013).
Akdeniz and Akdeniz Duran (2010) introduced a Liu-type estimator for the parametric component, and the properties of
the Liu-type estimator were studied by Akdeniz Durana et al. (2011). Akdeniz Duran and Akdeniz (2013) proposed a
new Liu estimator based on the difference method.

As we all know, an important alternative method to overcome the problem of multicollinearity is principal component
regression (PCR) approach which can be found in any textbook of the linear regression models. In this paper, we introduce
a novel PCR estimating approach for partially linear additive model, which is a generalization of additive model and
semiparametric regression model. In general, the semiparametric model can be written as

Y = XTβ + m1(Z1) + · · · + mq(Zq) + ε, (1)

where Y is response, X and Z1, · · · , Zq are explanatory variables, β = (β1, β2, · · · , βp)T is a vector of unknown regression
coefficients, m1(·), · · · ,mq(·) are unknown smooth functions, ε is model error with Eε = 0 and Var(ε) = σ2. We assume
that E{mk(Zk)} = 0 for k = 1, 2, · · · , q. Without loss of generality, we also assume that both the Yi and Xi are centered.
Obviously, if β = 0, model (1) reduces to the additive model of Friedman and Stuetzle(1981) and Hastie and Tibshirani
(1990). when q = 1, model (1) becomes the partially linear model of Engle et al. (1986).

For model (1), many approaches have been proposed to estimate the unknown regression coefficients and nonparametric
functions. a backfitting estimator for β was proposed by Ospomer and Ruppert (1999), and it is root-n consistent. Series
method was applied by Li (2000) to estimate the model (1). Manzan and Zerom (2005) proposed a estimator for β based
on the marginal integration method. Following Liang et al. (2008), Wei and Liu (2012) proposed a profile least-squares
estimator for β, and also construed a restricted estimator when some additional linear restrictions on the parametric
component are available. In the following, we will develop a novel PCR estimator for β based on the profile least-squares
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method.

The rest of this paper is organized as follows. The profile PCR estimator is proposed in Section 2. A simulation study is
conducted in Section 3. The proofs of the main results are given in Section 4.

2. Profile PCR Estimation

For the need of constructing the PCR estimator, we first introduce the profile least-squares method of Liang et al. (2008)
and Wei and Liu (2012).

Like Liang et al. (2008), we assume q = 2 in model (1) for notational simplicity. Let {Yi,Xi,Z1i,Z2i}ni=1 be a random
sample from model (1) with q = 2. Then we have

Yi = XT
i β + m1(Z1i) + m2(Z2i) + εi, i = 1, 2, · · · , n. (2)

Suppose β is known, then model (2) reduce to

Yi − XT
i β = m1(Z1i) + m2(Z2i) + εi, i = 1, 2, · · · , n. (3)

Obviously, model (3) is a bivariate additive model which has been studied by Opsomer and Ruppert (1997). Let Y =
(Y1, Y2, · · · , Yn)T,mk = (mk(Zk1),mk(Zk2), · · · ,mk(Zkn))T, X = (X1,X2, · · · ,Xn)T. Let sT

1,z1 and sT
2,z2 be the equivalent

kernels for the local linear regression at z1 and z2, respectively, that is,

sT
1,z1
= eT

1 {DT
1 K1D1}−1DT

1 K1, sT
2,z2
= eT

1 {DT
2 K2D2}−1DT

2 K2,

where e1 = (1, 0)T, K1 = diag{Kh1 (Z11 − z1),Kh1 (Z12 − z1), · · · ,Kh1 (Z1n − z1)}, K2 = diag{Kh2 (Z21 − z2),Kh2 (Z22 −
z2), · · · ,Kh2 (Z2n − z2)} where Khk (·) = K(·/hk)/hk, K(·) is a kernel function and hk is a bandwidth, k = 1, 2.

S1 =


sT

1,Z11

sT
1,Z12
...

sT
1,Z1n

 ,S2 =


sT

1,Z21

sT
1,Z22
...

sT
1,Z2n

 ,D1 =


1 Z11 − z1
1 Z12 − z1
...

...
1 Z1n − z1

 ,D2 =


1 Z21 − z2
1 Z22 − z2
...

...
1 Z2n − z2

 ,
By Opsomer and Ruppert (1997), m1 and m2 can be estimated by the backfitting method, and we have

m̂1 =W1(Y − Xβ), m̂2 =W2(Y − Xβ), (4)

with W1 = In − (In − S∗1S∗2)−1(In − S∗1), and W2 = In − (In − S∗2S∗1)−1(In − S∗2), S∗k = (In − 11T)Sk, k = 1, 2.

Replacing m1 and m2 of model (2) by m̂1 and m̂2, respectively, we have

Ȳi = X̄T
i β + εi, i = 1, 2, · · · , n, (5)

where Ȳ = (Ȳ1, · · · , Ȳn)T = (In − S)Y , X̄ = (X̄1, · · · , X̄n)T = (In − S)X, and S =W1 +W2.

Apply least-square approach to linear regression model (5), we can get the profile least-squares estimator for β,

β̂ =

 n∑
i=1

X̄iX̄T
i

−1 n∑
i=1

X̄iȲi = (X̄TX̄)−1X̄TȲ. (6)

In the following, we apply PCR technique to linear model (5). Let Φ = (ϕ1,ϕ2, · · · ,ϕp) is a p × p orthogonal matrix
such that ΦTX̄TX̄Φ = Λ = diag(λ1, λ2, · · · , λp) with λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of X̄TX̄. Then, we have the
following transformation for model

Ȳ = X̄β + ε = X̄ΦΦTβ + ε = Zα + ε, (7)

with Z = X̄Φ and α = ΦTβ.

Assume that (λk+1, λk+2, · · · , λp) are near zero, then we can define the subdivision, Φ = (Φ1,Φ2) with Φ1 = (ϕ1, · · · ,ϕk)
and Φ2 = (ϕk+1, · · · ,ϕp), Z = (Z1,Z2) with Z1 = (X̄ϕ1, · · · , X̄ϕk) and Z2 = (X̄ϕk+1, · · · , X̄ϕp), and

Λ =

[
Λ1 0k×(p−k)

0(p−k)×k Λ2

]
,α = ΦTβ =

[
ΦT

1β
ΦT

2β

]
=

[
α1
α2

]
.
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Then, we have
Ȳ = Zα + ε = Z1α1 + Z2α2 + ε. (8)

We can define the profile least-squares estimator of α1 with Z2α2 omitted as

α̂1 = (ZT
1 Z1)−1ZT

1 Ȳ = (ΦT
1 X̄TX̄Φ1)−1ΦT

1 X̄TȲ = Λ−1
1 Φ

T
1 X̄TȲ. (9)

Finally, the PCR estimator of β can be defined as

β̂PCR = Φ1α̂1 = Φ1(ΦT
1 X̄TX̄Φ1)−1ΦT

1 X̄TȲ = Φ1Λ
−1
1 Φ

T
1 X̄TȲ. (10)

The following theorem gives the asymptotic properties of β̂PCR.

Theorem 1 Under Assumptions 1-4 in the Section 4, for the profile PCR estimator β̂PCR, we have

Eβ̂PCR − β = −Φ2Φ
T
2β + op(1) and Var(β̂PCR) =

σ2

n
Φ1Φ

T
1Σ
−1Φ1Φ

T
1 + op(1),

with Σ = E
[
Xi −

2∑
k=1

E(Xi|Zki)
] [

Xi −
2∑

k=1
E(Xi|Zki)

]T
.

3. Simulation Studies

In this section, some simulations are conducted to examine the performance of the proposed procedure. Consider the
following partially linear additive model

yi = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4 + x5iβ5 + m1(z1i) + m2(z2i) + εi, i = 1, 2, · · · , n,

where m1(z1i) = 2 sin(2πz1i) − 1
n

n∑
i=1

[2 sin(2πz1i)], m2(z2i) = e2z2i − 0.75 − 1
n

n∑
i=1

(e2z2i − 0.75), z1i ∼ U(0, 1), z2i ∼ U(0, 1).

Following McDonald and Galerneau (1975), the explanatory variables are generated by

x ji =

√
(1 − ρ2)w ji + ρw6i, j = 1, 2, 3, 4, 5, i = 1, 2, · · · , n,

where w ji are independent standard normal pseudo-random numbers, ρ is specified so that the theoretical correlation be-
tween any two explanatory variables is given by ρ2. The true parameters are taken as (β1, β2, β3, β4, β5) = (1, 2, 1.5, 0.5, 1),
and n = 80, 100, 120 are considered. In this study, ρ = 0.9, 0.99 and 0.999 are considered so that the condition num-
bers indicate a weak to severe collinearity. We take (1)εi ∼ N(0, 1), (2)εi ∼ U(−

√
3,
√

3). The Epanechnikov kernel
K(x) = 0.75(1 − x2)I|x|≤1 is used in our simulation. Furthermore, we use the CV technique to choose the bandwidth.

To compare the proposed estimators, a criterion for measuring the “goodness” of an estimator is needed. For this purpose,
the mean squared error (MSE) criterion is used throughout our study. For each setting 1000 replications are generated.
β̂ is the profile least-squares estimator of β, β̂

1
PCR and β̂

2
PCR are the PCR estimators of β with the first two principal

components was selected, and the first three principal components was selected, respectively. The estimated mean squared
error (EMSE) is computed for each of the above three estimators, and results is presented in Table 1. The EMSEs for the
different estimators are calculated as follows:

EMSE(β∗) =
1

1000

1000∑
k=1

5∑
j=1

(β∗k j − β j)2,

where β∗k j denotes the estimate of the jth parameter in kth replication and β j, j = 1, 2, 3, 4, 5 are the true parameter values.

Table 1. EMSEs of the estimators
εi ∼ N(0, 1) εi ∼ U(−

√
3,
√

3)
ρ n β̂ β̂

1
PCR β̂

2
PCR β̂ β̂

1
PCR β̂

2
PCR

ρ = 0.9 80 0.326 1.111 0.857 0.355 1.124 0.868
100 0.259 1.092 0.844 0.265 1.091 0.818
120 0.209 1.077 0.794 0.219 1.081 0.803

ρ = 0.99 80 3.121 1.533 1.808 3.094 1.540 1.789
100 2.404 1.486 1.484 2.491 1.473 1.576
120 1.951 1.377 1.439 1.954 1.414 1.438

ρ = 0.999 80 31.776 5.906 11.604 32.674 6.142 10.422
100 25.572 5.533 9.525 23.522 4.842 8.920
120 20.665 4.319 7.844 21.352 4.185 7.986
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We summarize our findings as follows. As the sample size increases, the EMSE of all the estimators decrease. For all the
cases, the EMSEs increase with the increase in ρ. We can see that when ρ = 0.99, 0.999, the PCR estimators perform better
than the profile least-squares estimators. The results show that in case of multicollinearity the proposed PCR estimator is
superior to the profile least-squares estimator.

4. Proof of the Main Results

We begin to derive the main result with the following assumptions. These assumptions are quite mild and can be easily
satisfied. They are also assumed in Liang et al. (2008) and Wei and Liu (2012).

Assumption 1. E(ε|X,Z1,Z2) = 0 and E(|ε|3|X,Z1,Z2) < ∞.

Assumption 2. The bandwidths h1, h2 are of order n−1/5. Assumption 3. The kernel function K(·) is a bounded
symmetric density function with compact support and satisfies

∫
K(u)du = 1,

∫
K(u)udu = 0 and

∫
u2K(u)du < ∞.

Assumption 4. The density functions of Z1 and Z2 are bounded away from zero and have bounded continuous second
partial derivatives.

Lemma 4.1. Under Assumptions 1-4, for the profile least-squares estimator of β, we have

Eβ̂ = β + op(1),Var(β̂) =
σ2

n
Σ−1 + op(1).

This lemma can be obtained by the result of Theorem 2.1 of Wei and Liu (2012).

Proof of Theorem 2.1. According to ΦTX̄TX̄Φ = Λ, we have

β̂ = (X̄TX̄)−1X̄TȲ = ΦΛ−1ΦTX̄TȲ.

Following Xu and Yang (2011), we have
Φ1Λ

−1
1 Φ

T
1 = Φ1Φ

T
1ΦΛ

−1ΦT.

Then, by the definition of β̂PCR and the above results, we can obtain

β̂PCR = Φ1Λ
−1
1 Φ

T
1 X̄TȲ = Φ1Φ

T
1ΦΛ

−1ΦTX̄TȲ = Φ1Φ
T
1 β̂.

By the Lemma 4.1, we have

Eβ̂PCR = Φ1Φ
T
1β + op(1) = Φ1α1 + op(1) = β −Φ2α2 + op(1) = β −Φ2Φ

T
2β + op(1),

and Var(β̂PCR) = σ
2

n Φ1Φ
T
1Σ
−1Φ1Φ

T
1 + op(1).
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