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Abstract

This paper introduces a new four-parameter lifetime model, which extends the Marshall-Olkin Fréchet distribution
introduced by Krishna et al. (2013), called the transmuted Marshall-Olkin Fréchet distribution. Various structural
properties including ordinary and incomplete moments, quantile and generating function, Rényi and g-entropies
and order statistics are derived. The maximum likelihood method is used to estimate the model parameters. We
illustrate the superiority of the proposed distribution over other existing distributions in the literature in modeling
two real life data sets.

Keywords: Transmuted family, generating Function, Rényi Entropy, order Statistics, maximum Likelihood esti-
mation, Marshall-Olkin Fréchet distribution.

1. Introduction

Recently, there has been an increased interest in developing generalized continuous univariate distributions which
have been extensively used for analyzing and modeling data in many applied areas such as lifetime analysis, engi-
neering, economics, insurance and environmental sciences. However, these applied areas clearly require extended
forms of these probability distributions when the parent models do not provide adequate fits. So, several families
of distributions have been proposed by extending common families of continuous distributions. These generalized
distributions provide more flexibility by adding one or more parameters to the baseline model. One example is
the Marshal-Olkin-G (MO-G in short) family proposed by Marshal and Olkin (1997) by adding one parameter to
the reliability function (rf) a(x) = 1 — G(x), where G(x) is the baseline cumulative distribution function (cdf).
Using the MO-G family, Krishna et al. (2013) defined and studied the Marshall-Olkin Fréchet (MOFr) distribution
extending the Fréchet distribution.

The cdf of the MOFr is given (for x > 0) by

e’(%)ﬁ
Grapo)= —— (1)
a+(1-a)e ()
where o > 0 is a scale parameter and a and 3 are positive shape parameters.
The corresponding probability density function (pdf) is given by
aBoBxB+Ve(5)
gx, . B,0) = & 2

(a +(1-0a) e’(%)ﬁ)z.

The Fréchet distribution is one of the important distributions in extreme value theory and has applications in life
testing, floods, rainfall, wind speeds, sea waves and track race records. Further details were explored by Kotz and
Nadarajah (2000). Many authors constructed generalizations of the Fréchet distribution. For example, Nadarajah
and Kotz (2003) studied the exponentiated Fréchet (EFr), Nadarajah and Gupta (2004) and Barreto-Souza et al.
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(2011) independently introduced the beta Fréchet (BFr), Mahmoud and Mandouh (2013) proposed the transmuted
Fréchet (TFr), Silva et al. (2013) proposed the gamma extended Fréchet (GEFr), Elbatal et al. (2014) studied the
transmuted exponentiated Fréchet (TEFr), Mead and Abd-Eltawab (2014) introduced the Kumaraswamy Fréchet
(Kw-Fr) and Afify et al. (2015) proposed the Weibull Fréchet (WFr) distributions.

In this paper, we define and study a new model by adding one parameter in equation (1) to provide more flexibility
to the generated model. In fact, based on the transmuted-G (T-G) family pioneered by Shaw and Buckley (2007),
we construct a new distribution called the transmuted Marshall-Olkin Fréchet (henceforth in short TMOFr) dis-
tribution and provide a comprehensive description of some of its mathematical properties. We hope that the new
model will attract wider applications in reliability, engineering and other areas of research.

Recently, many authors used the T-G family to propose new generalizations of some well- known distributions. For
example, Aryal and Tsokos (2009) defined the transmuted generalized extreme value, Aryal and Tsokos (2011)
proposed the transmuted Weibull, Khan and King (2013) introduced the transmuted modified Weibull, Afify et
al. (2014) defined the transmuted complementary Weibull geometric and Afify et al. (2015) proposed the trans-
muted Weibull Lomax distributions. For a detailed study on the general properties of the transmuted family of
distributions, the interested reader is referred to Bourguignon, Ghosh and Cordeiro (2015).

Consider a baseline cdf G (x) and pdf g (x). Then, the cdf and pdf of the T-G family of distributions are ,respectively,
defined by
Fx;)=G(x)[1+21-G (x)] 3)

and
D) =g®[1+1-21G(x)], 4

where [4] < 1.

Note that if A = 0, equation (4) gives the baseline distribution. Further details can be found in Shaw and Buckley
(2007).

The rest of the paper is outlined as follows. In Section 2, we define the TMOFr distribution and give some plots for
its pdf and hazard rate function (hrf'). We derive useful mixture representations for the pdf and cdf in Section 3. We
provide in Section 4 some mathematical properties of the TMOFr distribution including, ordinary and incomplete
moments, moments of the residual life, reversed residual life, quantile and generating functions and Rényi and
g-entropies. In Section 5, the order statistics and their moments are determined. Certain characterizations are
presented in Section 6. The maximum likelihood estimates (MLEs) of the model parameters are obtained in
Section 7. In Section 8, the TMOFr distribution is applied to two real data sets to illustrate its potentiality. Finally,
in Section 9, we provide some concluding remarks.

2. The TMOFr Model
By inserting (1) into (3), we obtain the cdf of TMOFr (for x > 0)

(2 (2
F(x):e—”ﬁ[l+/l—/le—ﬁﬁ}, (5)
a+ (1 —a)e‘(?) a+ (1 —a)e‘(?)
whereas its pdf can be expressed, from (1), (2) and (4) as
B+ (2 -(2¥
foy = BT e 1+A—”e—ﬂ}, (©)
a+ (1 -a) e (%)

a+(1-a) e‘(%)ﬁ]z

where o > 0 is a scale parameter, a and 8 are positive shape parameters and |1]| < 1.

A physical interpretation of the cdf of TMOFr is possible if we take a system consisting of two independent
components functioning independently at a given time. So, if the two components are connected in parallel, the
overall system will have the TMOFr cdf with 4 = —1.

The rf, hrf, reversed hazard rate function (rhrf) and Cumulative hazard rate function (chrf) are, respectively, given
by
a?+ (a —ad — 2a2) e‘(%)ﬁ + (a2 +ad — a) e‘z(%)ﬁ
R(x) =

i

[a +(1-a) e’(%)ﬁ]z
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~(6+D~(5) .
By = prT e ]{a/(1+/1)—[/l(a/+l)+a/—1]e_(x)ﬁ}

[a +(1-a)e &)

X {a2 + [a(l -A1-2a)+ (az +ald - a) e‘(%)ﬂ] e‘(%)ﬁ}_l )

P x-6+D {a/(l F)-[A@+D+a—1] e—(%)ﬁ}

r(x) =

[a(l ) - (adta— 1)e—(%>”] [a +(-a) e—(%)”]

and

H() = n o+ (1 - e

a? + (a’ —ad — 20’2) e_(.%)ﬂ + (02 +al- a,) 6_2(%)'6

Some of the plots of the pdf and hrf of TMOFr for different values of the parameters a, 8, o and A are displayed
in Figures 1 and 2.

Figure 1. The pdf of TMOFr: (a) Fora = 0.5 : 8 = A = 0.5 and o = 2 (thick line), 8 = 0.9,0 = 0.6 and
A = —0.2(black line), 8 = 0.4,0 = 5 and A = 1(dashed line) and 8 = 0.3,0 = 1.5 and 1 = 0.5.

The TMOFr distribution shows flexible properties as it contains some well known distributions as special cases
such as MOFr, transmuted Fréchet (TFr), transmuted inverse exponential (TIE), transmuted inverse Rayleigh
(TIR), inverse exponential (IE) and inverse Rayleigh (IR) distributions among others. The flexibility of the TMOFr
is explained in Table 1 where it has eleven sub-models when their parameters are carefully chosen.
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Figure 2. The pdf of TMOFr: (dotted line) (b) For@ = 1.5and 8 = 2.5 : 0 = 2.5 and A = 0.1 (thick line), o0 = 1.3
and A = 0.9(black line), o = 2.5 and A = 0.7 (dashed line) and o = 2 and A = 0.6 (dotted line).

Table 1. Sub-models of the TMOFr

a B o A ReducedModel Author

a 1 o a1 TMOIE New

a 2 o A1 TMOIR New

a B o 0 MOFr Krishna et al. (2013)

a 1 o 0 MOIE -

a 2 o 0 MOIR -

1 g o 4 TFr Mahmoud and Mandouh (2013)
1 1 o a4 TIE Oguntunde and Adejumo (2015)
1 2 o A TIR Ahmad et al. (2014)

1 B o 0 Fr Fréchet (1924)

1 1 o 0 IE Keller and Kamath (1982)

1 2 o 0 IR Trayer (1964)

3. Mixture Representation

The pdf in (6) can be expressed as

a+2 aﬁa‘ﬁx‘(ﬂ“)e‘(%)ﬁ ~ 2/laﬁa'ﬁx’(ﬂ“)e’2(%)ﬁ

T [a+(1 —a)e_(%)ﬁr [a+(l —a)e_(%)ﬁ t

Expansions for the density of TMOFr can be derived using the series expansion

00

- L'k+j
k _ E
(1-77"*= ST Z, |24 <1, k>0.
0
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Applying the above series expansion, the pdf of the TMOFr can be expressed in the mixture form

o)

FO =D [ () = @i e (9] 7
k=0

k , k . ) o
where v = 4 (1 - l) , wy = Wb (1 - é) and A, 5us(x) is the Fréchet (Fr) density with shape parameter 3

a a?

and scale parameter o (6)1/5 .

Since the density function TMOFr is expressed as a mixture of Fr densities, one may obtain some of its mathemat-
ical properties directly from the properties of the Fr distribution.

By integrating (7), we obtain

Me

F(x)= [UkHﬁ’U_(kH)l/ﬁ(x) - wkHﬁ’(r(kﬂ)w(x)] s

k

Il
(=]

where Hy ,ss(x) is the cdf of Fr distribution with shape parameter 8 and scale parameter o ()5,
4. Mathematical Properties

Employing established algebraic expansions to determine some structural quantities of the TMOFr distribution can
be more efficient than computing those directly by numerical integration of its density function.

4.1 Moments

Henceforth, let Z be a random variable having the Fr distribution with scale o > 0 and shape 8 > 0. Then, the pdf
of Z is given by

gz B,0) =ﬁoﬁz_(ﬁ+1)e_(%)ﬁ, 7> 0.

For r < f3, the rth ordinary and incomplete moments of Z are given by
’ r r r r
M7 =0 F(l—/—g) and ¢,z (1) =0 7(1—5,(0'/l)ﬁ),

respectively, where y (s, 1) = fot x*~! e*dx is the lower incomplete gamma function.

Then, the rth moment of X, say u,, can be expressed as
u.=EX) = Za’ [we (ke + 178 = wy (ke +2)7%] F(l - [—;) (8)
k=0

Using the relation between the central and non-central moments, we obtain the nth central moment of X, say u,,

as follows .
Ly = ZZ o ()" [uk k+ 1P — wp (k+ 2)’/ﬁ] ('rl)r (1 - é) .

=0 k=0
The skewness and kurtosis measures can be determined from the central moments using established results.
4.2 Incomplete Moments

The main application of the first incomplete moment refers to the Bonferroni and Lorenz curves. These curves
are very useful in economics, reliability, demography, insurance and medicine. The answers to many important
questions in economics require more than just knowing the mean of the distribution, but its shape as well. This is
obvious not only in the study of econometrics but in other areas as well. The sth incomplete moments, say ¢; (),
is given by

s () = j(; x*f(x)dx,

Using equation (7), we can write
s ! !
Ps (t) = Z [Uk fo‘ xshﬁ’o-(k_‘_l)l/ﬂ(x) — Wk jo‘ x‘yhﬁ’(r(k+2)1//3(x):| >
k=0
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and then using the lower incomplete gamma function, we obtain (for s < @)

00

B = B

_ s siB (1 -3 oY) - s siB 1 -3 (Z)

6 (D)= Y ue (k+ 1) y(l G n(7) ) >lon” (k+2) y(l 5®+2(7));
k=0 k=0

where vy (a, z) is, the lower incomplete gamma function, defined in subsection 4.1.

The first incomplete moment of the TMOFr distribution can be obtained by setting s = 1 in the last equation.

Another application of the first incomplete moment is related to mean residual life and mean waiting time given

by m (t) = [1 — @1 (O]/R(t) —t and M (¢) = 1t — [ () / F (1)], respectively.

The amount of scattering in a population is evidently measured, to some extent, by the totality of deviations from
the mean and median. The mean deviations about the mean [6, (X) = E(|X — ;1’1 [)] and about the median [6, (X) =
E (X — M|)] of X can be, used as measures of spread in a population, expressed by 6, (X) = fooo X - ,u'll f(x)dx =
24, F(uy) = 2¢1(1)) and 6y (X) = fow IX — M| f (x)dx = p; — 2¢1 (M), respectively, where (| = E (X) comes from
®), F (/4'1) is simply calculated, 901(//1) is the first incomplete moments and M is the median of X.

4.3 Residual Life Function

Several functions are defined related to the residual life. The failure rate function, mean residual life function and
the left censored mean function, also called vitality function. It is well known that these three functions uniquely
determine F(x), see Gupta (1975), Kotz and Shanbhag (1980) and Zoroa et al. (1990).

Moreover, the nth moment of the residual life, say m,(f) = E[(X — )" | X > t], n = 1, 2,..., uniquely determine

F(x) (see Navarro et al., (1998). The nth moment of the residual life of X is given by

1

mn(t) = %

foo(x — 0" f(x)dx.

Then, we can write (for r < §)

1 - . 3
= 235 v v (e ()

r=0 n=0
1 O N n—r r . [n r o <
—%;;(—ﬂ o (k +2)F (r){1—y(1-l-3,(k+z)(7) )}

Another interesting function is the mean residual life (MRL) function or the life expectation at age x defined
by mi(x) = E[(X—x)| X > x], which represents the expected additional life length for a unit which is alive
at age x. The MRL of the TMOFr distribution can be obtained by setting n = 1 in the last equation. Guess
and Proschan (1988) derived an extensive coverage of possible applications of the MRL applications in survival
analysis, biomedical sciences, life insurance, maintenance and product quality control, economics, social studies
and demography (see, Lai and Xie, 2006).

4.4 Reversed Residual Life Function

The nth moment of the reversed residual life, say M, (f) = E[(t — X)" | X < ] fort > 0, n = 1, 2,... uniquely
determines F'(x) (Navarro et al., 1998). We obtain

M, (1) = f(t - x)"dF(x).
0

Therefore, the nth moment of the reversed residual life of X given that r < 8 becomes

1 vwe . Vi
M0 = 5 DU e (ke 1 ('r’)y(l - é,(m 1)(%) )

r=0 n=0
I vo P . (n r o\B
- ,.:0,;(_1) I ago” (k + 2)F (r)y(l —B,(k+2)(7) )
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The mean inactivity time (MIT) or mean waiting time (MWT), also called the mean reversed residual life function,
is defined by M;(¢) = E[(t — X) | X < ¢], and it represents the waiting time elapsed since the failure of an item on
condition that this failure had occurred in (0, x). The MRRL of X can be obtained by setting n = 1 in the above
equation. The properties of the mean inactivity time have been considered by many authors, see e.g., Kayid and
Ahmad (2004) and Ahmad et al. (2005).

4.5 Quantile and Generating Functions

The quantile function (qf) of X is the real solution of the equation F(x,;) = g. Then by inverting (5), we obtain

[ (b+a\/1+/l(/l 4q+2)]
Xy =0 |ln

2a?

,0<g<1,

where b = 2ag (@ — 1)+ a1+ 1).

Simulating a TMOFr random variable is straightforward. If U is a uniform variate on the unit interval (0, 1), then
the random variable X = x, follows (6).

First, we provide the moment generating function (mgf) of the Fr model as discussed by Afify et al. (2015). We
can write the mgf of Z as

M(t;B,0) = Bo’ f el y b1 =@ gy,
By expanding the first exponential and determining the integral, we obtain

mipor= 5 r (25

m=0

Consider the Wright generalized hypergeometric function (Kilbas et al., 2006) defined by

:-w

F(yj +A; n)
1 X

n

n!’

Y1, A1, (Ve Ap) o
"ol @B (BB ] Z

n=!

:]Q

T (8;+B;n)
1

~.
Il

Then, we can write M(t;8, o) as

Mt B,0) = 1‘1’0[ <1’_’3_l) ;a‘t].

Combining the last expression and (7), the mgf of X can be expressed as

o)

My () = kaﬁ’o[ (1’__'8_]) co(k+ D)'A t]—iwk ol (L-p7)- 1o k+2)" 1],
k=0

k=0

4.6 Rényi and q-Entropies

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty. The Rényi entropy
is defined by

1 00
LX) = o= logImf(x)ydx, y>0andy # 1.
Then, using (6), we can write
(aﬁa’ﬁ)y VB (5 (2 0
f@y = . 1+/l—2/l—M]
[a +(-a) e—@)ﬂ] a+(1-a)e ()
A

Applying the generalized binomial expansion to the quantity A, we obtain

/T DHd’
f @ =lapo? 1+ )| -v(ﬁmZ( ‘;(y(y;)l)

>

-Q2y+))
% o n(gY [a +(1-a) e-(%)ﬁ] (s

B
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where d = 24/ (1 + ).

Applying the series expansion defined in Section 3 to B, we can write
f(x)V = (Bo‘ﬁ)y Zbj,kx_‘y(ﬁ-'—l)e_(k+j+7)(%)ﬁ’
k=0

where

bjx =

~1)TQy+j+kTy+d (1 +/1)7( 1)k
-]

JKIT 2y + HT(y - j+ Dar+ Ca
Then the Rényi entropy of X is given by

0= — )1oglﬂaﬂ Zb,kf

y(ﬂ+1)e(k+j+y)(f)ﬁdx} ,
k=0 —eo

and by making the substitution u = (o/x)2, for v (1 +B) > 1, we have that

o ! )logl( )71ibjk(k+]+’y)_sl"(s)]

J.k=0

Iy X) =

where s = [y (1 +8) - 1] /8.
The g-entropy (for g > 0 and g # 1), say H,(X), is given by

| -
@-D log{l—[mf(x)qu},

1 ¢l & .
Hy (X) = - log 1—[( ) AGIET S F(s*)} ,

Hq X) =

and then

Jik=0

where s* = [¢(1 +8) — 1] /B and

*_(—l)jl“(2q+j+k)1"(q+l)df(1+/l)q( 1)k
-]

KT KT g+ HT (g — j+ D adti Ca

5. Order Statistics

The order statistics and their moments have great importance in many statistical problems and they have many
applications in reliability analysis and life testing. Let X, ..., X, be a random sample of size n from the TMOFr(«,
B, o, ) with cdf (5) and pdf (6), respectively. Let X;.,,..., X, be the corresponding order statistics. Then, the
pdf of rth order statistic, say X,.,, 1 < r < n, denoted by f,., (x), can be expressed as

x5 1165 - w—ﬂ%)“]” 61— 02 |02 4 2 ese—z<%>”]""

fr:n ()C) =C

]Z(V—l) ]2(n—r)

o+ - e‘<%>ﬁ]3 o (=@ |+ (=@

where C,.,, = H=a(l+A),6=al+a+1-1,6 =al+a—-1,6, =a—al-2a%and {5 = > +al-a.

(r- 1)"(n nt?
The pdf f,., (x), can also be expressed as

_ f(x) s n—1 s+r—1
frn () = g r“)Z( 1) ( ] )F (). ©)

Further, we can write

1+ ) i-1 —(s+r+i— 1)( )ﬁ
o 1(x)—Z( /l)’( l )( LR -
[a+ (1 —a)e’(%) ]
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Using equation (6) and the last equation and, after some simplification, we can write

o —(B+1) ,~(s+r+)(2) o g —(B+1) ,~(s+r+i+D(2)
SOF =1+ 2y diapr?x Ve _og ) et e (10)

s+r+i+1 s+r+i+2
i=0 [a+(1 —a)e‘(.%)ﬁ] i=0 [a+(1 —a)e‘(%y3

where d; = (=)' (") (1 +

By inserting (10) in equation (9) and, after some simplification, we obtain

n—1 oo n—1 oo
Srn(x) = Z Z a;j hoyryivj(x) — Z Z bijhsrryivji1 (%), (11)
s=0 i,j=0 =0 i,j=0
where )
(I'T(s+r+i+tj+ D) A+0d(1-L1)
aij = - - — - >
ST jBrn—r+ DL (s+r+i+ D) (s+r+i+jastrtil s
, (-1)'T(s+r+i+j+2)22d;(1- L) no1
Y jBn—r+ DI(s+r+i+2)(s+r+i+ j+ Dastrritt| s

and £,,(x) denotes to the Fr density with shape parameter 8 and scale parameter o ",

Equation (11) reveals that the pdf of the TMOFr order statistics is a mixture of Fr densities. So, some of their
mathematical properties can also be obtained from those of the Fr distribution. For example, the gth moment of
X,.n can be expressed as

n-1 oo n-1 oo
E (Xg:") - Z Z “i»jE(querj) - Z Z bi,jE(Y;]+r+i+j+1), (12)
s=0 i,j=0 s=0 i,j=0
where Yg+r+i+j ~FI‘(0' (S +r+i+ j)l/'B ,ﬁ)

The L-moments are analogous to the ordinary moments but can be estimated by linear combinations of order
statistics. Based upon the moments in equation (12), we can derive explicit expressions for the L-moments of X
as infinite weighted linear combinations of the means of suitable TMOFr distribution. They are linear functions of
expected order statistics defined by

r—1
1 -1
=) (’ )E Xpper), 72 1.
r k
The first four L-moments are given by

1 1
A =EXp), A= EE(XZ:Z - Xi2),43 = gE(X3:3 = 2X53 + X1:3)

and 1
A= ZE (X4.4 — 3X3.4 + 3X04 — X14) .

6. Characterizations

The problem of characterizing a distribution is an important problem in various fields which has recently attracted
the attention of many researchers. These characterizations have been established in many different directions.
This section deals with various characterizations of TMOFr distribution. These characterizations are based on: (i)
a simple relationship between two truncated moments; (i) the hazard function; (iii) a single function of the random
variable. It should be mentioned that for characterization (i) the cdf need no have a closed form. We believe, due
to the nature of the cdf of TMOFrt, there may not be other possible characterizations than the ones presented in this
section.

6.1 Characterizations Based on Two Truncated Moments
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In this subsection we present characterizations of TMOFr distribution in terms of a simple relationship between two
truncated moments. Our first characterization result borrows from a theorem due to Glanzel (1987) see Theorem
A of Appendix A. We refer the interested reader to Glanzel (1987) for a proof of Theorem A. Note that the result
holds also when the interval H is not closed. Moreover, as mentioned above, it could be also applied when the cdf
F does not have a closed form. As shown in Afify et al. (2015), this characterization is stable in the sense of weak
convergence.

N (5B 1-b

Proposition 6.1. Let X : Q — (0, c0) be a continuous random variable and let A (x) = [1 + 21— e (5P

P -1
and g(x) = h(x)[a@+ (1 —a)e(¥] " for x > 0. The random variable X belongs to TMOFr family (6) if and
only if the function 7 defined in Theorem A has the form

n(x):%{1+[a+(1—a)e-(%)ﬁ]’l}, x> 0. (13)

Proof. Let X be a random variable with density (6), then

A-FX)E[h(x) | X>x] = L{[m(l —a)e*(%)ﬁ]‘l - 1}, x>0,
1-«a
and
(I-FO)E[gx) |X2x]= ;{[aw(l —a)e’(%)ﬁ]_z— 1} x>0
8 =T 20— e

and finally

n@hx)-gkx) = %h(x){l - [a +(1 —a)e‘(%)ﬁ]fl} > 0 for x > 0.

Conversely, if 77 is given as above, then

1 (x) h(x) ~(1—a)pobe (5 [a +(-a) e—(%)ﬁ]_z
s (x) = _

CIWh@W-g@ g {1 ~[e+a- a)e—(%)ﬂ]“} >0

and hence

s(x) = —ln{{l - [a + (1 —Oz)e_(%)ﬁ]il}}, x> 0.

Now, in view of Theorem A, X has density (6).

Corollary 6.1. Let X : Q — (0,00) be a continuous random variable and let % (x) be as in Proposition 6.1. The
pdf of X is (6) if and only if there exist functions g and ; defined in Theorem A satisfying the differential equation

7 () h(x) —(1 —a/),BO'ﬂe‘(‘ff [a/+(1 —a/)e‘(%)ﬂ]_2
nWh()-g) {1 “[e+a _a)e—(‘;’.)ﬁ]‘l}

The general solution of the differential equation in Corollary 6.1 is

x> 0. (14)

a1 - ~B+Dg~(5)
77(x)={1—[a/+(1—a')e’(‘?)ﬁ] l} ] (1 - a)fotx ¢ 58 () dx+D
h(x) [a +(1-a) e’(%)ﬁ]

where D is a constant. Note that a set of functions satisfying the differential equation (14) is given in Proposition

6.1 with D = % However, it should be also noted that there are other triplets (%, g, n7) satisfying the conditions of
Theorem A.
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6.2 Characterization Based on Hazard Function

It is known that the hazard function, /r, of a twice differentiable distribution function, F, satisfies the first order
differential equation

JRORAS)
J) hp(x)

— hr(x). 5)

For many univariate continuous distributions, this is the only characterization available in terms of the hazard
function. The following characterization establishes a non-trivial characterization for TMOFr distribution in terms
of the hazard function when o = 1, which is not of the trivial form given in (15). We assume, without loss of
generality, that o = 1 in the following Proposition.

Proposition 6.2. Let X : Q — (0, o0) be a continuous random variable. Then for @ = 1, the pdf of X is (6) if and
only if its hazard function hf (x) satisfies the differential equation

(16)

dx

R (x) + B+ 1) x e () :ﬁx—(ﬁn)i{ e (5 [1 +A4- Z/le*(:)ﬁ] }

1+ [P = (1 + )] e ()8
with the boundary condition lim,_,« hr (x) = 0.
Proof. If X has pdf (6), then clearly (16) holds. Now, if (16) holds, then

1 Cd | s P14 2-220)]
dx {Xﬂ hp (x)} d {1 + [/le*(%)ﬁ —(+ /l)] (25 [

x
or, equivalently,

Bx e (D1 + 1 = 20 (D]
1+ [2e7 G — (1 + )| (0

hr (x) =

which is the hazard function of the TMOFr distribution.
6.3 Characterizations Based on a Single Function of the Random Variable
In this subsection we present a characterization result in terms of a function of the random variable X.

Proposition 6.3. Let X : Q — (a,b) be a continuous random variable with cdf F and corresponding pdf f. Let
¥ (x) be a differentiable function greater than 1 on (a, b) such that lim,_,+ ¥ (x) = 1 and lim,,- ¥ (x) = 1 + c.
Then, for 0 < ¢ < 1,

ElyX) 1 X<x]=c+(1-0)y ), a7

if and only if

F(x)= (%) . (18)

Proof. If (17) holds, then

f Y ) fdu=fc+1-c)y)}F(x).

Differentiating both sides of the above equation with respect to x and rearranging the terms, we arrive at
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F(x) ¢ \gx)-1
Integrating both sides of (19) from x to » and using the condition lim,_;- ¥ (x) = 1 + ¢, we arrive at (18).

Conversely, if (18) holds, then ¥ (x) = 1 + ¢ (F (x))ﬁ}- and

f(x)_l—c‘( ' (x) ) (19)

S+ e @)y} f wdu
F(x)
F(x)+c(1-0)(F ()™
F (x)
= 1l+c(l-0)(F(x)m=
= I+(0-0Wx-D

= c+(-0y),

E[yX) | X < x]

which is (17).
Remark 6.1. Taking, e.g., (a,b) = (0, o) and

(58 e~ (5 ]}

=1 -
Ve +C{a+(l—a)e‘(§)ﬁ " a+(1-a)e (5P

Proposition 6.3 gives a characterization of TMOFr distribution.
7. Maximum Likelihood Estimation

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method is
the most commonly employed. The MLEs enjoy desirable properties and can be used when constructing confidence
intervals and regions and also in test statistics. The normal approximation for these estimators in large sample
distribution theory is easily handled either analytically or numerically. In this section, we consider the estimation
of the parameters of the TMOFr(a, 5, 0, 4, x) distribution by maximum likelihood. Consider the random sample
X1, ..., X, of size n from this distribution. The log-likelihood function for the parameter vector ¢ = («,f, 0, )T,

say (¢), is given by

n B n
(p) = n(loga/+ln,8—10g0')—2(;:) +(,B+1)Zlog(;£)
i=1 i i=1 i

n -V n Y
—3zlog{a+(1—a)e(;) +Zlog[a(/l+l)—pe(*f)},
i=1 i=1

where p = A(a + 1)+a— 1. The above equation can be maximized either directly by using the MATH-CAD program,
R (optim function), SAS (PROC NLMIXED) or by solving the nonlinear equations obtained by differentiating the log-
likelihood. Therefore, the corresponding score function, say U (¢) = a{;_?;)’ is given by U (¢) = (%, 6{;—?, %, %)T.

Then,

o

(5] ()
P _n N 3-3e Sl4d-(+ e\
S - Z +Z

0 P ¥
¢ o+ —a)e_(Tf) =g+ 1)—pe_(7f)

n Vi " oy ) n 31 -a)(2Y =f
O of I T A R S e

B G i M= —(%) Yi) B oo —(%)
a(d+1)—pe \v a+(1-—a)e \*
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o

S e e

Ela@+1) —pef(*rff =g+ (1 —a)ef(*"r "

and

5
a9) _ i a—(1 +a)e_<%) '
o =la@+1)- pe_(%f

We can obtain the estimates of the unknown parameters by setting the score vector to zero, U(¢) = 0. Solving
these equations simultaneously gives the MLEs @. ﬁ 7 and A. If they can not be solved analytically and statistical
software can be used to solve them numerically by means of iterative techniques such as the Newton-Raphson
algorithm. For the TMOFr distribution all the second order derivatives exist.

For interval estimation of the model parameters, we require the 4 X 4 observed information matrix J(¢) = {J,}
for r,s = a,B,0, A. Under standard regularity conditions, the multivariate normal N4(0, J(E)‘l) distribution can
be used to construct approximate confidence intervals for the model parameters. Here, J (¢) is the total observed
information matrix evaluated at 5 Therefore, approximate 100(1 — ¢)% confidence intervals for «, 8, 0 and A can
be determined as:

o+ zg \/Zm, Ei zg wﬁ;’ﬁ, T+ zg \/Zm and 1+ zg \/Zu, where z¢ is the upper ¢th percentile of the
standard normal distribution. i

8. Applications

In this section, We provide two applications to two real data sets to prove the flexibility of the TMOFr model. We
compare the fit of the TMOFr with competitve models namely: MOFr, BFr, GEFr, TFr and Fr distributions. The
pdfs of these distributions are, respectively, given by (for x > 0):

MOFr: f(x) = afo? x~F+D PGS [01 +(1-a) e‘(%)ﬂ]_z,
B /00 = e 1=
b1

GEFr: f(x) = 42 x-6+D (5 [1_6( )] { log[l—e"(%)ﬁ]a} :

TFr: f(x) = Bofx @D (5 [1 +1-221 e—(%)ﬁ] :
Fr: f(x) = Bofx 6+ (%)

The parameters of the above densities are all positive real numbers except for the TFr distribution for which || < 1.

The first data set refers to breaking stress of carbon fibres (in Gba) (Nichols and Padgett, 2006) and consists of
100 observations: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27,2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09,
1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31,
2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91,
3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,
1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88,
2.82,2.05, 3.65. The second data set is obtained from Smith and Naylor (1987). The data are the strengths of 1.5
cm glass fibres, measured at the National Physical Laboratory, England. Unfortunately, the units of measurement
are not given in the paper. The data set consisting of 63 observations are: 0.55, 0.93,1.25, 1.36, 1.49, 1.52, 1.58,
1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53,1.59, 1. 61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77,
1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69,1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66,
1.7,1.77,1.84,0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

In order to compare the distributions, we consider the measures of goodness-of-fit including the Akaike information
criterion (AIC), Bayesian information criterion (B/C), Hannan-Quinn information criterion (H QIC) and consistent
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Akaike information criterion (CAIC). These measures of goodness-of-fit evaluated at the MLEs™, where™ is the
maximized log-likelihood.

We also consider the Cramér—von Mises (W*) and Anderson—Darling (A*) statistics. The statistics W* and A* are
described in details in Chen and Balakrishnan (1995). In general, the smaller the values of these statistics, the
better the fit to the data.

In Table 2, we list the numerical values of the statistics W*, A*, AIC, BIC, HQIC and CAIC using the two real data
sets (DS), whereas the MLEs and their corresponding standard errors and the statistics of the model parameters are
shown in Table 3. These numerical results are obtained using the MATH-CAD program.

Table 2. The statistics W*, A*, AIC, BIC, HQIC and CAIC for the two data sets

DS Models W* A* AlIC BIC HQIC CAIC
TMOFr 0.2376  1.26771 309.973 320.393 314.19  310.394
BFr 0.25137 1.39536 311.133 321.553 315.35 311.554
GEFr 0.25872 1.43853 311.96 332381 316.178 312.381

I MOFr  0.59267 3.38252 351.328 359.143 354.491 351.578
TFr 0.55598 3.17823 350.475 358.29  353.638 350.725
Fr 0.54849 3.13643 348.308 353.519 350.417 348.432

TMOFr 0.56541 3.10166 56.46 65.032  59.831 57.149
MOFr  0.59607 3.2897  57.08 63.509  59.609  57.487
II BFr 0.76879 4.20206 68.63 77202 72.002  69.32
GEFr 0.78121 4.27204 69.557  78.13 72.929  70.247
TFr 1.17022  6.45074 100.078 106.507 102.606 100.484
Fr 1.16252 6.40749 97.707 101.993 99.392  97.907

The figures in Table 2 indicate that the TMOFr model has the smallest values of the statistics W*, A*, AIC, BIC,
HQIC and CAIC except BIC and HQIC for the second data set. Hence, it can be chosen as the best model among
all fitted models. Based on these criteria in Table 2, we conclude that the TMOFr distribution provides a better fit
than the other models.

9. Concluding Remarks

In this paper, we propose a new four-parameter model, called the transmuted Marshall-Olkin Fréchet (TMOFr)
distribution, which extends the Marshall-Olkin Fréchet (MOFr) distribution introduced by Krishna et al. (2013).
In fact, the TMOFr distribution is motivated by the wide use of the Fréchet distribution in practice and also in
view of the fact that the generalization provides more flexibility to analyze real life data. We provide some of
its mathematical properties. The density function of TMOFr can be expressed as a mixture of Fréchet densities.
We derive explicit expressions for the ordinary and incomplete moments, residual life and reversed residual life
functions, quantile and generating functions, Rényi and g-entropies. We obtain the density function of order
statistics and their moments. We discuss the maximum likelihood estimation of the model parameters. Two
applications illustrate that the proposed distribution provides consistently better fit than other non-nested models.

Appendix A

Theorem A. Let (Q, 7, P) be a given probability space and let H = [d, ¢] be an interval for some d < e (d = —c0,
e = oo might as well be allowed). Let X : Q — H be a continuous random variable with the distribution function
F and let g and h be two real functions defined on H such that

EgX) | X2x]=E[hX) |X=2xIn(x), x€H,

is defined with some real function 7. Assume that g, h € C' (H), n € C? (H) and F is twice continuously differen-
tiable and strictly monotone function on the set H. Finally, assume that the equation 47 = g has no real solution in
the interior of H. Then F is uniquely determined by the functions g, # and n, particularly

_ " n’ (u) B
F@= | ol i s s de
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where the function s is a solution of the differential equation s" = .
that [, dF = 1.

Table 3. MLEs and their standard errors (in parentheses) for the two data sets
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h . ..
e and C is the normalization constant, such
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TMOFr(B, 0, a, 1) 3.3313  0.6496 101.923 0.2936
(0.206) (0.068) (47.625) (0.27)
BFr(B, o, a, b) 0.4046 1.6097 22.0143 29.7617
(0.108) (2.498) (21.432) (17.479)
GEFr(B, 0, a, b) 04776 1.3692 27.6452 17.4581
I (0.133) (2.017) (14.136) (14.818)
MOFr(B3, o, @) 1.5796 2.3066 0.5988
(0.16) (0.489) (0.3091)
TFr(B, o, 1) 1.7435 19315 0.0819
(0.076) (0.097) (0.198)
Fr(B, o) 1.7766  1.8705
(0.113) (0.112)
TMOFr(B, o, a, 1) 6.8744  0.65 376.268 0.1499
(0.596) (0.049) (246.832) (0.302)
MOFr(B, o, @) 6.4655 0.6812 161.6114
(0.559) (0.045) (91.499)
BFr(B, 0, a, b) 0.6466 2.0518 15.0756 36.9397
II (0.163) (0.986) (12.057) (22.649)
GEFr(B, 0, a, b) 0.7421 1.6625 32.112 13.2688
(0.197) (0.952) (17.397) (9.967)
TFr(B, o, 1) 2.7898 1.3068 0.1298
(0.165) (0.034) (0.208)
Fr(B, o) 2.8876 1.2643
(0.234)  (0.059)

Afify, A. Z., Nofal, Z. M., & Butt, N. S. (2014). Transmuted complementary Weibull geometric distribution. Pak-
istan Journal of Statistics and Operation Research, 10, 435-454. http://dx.doi.org/10.18187/pjsor.v10i4.836

Afify, A. Z., Yousof, H. M., Nofal, Z. M., & Cordeiro, G. M. (2015). The Weibull Fréchet distribution and its
applications. Submitted.

Afify, A. Z., Nofal, Z. M., Yousof, H. M., El Gebaly, Y. M., & Butt, N. S. (2015). The transmuted Weibull Lomax
distribution: properties and application. Pakistan Journal of Statistics and Operation Research, 11, 135-152.
http://dx.doi.org/10.18187/pjsor.v11i1.956

Ahmad, A., Ahmad, S. P,, & Ahmed, A. (2014). Transmuted inverse Rayleigh distribution: a generalization of the
inverse Rayleigh distribution. Mathematical Theory and Modeling, 4, 90-98.

Ahmad, I., Kayid, M., & Pellerey, F. (2005). Further results involving the MIT order and the IMIT class. Probabil-
ity in the Engineering and Informational Science, 19, 377-395. http://dx.doi.org/10.1017/s0269964805050229

Aryal, G. R., & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. Nonlinear
Analysis: Theory, Methods and Applications, 71, 1401-1407. http://dx.doi.org/10.1016/j.na.2009.01.168

Aryal, G. R., & Tsokos C. P.(2011). Transmuted Weibull distribution: A Generalization of the Weibull Probability
Distribution. European Journal of Pure and Applied Mathematics, 4, 89-102.

Barreto-Souza, W. M., Cordeiro, G. M., & Simas, A. B. (2011). Some results for beta Fréchet distribution. Com-
munications in Statistics-Theory and Methods, 40, 798-811. http://dx.doi.org/10.1080/03610920903366149

Bourguignon, M., Ghosh, 1., & Cordeiro, G. M. (2015). General results for the transmuted family of distributions
and new models. Submitted.

Chen, G., Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test, Journal of Quality Tech-

146



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

nology, 27, 154-161.

Elbatal, I. Asha, G., & Raja, V. (2014). transmuted exponentiated Fréchet distribution: properties and applications.
J. Stat. Appl. Prob., 3, 379-394.

Fréchet, M. (1924). Sur la loi des erreurs d’observation, Bulletin de la Société Mathématique de Moscou, 33, p.
5-8.

Gldnzel, W. (1987). A characterization theorem based on truncated moments and its application to some dis-
tribution families. Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), B, Reidel,
Dordrecht, 75-84. http://dx.doi.org/10.1007/978-94-009-3965-3_8

Glinzel, W. (1990). Some consequences of a characterization theorem based on truncated moments. Statistics: A
Journal of Theoretical and Applied Statistics, 21, 613-618. http://dx.doi.org/10.1080/02331889008802273

Guess, F., & Proschan, F. (1988). Mean residual life, theory and applications. In: Krishnaiah, P. R., Rao, C. R.
(Eds.), Handbook of Statistics. Reliability and Quality Control, 7, 215-224. http://dx.doi.org/10.1016/S0169-
7161(88)07014-2

Gupta, R.C. (1975). On characterization of distributions by conditional expectations. Communications in Statistics-
Theory and Methods, 4, 99-103. http://dx.doi.org/10.1080/03610927508827230

Kayid, M., & Ahmad, I. (2004). On the mean inactivity time ordering with reliability applications, Probability in
the Engineering and Informational Science, 18, 395-409. http://dx.doi.org/10.1017/S0269964804 183071

Keller, A. Z., & Kamath, A. R. (1982). Reliability analysis of CNC Machine Tools. Reliability Engineering, 3,
449-473. http://dx.doi.org/10.1016/0143-8174(82)90036-1

Khan, M. S., & King, R. (2013). Transmuted Modified Weibull Distribution: A Generalization of the Modified
Weibull Probability Distribution. European Journal of Pure and Applied Mathematics, 6, 66-88.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equa-
tions. Elsevier, Amsterdam.

Krishna, E., Jose, K. K., Alice, T., & Risti¢, M. M. (2013). The Marshall-Olkin Fréchet Distribution. Communi-
cations in Statistics-Theory and Methods, 42, 4091-4107. http://dx.doi.org/10.1080/03610926.2011.648785

Kotz, S., & Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press,
London.

Kotz, S., & Shanbhag, D. N. (1980). Some new approaches to probability distributions. Adv. Appl. Prob., 12,
903-921. http://dx.doi.org/10.2307/1426748

Lai, C. D., & Xie, M. (2006). Stochastic aging and dependence for reliability. Springer, New York.

Mahmoud, M. R., & Mandouh, R. M. (2013). On the Transmuted Fréchet Distribution. Journal of Applied Sciences
Research, 9, 5553-5561.

Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with
application to the exponential and Weibull families, Biometrika, 84, 641-652.
http://dx.doi.org/10.1093/biomet/84.3.641

Mead, M. E., & Abd-Eltawab A. R. (2014). A note on Kumaraswamy-Fréchet Distribution. Aust. J. Basic and
Appl. Sci., 8, 294-300.

Nadarajah, S., & Gupta, A. K. (2004). The Beta Fréchet Distribution. Far East Journal of Theoretical Statistics,
14, 15-24.

Nadarajah, S., & Kotz, S. (2003). The exponentiated exponential distribution, Available online at http./interstat.stat
Jjournals.net/YEAR/2003/abstracts/0312001.php.

Navarro, J. Franco, M., & Ruiz, J. M. (1998). Characterization through moments of the residual life and conditional
spacing. Sankhya:The Indian Journal of Statistics, 60, Series A, 36-48.

Nichols, M.D, Padgett, W.J. (2006). A Bootstrap control chart for Weibull percentiles. Quality and Reliability
Engineering International, 22, 141-151. http://dx.doi.org/10.1002/qre.691

Oguntunde, P. E., & Adejumo, A. O. (2015). The Transmuted Inverse Exponential Distribution. International

147



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

Journal of Advanced Statistics and Probability, 3, 1-7. http://dx.doi.org/10.14419/ijasp.v3i1.3684

Shaw, W. T., & Buckley, I. R. C. (2007). The alchemy of probability distributions: beyond Gram-Charlier expan-
sions and a skew-kurtotic-normal distribution from a rank transmutation map. Research report.

Silva, R. V. D., de Andrade, T. A., Maciel, D., Campos, R. P., and Cordeiro, G. M. (2013). A new lifetime
model: The gamma extended Fréchet distribution. Journal of Statistical Theory and Applications, 12, 39-54.
http://dx.doi.org/10.2991/jsta.2013.12.1.4

Smith, R. L., & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the
three-parameter Weibull distribution. Applied Statistics, 36, 358-369. http://dx.doi.org/10.2307/2347795

Treyer, V. N. (1964). Doklady Acad, Nauk, Belorus, U.S.S.R.

Zoroa, P, Ruiz, J. M., & Marin, J. (1990). A characterization based on conditional expectations. Communications
in Statistics-Theory Methods, 19, 3127-3135. http://dx.doi.org/10.1080/03610929008830368

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

148



