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Abstract 

Experiments have shown that, even one to three day old babies are able to distinguish between known faces 

(Chiara, Viola, Macchi, Cassia, & Leo, 2006). So how hard could it be for a computer? It has been established 

that face recognition is a dedicated process in the brain (Marque ś, 2010). Thus the idea of imitating this skill 

inherent in human beings by machines can be very rewarding though the idea of developing an intelligent and 

self-learning system may require supply of sufficient information to the machine. This study proposes 

multivariate statistical evaluation of the recognition performance of Principal Component Analysis and Singular 

Value Decomposition (PCA/SVD) and a Whitened Principal Component Analysis and Singular Value 

Decomposition algorithms (Whitened PCA/SVD) under varying environmental constraints. The Repeated 

Measures Design, Paired Comparison test, Box’s M test and Profile Analysis were used for performance 

evaluation of the algorithms on the merit of efficiency and consistency in recognizing face images with variable 

facial expressions. The study results showed that, PCA/SVD is consistent and computationally efficient when 

compared to Whitened PCA/SVD. 

Keywords: Principal Component Analysis, Singular Value Decomposition, whitening, multivariate, repeated 

measures design, Paired Comparison, Box’s M and profile analysis. 

1. Introduction 

Face recognition is an easy task for humans. Although the ability to infer the intelligence or character from facial 

appearance is suspect, the human ability to recognize faces is remarkable (Turk & Pentland, 1991). According to 

Rahman (2013), the intricacy of a face features originate from continuous changes in the facial features that take 

place over time. Regardless of these changes, we are able to recognize a person very easily.  

In recent years, face recognition techniques have gained significant attention from researchers partly because 

face recognition is non-invasive with a sense of primary identification. One of the main driving factors for face 

recognition is the ever growing number of applications that an efficient and resilient recognition technique 

addresses; for example, security systems based on biometric data, criminal identification, missing children 

identification, passport/driver license, voter identification and user-friendly human-machine interfaces. An 

example of the later category is smart rooms, which use cameras and microphones arrays to detect the presence 

of humans, decide on their identity and then react according to the predefined set of preferences for each person.  

Currently, all face recognition techniques work in either of the two ways. One is local face recognition system 

which uses facial features (nose, mouth, eyes) of a face. That is to consider the fiducial points in the face to 

associate the face with a person. The local-feature method computes the descriptor from parts of the face and 

gathers information into one descriptor. Some local-feature methods are, Local Feature Analysis (LFA), Garbor 

Features, Elastic Bunch Graph Matching (EBGM) and Local Binary Pattern Feature Agrawal et al., (2014). 

The second approach or global face recognition system uses the whole face to identify a person. The principle of 

whole face method is to construct a subspace using Principal Component Analysis (PCA), Linear Discriminant 

Analysis (LDA), Independent Component Analysis (ICA), Random Projection (RP), or Non-negative Matrix 
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Factorization (NMF). These are all dimensionality reduction algorithms that seek to reduce the large dimensional 

face image data to small dimension for matching.  

Viola and Jones (2001) proposed a multi-stage classification procedure for face recognition that reduces the 

processing time substantially while achieving almost the same accuracy as compared to a much slower and more 

complex single stage classifier. Lienhart and Maydt (2002) extends their rapid object detection framework in two 

important ways: Firstly, their basic and over-complete set of haar-like feature was extended by an efficient set of 

45° rotated features, which added additional domain-knowledge to the learning framework. Secondly, they 

derive a new post optimization procedure for a given boosted classifier that improves its performance 

significantly. Zhang, Ding and Liu (2015), also proposed an improved approach of PCA based on facial 

expression recognition algorithm using Fast Fourier Transform (FFT) during the preprocessing stage. They 

combined the amplitude spectrum of one image with phase spectrum of another image as a mixed image.  

An important goal in image recognition is the ability to rate face recognition algorithms on the merit of 

efficiency and consistency in recognizing face images under variable environmental constraints. Until now, a 

face recognition algorithm’s rate, runtime, sensitivity and descriptive statistics are the basic means of rating face 

recognition algorithms’ performance. Delac and Grgic (2005) used some descriptive statistics to measure 

performance of face recognition algorithms. In their paper, they introduced measures of central tendencies, 

measures of dispersion, skewness and kurtosis of some template-based recognition algorithms and subsequently 

analysed the probability distribution of these algorithms. Beveridge et al., (2001) also investigated only Principal 

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in not as much detail using descriptive 

statistics. 

This work focuses on statistical evaluation of the recognition performance of PCA/SVD and Whitened 

PCA/SVD under variable environmental constraints (variable facial expressions). This research explores and 

compares techniques for automatically recognizing facial actions in sequence of images or detecting 

an ”unknown” human face in input imagery and recognizing the faces under various environmental constraints. 

This paper uses more intrinsic statistical methods (Multivariate methods) to assess the performance of face 

recognition algorithms under variable environmental constraints. The research methods, results, discussion and 

conclusions are presented in subsequent sections. 

2. Methods  

2.1 Data Acquisition 

A real time face image database is created for the purpose of benchmarking the face recognition system. Two 

hundred and ninety four (42 individuals) labeled frontal facial images were randomly acquired from Cohn 

Kanade, Japanese Female Facial Expressions database (JAFFE) at labeled faces in the wild and some local 

Ghanaian students facial database. Of Two hundred and ninety four images, one hundred and eighty two facial 

images from 26 individuals were collected from the Cohn-Kanade AU-Coded Facial Expression Database along 

the seven universally accepted principal emotions (Neutral, Angry, Happy, Fear, Disgust, Sad, and Surprise). 

Subjects in the available portion of the database were 26 university students enrolled in introductory psychology 

classes. They ranged in age from 18 to 30 years. Forty two (6 individuals) images were also from the Local 

Ghanaian database. In the creation of the database, the observation room was equipped with a chair for the 

subject and one canon camera. Only image data from the frontal camera were captured. Subjects were instructed 

by an experimenter to perform a series of 7 facial displays that included single action units. Subject began and 

ended each display from a neutral face. Before performing each display, an experimenter described and modeled 

the desired display. Six of the displays were based on descriptions of prototypic basic emotions (happy, surprise, 

anger, fear, disgust, and sadness). Image sequences from neutral to target display were digitized into 256 by 256 

or with 8-bit precision for grayscale values. Seventy frontal face images (10 individuals) were also collected 

from Japanese Female Facial Expressions database (JAFFE) along the principal emotional constraints. All three 

databases were combined in the study. This helped to evaluate the face recognition algorithms on large and 

different databases. The new created GFD accounted for the originality of the study database. The study database 

was divided into two subsets, training database and testing database. The training database comprised all 42 

neutral poses and testing database comprised the remaining 210 expressions (Angry, Disgust, Fear, Happy, Sad 

and Surprise). Figure 1 shows a section of the study database.  
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Figure 1. Sample of Research Database 

2.2 Recognition Procedure 

The study focused on running PCA/SVD and Whitened PCA/SVD recognition algorithms on a created face 

database. The research evaluated the recognition performance of the algorithms and subsequently compared their 

results on the created face database.  

Face image data were passed to face recognition modules as input for the system. The face images passed were 

transformed into operationally compatible format (resizing images into uniform dimension). The data type of the 

image samples were also changed into double precision and passed for preprocessing. The entire recognition 

exercise comprises a preprocessing stage, feature extraction stage and recognition stage. The adopted 

preprocessing procedures are basically, mean centering and whitening. This is to help reduce the noise level and 

make the estimation process simpler and better conditioned. 

The selected template based algorithms were used to train the created image database. In the extraction unit, 

unique face image features were extracted and stored for recognition. The obtained facial features were passed to 

the classifier unit for classification of a given face query with the knowledge created for the available database. 

For the implementation of the facial recognition, a real time database was created. For the implementation of the 

proposed recognition design, the database samples were trained for the knowledge creation and classification. In 

the course of the training phase, when a new facial image was added to the system, the features were calculated 

according to a particular recognition algorithm’s procedure and aligned for the dataset information. The test face 

weight and the known weight in the database are compared by finding the norm of the difference between the 

test and known weights. A maximum and minimum difference signifies poor and close match respectively. 

Figure 2 is a design of the entire face recognition process. 
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Figure 2. Research Design 

2.3 Preprocessing of Frontal Face Image 

Before applying any template-based algorithm on image data to be trained, it is useful to do some preprocessing. 

In this work, preprocessing is basically, Mean Centering and Whitening. This as indicated earlier on, is to help 

reduce the noise level and make the estimation process simpler and better conditioned. 

As an illustration of preprocessing, Figure 3 shows six images selected from Japanese Female Face Expression 

database (JAFFE).  

 

Figure 3. Six selected images from JAFFE 

Define the image matrix, 𝑴𝑗 as; 

𝑴𝑗  =  (𝒎𝒋𝒊𝒌) ;  𝑖, 𝑘 =  1, 2, . . . , 𝑝;  𝑗 =  1, 2, . . . , 𝑛 

        =  (𝒎𝑗𝑖1 ,𝒎𝑗𝑖2, . . . ,𝒎𝑗𝑖𝑝  ),  

 𝒎𝒋𝒊𝒌 = (𝑚𝑗1𝑘 , 𝑚𝑗2𝑘  , … , 𝑚𝑗𝑝𝑘 )
𝑇
, 𝑘 =  1, 2, . . . , 𝑝 

𝑿𝑗  =  (𝒎𝑗𝑖1
𝑻  ,𝒎𝑗𝑖2

𝑻  , … ,𝒎𝑗𝑖𝑝
𝑻  )

𝑇
                                                           (1.0) 

Where, 
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𝑝 =  𝑡𝑕𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡𝑕𝑒 𝑖𝑚𝑎𝑔𝑒 𝑚𝑎𝑡𝑟𝑖𝑥. 

𝑛 =  𝑡𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑡𝑟𝑎𝑖𝑛𝑒𝑑. 

Now from equation (1.0), clearly, 𝑿𝑗  is a column vector of dimension 𝑁 = 𝑝 × 𝑝 and can be written as; 

 

𝑿𝑗  =  (𝑋𝑗𝑖   )𝑁×1
, 𝑗 =  1, 2, . . . , 𝑛                                                                 (2.0)         

where 𝑋𝑗𝑖 replaces the 𝑚𝑗𝑖𝑘  position wise. 

The preprocessing steps are based on the sample 𝑿 =  (𝑿1, 𝑿2 , … , 𝑿𝑛 ) whose elements are the vectorised 

form of the individual images in the study. 

2.3.1 Centering 

This is a simple preprocessing step, executed by subtracting the mean,  

𝒎̅𝑗 = 𝐸(𝑿𝑗  ) of the data  (𝑋𝑗  , 𝑗 =  1, 2, . . . , 𝑛), from the data. 

 

                                     =
1

𝑁
∑ 𝑋𝑗𝑖

𝑁
𝑖<1                                                               (3.0) 

𝒎̅𝑗 =
1

𝑁
∑∑ 𝒎𝑗𝑖𝑘,

𝑝

𝑘<1

𝑝

𝑖<1

(𝑗 = 1, 2, 3, … , 𝑛) 

where 𝑁  =  (𝑝 ×  𝑝),  𝑙𝑒𝑛𝑔𝑡𝑕  ( =  𝑟𝑜𝑤𝑠 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 ×  𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒)  𝑜𝑓 𝑡𝑕𝑒 𝑖𝑚𝑎𝑔𝑒 𝑑𝑎𝑡𝑎, 𝑋𝑗  . 

Define 𝑿̅𝑗   as a constant column vector of order (𝑁 = 𝑝 ×  𝑝) with all elements same as  𝒎̅𝑗 (𝑗 =  1, 2, . . . , 𝑛). 

The centered mean is denoted by, 𝑾 = (𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛 ); with 

 

                         𝒘𝒋  =  𝑿𝑗  −  𝑿̅𝑗, 𝑗 =  1, 2, . . . , 𝑛                             (4.0) 

Applying equation (4.0) to the images in Figure 2, the generated mean centered images are shown in Figure 4. 

 

 

 

 

Figure 4. Six mean centered images from JAFFE 

2.3.2 Whitening 

Whitening is a preprocessing technique that removes the noise factors in the observed image data, 𝑿 so as to 

obtain a new image, 𝑿⃑⃑  with uncorrelated components but equal unit variance. This is to say, the covariance of  

𝑿⃑⃑  is the identity matrix,  𝑰. A simple way to whiten images is to find the eigenvectors and eigenvalues of the 

observed images through eigenvalue decomposition (for symmetric image matrix) or singular value 

decomposition (for asymmetric image matrix) of the covariance matrix. Suppose the covariance matrix, 𝑪 is 

given by; 

     𝑪 =
1

𝑛
𝑾𝑇𝑾                                                                     (5.0) 

Define matrix  𝑼 = (𝒖1, 𝒖2 , . . . 𝒖𝑛  )  where 𝒖𝒋 , 𝑗 =  1, 2, . . . , 𝑛  is the 𝑗𝑡𝑕  eigenvector of the 

covariance matrix  𝑪 .  Let 𝑫  (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  𝑛 × 𝑛)  be the diagonal matrix whose entries 

(𝜆𝑗𝑗  , 𝑗 =  1, 2, . . . , 𝑛) are the eigenvalues corresponding to the eigenvectors 𝒖𝑗 , 𝑗 = 1,2, … , 𝑛.  The 

whitened images 𝑿⃑⃑  are given by; 
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                       𝑿⃑⃑ = 𝑼𝑫;
1

2 𝑼𝑻𝑿𝑻                                                                                   (6.0) 

The covariance matrix 𝑪⃑⃑  of 𝑿⃑⃑  is given by; 

                    𝑪⃑⃑ =
1

𝑛
𝑿⃑⃑ 𝑻𝑿⃑⃑ = 𝑰                                                                                     (7.0) 

Figure 5 shows the whitened outcome of the six images shown in Figure 3. 

 

Figure 5. Whitened images 

The whitened matrix, 𝑿⃑⃑ , built from the eigenvalue decomposition of the covariance matrix 𝑪 of the zero-mean 

observation, 𝒘, creates a set of uncorrelated unit image variables. 

2.4 Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) transforms correlated variables into a set of uncorrelated ones that better 

expose the various relationships among the original data items, while at the same time, identifying and 

ordering the dimensions along which data points  exhibit the most variation. Once SVD has identified the 

most variation, it is possib le  to find the best approximation of the original data points using fewer 

dimensions (Baker, 2005). Hence, SVD can be seen as a method for  data reduction or dimensionality 

reduction. Consider an arbitrary real 𝑚 ×  𝑛 matrix  𝑨, then  there are orthogonal matrices 𝑼 and 

𝑽 and a diagonal matrix 𝚺, such that,  𝑨 = 𝑼𝚺𝑽𝑇 
, where 𝑼 is an 𝑚 ×  𝑛 matrix, 𝑽 is an 𝑛 ×  𝑛 

matrix and 𝚺 is an 𝑛 ×  𝑛  diagonal matrix with diagonal entries 𝜎𝑖𝑖  ≥  0, ∀𝑖 =  1, 2, . . . , 𝑛 and  

𝜎11   ≥  𝜎22  ≥ · · · ≥  𝜎𝑛𝑛  . In practice, the components of 𝚺 are unknown and are to be estimated. The columns 

of 𝑼 and 𝑽 are called the singular vectors corresponding to the positive values (singular values) in the 

diagonal matrix 𝚺. When these are used to represent vectors in the domain and range of transformation, the 

transformation simply dilates and contracts some components according to the magnitude o f  the singular 

values and possibly discards values and appends zeros as needed to account for a change in dimension.  It 

is therefore clear that SVD tells how to choose orthonormal bases so that the transformation is represented by 

a matrix with the simplest possible form. 

2.5 Principal Component Analysis (PCA) 

PCA is concerned with elucidating the covariance structure of a set of variables. It seeks to find a set of basis 

images which are uncorrelated, that is, they cannot be linearly predicted from each other and also yield 

projection directions that maximize the total scatter across all classes or across all face images. According to 

Barlett et al., (2002), PCA can thus be seen as partially implementing Barlow’s ideas: Dependencies that 

sho w up in the joint distribution of pixels are separated out into marginal distribution of PCA coefficients. 

Most of the successful representations for face recognition, such as eigenface and local feature analysis are 

based on PCA. 

2.6 Feature Extraction 

Having these algorithms in mind, it is now time to seek a set of 𝑛 orthonormal vectors, 𝒆𝒋, which best describes 

the distribution of the data. The 𝑡𝑡ℎ  vector 𝒆𝒕 is chosen such that 

𝜆𝑡 =
1

𝑛
∑ (𝒆𝒋

𝑻𝒘𝒋)
𝑛

𝑗<1

2

 

is maximum subject to the orthonormality constraints. 
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𝑒𝑗
𝑇𝑒𝑡 = 𝛿𝑙𝑡 = {

1             𝑖𝑓, 𝑙 = 𝑡
 0, 𝑒𝑙𝑠𝑒𝑤𝑕𝑒𝑟𝑒

 

The vectors 𝒆𝒕 and scalars 𝜆𝑡 are the eigenvectors and eigenvalues respectively of the covariance matrix 𝑪.  

The size of 𝑪 (𝑛 ×  𝑛)  could be enormous and determining the eigenvectors and eigenvalues is an 

intractable task for typical image sizes. A known theorem in linear algebra states that the  vectors 𝒆𝑗 and 

the scalars 𝝀𝑗  can be obtained by solving for the eigenvalues of  𝑾𝑇𝑾, respectively. 

𝑾𝑾𝑇𝒅𝑗 = 𝒖𝒋 (𝑾𝒅𝑗)                                                                 (8. 0) 

This means that t h e  first 𝑛 −  1 eigenvectors, 𝒆𝑗 , and eigenvalues, 𝜆𝑗  , of  𝑾𝑾𝑇 
are given by 𝑾𝒅𝑗 

and  𝒖𝒋  respectively. 𝑾𝒅𝑗  needs to be normalized in order to be equal to 𝒆𝑗. 

Hence, 𝒆𝑗 = ∑ 𝒘𝑗𝒅𝑗
𝑛
𝑗<1  where 𝒅𝑗  and 𝒘𝑗  are the columns from  𝑼  and 𝑾  respectively.The principal 

components of the trained image set are determined by computing; 

                        𝝂𝑗 = 𝒆𝑗
𝑇(𝑿𝑗 − 𝒎),                                                                           (9.0) 

where  𝛀 = [𝒗1, 𝒗2, … , 𝒗𝑛]                                                         

The large correlated image dimensions are finally reduced to uncorrelated smaller intrinsic dimensions which 

display important characteristics of the image set. An unknown input face is passed through the steps below 

before identification. 

Following the steps in the feature extraction stage, a new face from the test image database is transformed into 

its eigenface components. First the input image is compared with the mean image (trained images mean) in 

memory and their difference is multiplied with each eigenvector from 𝒆𝑗. Each value represents a weight and is 

saved on a vector  𝛀. This is done by looking for the face class that minimizes the Euclidean;  𝜖𝑟 = |𝛀 − 𝛀𝑟|. 
Figure 6 is a flow diagram of the study algorithms. 

 

Figure 6. Flow diagram of study algorithms. 
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2.7 Results and Discussion 

This section presents the statistical procedures used to evaluate the fore-mentioned recognition algorithms. The 

results of running these statistical tests on the study dataset are also presented and discussed. 

2.7.1 Statistical Evaluation of the Face Recognition Algorithms 

The recognition algorithms under study are PCA and SVD with Mean Centering as the preprocessing step 

(Algorithm 1) and PCA and SVD with Mean Centering and Whitening as the preprocessing step (Algorithm 2). 

From the study database, 6-variates are collected per each algorithm from the Euclidean distance between the 

universally accepted principal emotions (Angry, Disgust, Fear, Happy, Sad and Surprise) and their neutral pose. 

(see appendix 2.0 for data).  

In assessing multivariate normality, a chi-square plot of the datasets (Algorithm specific) is done by plotting the 

generalized squared distances of the datasets against the chi-square quantiles.  

 

Figure 7. Chi-square plot of Algorithm 1 

 

Figure 8. Chi-square plot of Algorithm 2 

Figure 7 and Figure 8 show the chi-square plots of the datasets from the study algorithm 1 and Algorithm 2 

respectively. The correlation, 𝑟, values are 0.91359 and 0.95846 for algorithm 1 and algorithm 2 respectively 

are close to 1. These satisfy the assumption of a unit slope of the chi-square plot. Multivariate normality exists 

and hence can be assumed in subsequent statistical test that will be performed on the datasets. 

2.7.2 Repeated Measures Design 

The purpose of the test is to determine whether for each of the recognition algorithms under study, there exist 
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significant differences between the average distances of the various poses from their neutral pose. 

Using the 6-variate dataset from Algorithm 1, we have; 

𝑛 = 42, 𝐶𝑋 =

[
 
 
 
 
1003.917
−98.952
278.283
−96.397

−1167.166]
 
 
 
 

 

𝐶 =

[
 
 
 
 
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1]

 
 
 
 

 

(𝐶Σ𝐶𝑇);1 =

[
 
 
 
 
1.28𝑒;007 1.12𝑒;007 6.21𝑒;008 −3.69𝑒;009 6.48𝑒;009

1.12𝑒;007 4.99𝑒;007 4.15𝑒;007 1.33𝑒;007 1.40𝑒;008

6.21𝑒;008 4.15𝑒;007 7.85𝑒;007 5.68𝑒;007 2.40𝑒;007

−3.69𝑒;009 1.33𝑒;007 5.68𝑒;007 7.40𝑒;007 4.36𝑒;007

6.48𝑒;009 1.40𝑒;008 2.40𝑒;007 4.36𝑒;007 5.44𝑒;007 ]
 
 
 
 

 

Hence, the 𝑇2 − statistic; 

𝑇2 = 𝒏(𝑪𝑿)(𝑪𝚺𝑪𝑻);1𝑪𝑿 

= 35.095 

Now, 

(𝑛 − 1)(𝑝 − 1)

(𝑛 − 𝑝 + 1)
= 5.540541,    𝐹𝑝;1,𝑛;𝑝:1(0.05) = 2.4697 

(𝑛 − 1)(𝑝 − 1)

(𝑛 − 𝑝 + 1)
𝐹𝑝;1,𝑛;𝑝:1(0.05) = 13.6832 

Reject 𝐻0 : 𝑪𝝁 = 𝟎 if; 

𝑇2 = 𝒏(𝑪𝑿)(𝑪𝚺𝑪𝑻);1𝑪𝑿 >
(𝑛 − 1)(𝑝 − 1)

(𝑛 − 𝑝 + 1)
𝐹𝑝;1,𝑛;𝑝:1(𝛼) 

35.095 > 13.6832. There is therefore enough evidence at 5% level of significance to reject 𝐻0 and conclude 

on  𝐻1: 𝑪𝝁 ≠ 𝟎. This means there exist significant difference in the average distances of the various constraints 

from their neutral pose when Algorithm 1 is used for recognition.  

Using the 6-variate dataset from Algorithm 2, we have; 

𝑛 = 42, 𝐶𝑋 =

[
 
 
 
 

440.23
−271.21
865.49

−157.19
−2273.87]

 
 
 
 

 

(𝐶Σ𝐶𝑇);1 =

[
 
 
 
 
2.51𝑒;007 8.90𝑒;008 2.73𝑒;008 7.67𝑒;008 1.05𝑒;007

8.90𝑒;008 2.04𝑒;007 1.47𝑒;007 1.35𝑒;007 4.95𝑒;008

2.73𝑒;008 1.47𝑒;007 2.79𝑒;007 1.53𝑒;007 −7.36𝑒;009

7.67𝑒;008 1.36𝑒;007 1.53𝑒;007 2.16𝑒;007 7.32𝑒;007

1.05𝑒;007 4.95𝑒;008 −7.36𝑒;009 7.32𝑒;007 2.19𝑒;007 ]
 
 
 
 

 

Hence, the 𝑇2 − statistic; 
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𝑇2 = 𝒏(𝑪𝑿)(𝑪𝚺𝑪𝑻);1𝑪𝑿 

= 51.645 

Now, 

(𝑛 − 1)(𝑝 − 1)

(𝑛 − 𝑝 + 1)
= 5.540541,    𝐹𝑝;1,𝑛;𝑝:1(0.05) = 2.4697 

(𝑛 − 1)(𝑝 − 1)

(𝑛 − 𝑝 + 1)
𝐹𝑝;1,𝑛;𝑝:1(0.05) = 13.6832 

51.645 > 13.6832. There is therefore enough evidence at 5% level of significance to reject 𝐻0 and conclude 

on  𝐻1: 𝑪𝝁 ≠ 𝟎. This means there exist significant difference in the average distances of the various constraints 

from their neutral pose when Algorithm 2 is used for recognition. The 95% simultaneous confidence intervals 

for the estimates of the mean differences are shown in Table 1. 

 

Table 1. Simultaneous Confidence Intervals. 

  Algorithm 1 Algorithm 2 

Constraints    Lower Upper   Lower  Upper 

Angry vs Disgust −810.2300 2818.0636 −922.7925 1803.2427 

Angry vs Fear −949.4138 2759.3435 −1805.9279 2143.9577 

Angry vs Happy −537.6334 2904.1299 −1114.9863 3184.0031 

Angry vs Sad −879.9624 3053.6657 −828.3633 2582.9919 

Angry vs Surprise −1874.7483 1714.1202 −3145.0346 351.933 

Disgust vs Fear −1489.3901 1291.4861 −2150.1650 1607.7446 

Disgust vs Happy −925.4309 1284.0937 −1321.6768 2510.2434 

Disgust vs Sad −1201.0698 1366.9394 −1083.5872 1957.7656 

Disgust vs Surprise −2317.2119 148.7501 −3780.7245 106.9097 

Fear  vs  Happy −1290.6203 1847.1871 −739.2223 2470.2092 

Fear  vs  Sad −855.2611 1219.0347 −1109.0879 2525.6867 

Fear  vs  Surprise −2024.8504 54.2926 −3808.7245 677.593 

Happy vs Sad −1633.8636 1441.0704 −2038.4331 1724.045 

Happy vs Surprise −2469.2859 −57.8386 −4401.5625 −460.5558 

Sad vs Surprise −2298.1676 −36.1638 −3745.1675 −802.5626 

 

2.6.2 Paired Comparisons 

Measurements are often recorded under different sets of experimental conditions to see whether the responses 

differ significantly over these sets. In the case of this study, the Euclidean norms of various poses (Angry, 

Disgust, Fear, Happy, Sad and Surprise) along with their neutral pose are recorded by using two different 

recognition algorithms. Specifically for this study, 42 individuals were tested on the different recognition 

algorithms. The paired responses are analyzed by computing their differences, thereby eliminating much of the 

influence of extraneous unit to unit variation. 

The multivariate case is motivated for 6 constraints, 2 algorithms and 42 experimental units.  The paired 

differences random variables are; 

𝑫𝑗
𝑇  =  [𝐷𝑗1, 𝐷𝑗2 , … , 𝐷𝑗6] for 𝑗 = 1,2, … ,42 

𝐷̅ =
1

42
∑ 𝐷𝑗 =

[
 
 
 
 
 
−896.43
−2345.95
−2369.30
−2092.28
−3060.31
−2034.09]

 
 
 
 
 

42

𝑗<1
 



 

 

www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015 

103 

and  𝚺𝑑 = 
1

42;1
∑ (𝑫𝑗 − 𝑫̅)(𝑫𝑗 − 𝑫̅)

𝑇42
𝑗<1  

=

[
 
 
 
 
 
1.91𝑒:007 9.05𝑒:006 3.26𝑒:006 6.54𝑒:006 7.94𝑒:006 7.61𝑒:006

9.05𝑒:006 1.66𝑒:007 5.38𝑒:006 1.26𝑒:007 9.51𝑒:006 7.99𝑒:006

3.26𝑒:006 5.38𝑒:006 1.04𝑒:007 7.33𝑒:006 7.18𝑒:006 3.23𝑒:006

6.54𝑒:006 1.26𝑒:007 7.33𝑒:006 2.04𝑒:007 8.10𝑒:006 9.54𝑒:006

7.94𝑒:006 9.51𝑒:006 7.18𝑒:006 8.10𝑒:006 1.34𝑒:007 9.35𝑒:006

7.61𝑒:006 7.99𝑒:006 3.23𝑒:006 9.54𝑒:006 9.35𝑒:006 1.47𝑒:007]
 
 
 
 
 

 

  𝚺𝑑 =

[
 
 
 
 
 
7.89𝑒;008 −3.10𝑒;008 4.54𝑒;009 8.32𝑒;009 −1.97𝑒;008 −1.79𝑒;008

−3.10𝑒;008 1.65𝑒;007 3.23𝑒;008 −8.17𝑒;008 −8.43𝑒;008 2.62𝑒;008

4.54𝑒;009 3.23𝑒;008 2.03𝑒;007 −7.19𝑒;008 −1.40𝑒;007 7.15𝑒;008

8.32𝑒;009 −8.17𝑒;008 −7.19𝑒;008 1.30𝑒;007 5.89𝑒;008 −6.59𝑒;008

−1.97𝑒;008 −8.43𝑒;008 −1.40𝑒;007 5.89𝑒;008 2.72𝑒;007 −1.24𝑒;007

−1.79𝑒;008 2.62𝑒;008 7.15𝑒;008 −6.59𝑒;008 −1.24𝑒;007 1.69𝑒;007 ]
 
 
 
 
 

 

In addition, 𝑫𝑗  , 𝑗 =  1, 2, . . . , 42 are independent individuals, 𝑁6 (µ, 𝚺𝑑  ). Given the observed difference, 

𝒅𝑗
𝑇 = [𝑑𝑗1, 𝑑𝑗2, . . . , 𝑑𝑗6], 𝑗 =  1, 2, . . . , 42   

𝑇2  =  𝑛 𝒅 ̅𝑻𝚺d
;𝟏𝒅̅  = 35.742 

    [
(𝑛 − 1)𝑝

(𝑛 − 𝑝)
] 𝐹𝑝,𝑛;𝑝(𝛼) 

= [
(42 − 1)6

(42 − 6)
] 𝐹6,42;6(0.05) = 16.152 

35.742 > 16.152. This assertion of equal mean difference between the algorithms is not tenable at 5% level of 

significance. It can be concluded that, there exist significant difference in the average distances of both 

algorithms with respect to the study constraints (pose-wise).  

The Bonferroni 95% simultaneous confidence intervals for the individual mean difference is given by;  

𝜇𝑖: 𝑑𝑖 ± 𝑡𝑛;1 (
𝛼

2𝑝
)√

𝑆𝑑𝑖
2

𝑛
 ,  where 𝑑𝑖 is the 𝑖𝑡𝑕 element of 𝑫̅, 𝑆𝑑𝑖

2  is the 𝑖𝑡𝑕 diagonal of 𝚺𝑑  and 

𝑡𝑛;1 (
𝛼

2𝑝
) is the upper 100 (

𝛼

2𝑝
) 𝑡𝑕 percentile of the t-distribution.  

These confidence intervals will reveal specifically which constraints have significant differences in Euclidean 

distances when the different face recognition algorithms are used. Table 2 below shows the confidence intervals 

of estimates for the average of the difference in distances. 
 

Table 2. Bonferroni Simultaneous Confidence Intervals 

Constraints Average differences     Lower   Upper 

Angry poses 𝑑̅1 = −896.43 −2764.2480 971.3904 

Disgust poses 𝑑̅2 = −2345.95 −4086.8883 −605.0192 

Fear poses 𝑑̅3 = −2369.3 −3750.5892 −988.0069 

Happy poses 𝑑̅4 = −2092.28  −4025.6741 −158.8898 

Sad poses 𝑑̅5 = −3060.31 −4628.7849 −1491.8397 

Surprise poses  𝑑̅6 = −2034.09  −3673.1152 −395.0652 

This means for the two algorithms (Algorithm 1 and Algorithm 2) under study, there exist significant difference 

in their poses (Disgust, Fear, Happy, Sad and Surprise) recognition except their recognition of the angry pose. 

𝑑1 =  [−2764.2480, 971.3904] means, there is no significant difference in the average recognition distance 

on Angry pose between Algorithm 1 and Algorithm 2. It can therefore be inferred that, at 5% level of 
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significance, both algorithms have significantly different average recognition distances for all poses except angry 

pose. 

2.7.3 Test of Equality of Covariance Matrices (Box’s M-Test) 

This test will be used as a measure of consistency between the recognition algorithms. The test will reveal 

whether the variations i n  distances across algorithms in recognizing face images in the study database are 

equal or significantly different. The most consistent algorithm should have lower variation in recognition 

distances. The Box's test is based on the 𝜒2 approximation to the sampling distribution of 𝑀. 

𝑀 = ∑ (𝑛𝑙 − 1) ln|𝑺𝑝𝑜𝑜𝑙𝑒𝑑| − ∑ (𝑛𝑙 − 1) ln|𝑺𝑙|
𝑔
𝑙<1

𝑔
𝑙<1 ,  𝑔 = 2 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑠) 

From the data, |𝑺1| = 5.6378𝑒:038, |𝑺2| = 3.8460𝑒:040, |𝑺𝑝𝑜𝑜𝑙𝑒𝑑| = 4.9885𝑒:051 

𝑀 = 2271.4 

𝑈 = [∑
1

(𝑛𝑙 − 1)
−

1

∑ (𝑛𝑙 − 1)𝑔
𝑙<1

𝑔

𝑙<1
] [

2𝑝2 + 3𝑝 − 1

6(𝑝 + 1)(𝑔 − 1)
] 

   = 0.077526 

where 𝑝 = 6 is the number of constraints.  

Now, 

𝐾 = (1 − 𝑈)𝑀 

              = (1 − 0.077526)2271.4 

              = 2095.3 

𝜒1
2
𝑝(𝑝:1)(𝑔;1)

2 (0.05) = 32.671 

2095.3 >  32.671, hence the assertion of equality of covariance is not tenable at 5% level of significance. 

We can therefore conclude that, the covariance of Algorithm 1 and Algorithm 2 are not equal. This means, the 

variations in the Algorithm 1 and Algorithm 2 recognition distances are significantly different. 

2.7.4 Profile Analysis 

For small sample size, profile analysis depends on the normality assumption (Johnson, & Wichern, 2007). The 

datasets under study are multivariate normal; hence this assumption of normality is satisfied. Profile analysis 

also works on the premise of equality of covariance matrices. Here, the pooled covariance is then used as the 

common covariance for the populations under study. The Box’s M test revealed that, the  covariance matrices 

of the algorithms under study are unequal. According Mettle, Yeboah and Asiedu (2014), the profile analysis 

is still feasible when the assertion of equality of covariance matrix is not tenable. That is, profile analysis can 

continue when unequal covariance exist. In this case the separate covariance matrices are used in the 

computation. 

Now from the study datasets, 

(𝑿̅2 − 𝑿̅1)
𝑇 = [896.43  2345.95  2092.28  3060.31  2034.09] 

𝑺1 =

[
 
 
 
 
 
1.10𝑒:007 2.67𝑒:006 8.71𝑒:005 3.87𝑒:006 7.66𝑒:005 1.71𝑒:006

2.67𝑒:006 4.47𝑒:006 −6.72𝑒:004 3.29𝑒:006 9.24𝑒:005 1.07𝑒:006

8.71𝑒:005 −6.72𝑒:004 1.33𝑒:006 −1.82𝑒:005 2.34𝑒:005 1.70𝑒:005

3.87𝑒:006 3.29𝑒:006 −1.82𝑒:005 5.86𝑒:006 5.23𝑒:005 1.86𝑒:006

7.66𝑒:005 9.24𝑒:005 2.34𝑒:005 5.23𝑒:005 2.44𝑒:006 4.20𝑒:005

1.71𝑒:006 1.07𝑒:006 1.70𝑒:005 1.86𝑒:006 4.20𝑒:005 2.33𝑒:006]
 
 
 
 
 

 

𝑺2 =

[
 
 
 
 
 
6.79𝑒:006 5.94𝑒:006 1.91𝑒:006 2.55𝑒:006 4.27𝑒:006 3.82𝑒:006

5.94𝑒:006 1.08𝑒:007 4.48𝑒:006 6.00𝑒:006 7.19𝑒:006 4.72𝑒:006

1.91𝑒:006 4.48𝑒:006 8.99𝑒:006 6.78𝑒:006 4.77𝑒:006 1.89𝑒:005

2.55𝑒:006 6.00𝑒:006 6.78𝑒:006 1.25𝑒:007 6.15𝑒:006 5.40𝑒:006

4.27𝑒:006 7.19𝑒:006 4.77𝑒:006 6.15𝑒:006 1.07𝑒:007 7.14𝑒:006

3.82𝑒:006 4.72𝑒:006 1.89𝑒:005 5.40𝑒:006 7.14𝑒:006 1.02𝑒:007]
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The sample sizes, 𝑛1 = 𝑛2 = 42 

𝑇2 = (𝑿̅2 − 𝑿̅1)
𝑇𝑪𝑇 [𝑪 (

𝑆1

𝑛1

+
𝑆2

𝑛2

) 𝑪𝑇] 𝑪(𝑿̅2 − 𝑿̅1) 

     = 10.459 

𝑐2 = [
(𝑛1 + 𝑛2 − 2)(𝑝 − 1)

𝑛1 + 𝑛2 − 𝑝
] 𝐹𝑝;1,𝑛1:𝑛2;𝑝(0.05) 

      [
(42 + 42 − 2)(6 − 1)

42 + 42 − 6
] 𝐹5,78(0.05) = 2.451 

10.459 > 2.451 and the assertion of parallel profiles is not tenable at 5% significance level. It can therefore be 

concluded that, the profiles of Algorithm 1 and Algorithm 2 are not parallel. This also implies that, the profiles 

are not coincident and subsequently not level. Figure 9 shows a mean plot of the recognition algorithms. 

 

Figure 9. Mean plot of recognition distances. 

2.7.5 Levene’s Test of Equality of Variance 

The goal of this test i s  to determine whether the Algorithms under study have equal variance in their 

recognition of the study constraints. The test is quite sensitive to the underlying assumption that the, samples 

been tested should come from a normal population. 

In this study, two independent normal populations each from the different study algorithms are collected. For 

example, angry pose data from algorithm 1 tested against angry pose data from algorithm 2.  

Let 𝑋𝑗𝑘1, 𝑗 = 1, 2, . . . , 42  (individuals) and 𝑘 =  1, 2, . . . , 6 (poses) be the datasets from algorithm 1 and 

𝑋𝑗𝑘2, 𝑗 =  1, 2, . . . , 42 (individuals) and  𝑘 =  1, 2, . . . , 6  (poses) be the datasets from algorithm 2. Now 

consider two independent normal populations  𝑋𝑗𝑘1 and  𝑋𝑗𝑘2, with unknown variance. 

With samples of size 𝑛𝑘1   =  42, from Algorithm 1, 𝑛𝑘2   =  42, from Algorithm 2 and their respective sample 

variance 𝑆𝑘1
2  and  𝑆𝑘2

2 . 

A 95%  confidence interval is given by; 

𝑆𝑘1
2

𝑆𝑘2
2 𝐹

1;
𝛼
2
, 𝑛2𝑘;1, 𝑛1𝑘;1 <

𝜎𝑘1
2

𝜎𝑘2
2 <

𝑆𝑘1
2

𝑆𝑘2
2 𝐹𝛼

2
, 𝑛2𝑘;1, 𝑛1𝑘;1 

𝐹0.975,41,41 = 0.5375,  𝐹0.025,41,41 = 1.8604 
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The estimates of the ratio of variance are given by; 

[
𝑆̂11

2

𝑆̂12
2

  
𝑆̂21

2

𝑆̂22
2

𝑆̂31
2

𝑆̂32
2

𝑆̂41
2

𝑆̂42
2

𝑆̂51
2

𝑆̂52
2

𝑆̂61
2

𝑆̂62
2

] = [1.6142 0.4141 0.1479 0.4697 0.2283 0.2274] 

The 95% confidence intervals for the estimates of the ratio of variances are shown in Table 3 below.  

Table 3. Confidence interval for the ration of variance 

Constraints Ratio of Variances Lower Upper 

Angry poses 1.6142 0.8676 3.0029 

Disgust poses 0.4141 0.2226 0.7704 

Fear poses 0.1479 0.0795 0.2752 

Happy poses 0.4697 0.2525 0.8738 

Sad poses 0.2283 0.1227 0.4247 

Surprise poses 0.2274 0.1222 0.4230 

  

Clearly from Table 3, the confidence interval for angry poses [0.8676, 3.0029] contains 1 and hence the 

assertion of equality of variance of the two algorithms is tenable at 5% significance level. The remaining 

constraints (Disgust, Fear, Happy, Sad and Surprise) have confidence intervals that do not contain 1. Here, 

assertion of equality of variance is not tenable. This means the variances of the recognition distances for these 

poses are not equal. Now considering the constraint for which equality of variance is not tenable (Disgust, Fear, 

Happy, Surprise and Sad), estimate of the ratio of variance are given as 0.42141, 0.1479, 0.4697, 0.2283 and 

0.2274 respectively. All these ratios are less than 1 and hence we can reach the conclusion that, the variations in 

Algorithm 2 are greater than that of Algorithm 1 in the recognition of these constraints. Subsequently, Algorithm 

1 is considered as comparatively consistent in the recognition of Disgust, Fear, Happy, Sad and Surprise poses. 

3. Conclusion 

The runtime of Algorithm 1 and Algorithm 2 in the recognition of the 252 images is 70.470 seconds and 191.79 

seconds respectively. The time used by algorithm 2 in the whitening process accounts for the differences in the 

algorithms’ runtime (speed). The recognition rates of Algorithm 1 and Algorithm 2 are 92.86% and 88.10% 

respectively. It is evident from the above statistical methods that, the algorithms considered are significantly 

different in recognizing all poses except the angry pose. Although both algorithms are equally consistent in 

recognizing angry pose, Algorithm 1 (PCA with SVD and mean centering as preprocessing step) is 

comparatively efficient (from recognition rate) and consistent (from variation) in recognizing all other 

constraints under study. Algorithm 1 is therefore adjudged as comparatively better in recognizing face images 

under the variable environmental constraints. 

References 

Agrawal, S., Khatri, P., & Gupta, S., (2014). Facial Expression Recognition Techniques: A survey. ITM 

University. Gwalior, India. 

Baker, K. (2005). Singular value decomposition tutorial, Ohio. 

Barlett, M. S., Movellan, J., & Sejnowski, T. J. (2002). Face recognition by independent component analysis: 

IEEE Trans. on Neural networks, 13(6), 1450-1464. http://dx.doi.org/10.1109/TNN.2002.804287 

Beveridge, J.R., She, K., Draper, B., & Givens, G. (2001). Parametric and Non-parametric Methods for the 

Statistical Evaluation of Human ID Algorithms. IEEE Third Workshop on Empirical Evaluation Methods in 

Computer Vision, Kauai, HI, USA,  

Chiara, T., Viola Macchi Cassia, F. S., & Leo, I. (2006). Newborns face recognition: Role of inner and outer 

facial features. Child Development, 77 (2), 297-311. 

Delac, K., Grgic, M., & Grgic, S., (2005). Statistics in face Recognition: Analyzing probability distributions 

of PCA, ICA and LDA performance. Proceedings 4
th

 international symposium on image and signal 

processing and Analysis. ISPA. pp. 289-294. http://dx.doi.org/10.1109/ISPA.2005.195425 

Johnson, A. R., & Wichern, W. D., (2007). Applied Multivariate Statistical Analysis. 6th Ed. New Jersey: 

Pearson Prentice Hall 



 

 

www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015 

107 

Lucey, P.,Cohn, J.F., Kanade,T., Saragih, J., Ambadar, Z., &  Matthews, I . (2010). The Extended Cohn-Kanade 

Dataset ( CK+): A complete expression dataset for action unit and emotion-specified expression. 

Proceedings of the 3
rd

 International Workshop on CVP for Human Communicative Behavior Analysis 

(CVPR4HB) San Fran- cisco, USA, 94-10. http://dx.doi.org/10.1109/cvprw.2010.5543262 

Lienhart, R., & Maydt, J. (2002). An extended set of haar-like features for rapid object detection. IEEE ICIP 

2002, 1, pp. 900-903. http://dx.doi.org/10.1109/icip.2002.1038171 

Zhang, D., Ding, D., Li, J., & Liu, Q. (2015). PCA Based Extracting Feature Using Fast Fourier Transform for 

Facial Expression Regression. Transaction on Engineering Technologies, pp. 413 – 424. Springer 

Netherlands. 

Marqués, I., (2010). Face Recognition Algorithms; Proyecto Fin de 1-5. 

Mettle, F. O., Yeboah, E., & Asiedu, L. (2014). Profile Analysis of Spatial Differential of Inflation in Ghana. 

International Journal of Statistics and Analysis, 4(2), 245-259. 

Rahman, M. U., (2013). A comparative study on face recognition techniques and neural network, vol 

abs/1210-1916. 

Voila, P., & Jones, M.J., (2001). Rapid Object Detection using a Boosted Cascade of Simple Feature. IEEE 

CVPR. http://dx.doi.org/10.1109/cvpr.2001.990517 

Wagner, P. (2012). Face recognition with python. Retrieved from http://www.bytefish.de 

Turk, M., & Pentland, A. (1991). Eigenface for Recognition, 3(1), 71-86. 

 

Appendix 

 

Appendix 1.0 

This section contains the entire study database collected along the various environmental constraints. The six 

constraints (Angry, Disgust, Fear, Happy, Sad and Surprise) were used for testing the algorithms whereas the 

neutral expressions were trained and knowledge captured in memory for recognition. 

 

 

Appendix 1.0a: Cohn Kanade Face Expression database w i t h  the various study constraints. 
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Appendix 1.0a: Cohn Kanade Face Expression database with the various study constraints. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Appendix 1.0a: Cohn Kanade Face Expression database with the various study constraints. 
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Appendix 1.0b:  Ghanaian Face Expression database with the various study constraints. 

 

 

Appendix 1.0c: JAFFE database with the various study constraints. 
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Appendix 2.0  

This section contains the multivariate data from each of the study algorithms. Here the data been presented 

are the absolute deviations from the variates means. 

Appendix 2.0a: Multivariate data from Algorithm 1 
 

Indiv. Angry Disgust Fear Happy Sad Surprise 

1 3517.1 3312.4 3138.9 382.56 3200.9 3416.7 

2 3648.5 3188.9 1369.8 1270 977.53 1200.8 

3 1066.7 2292.3 944.91 1754.1 153.65 503.84 

4 1887.2 1565.2 1968.2 650.66 1592.4 3163.7 

5 1310 1786.4 714.62 1555.7 1041.4 19.272 

6 3344 2233.9 396.92 3125.5 1639.3 457.94 

7 2026 3846 2079.9 2066.4 3774.7 1257.6 

8 3938.2 1352.1 287.93 603.52 2255.8 2297.1 

9 4511.8 2741.5 2001.4 612.89 343.57 555.98 

10 3911.8 2740.3 431.02 1892.2 1288.2 3438.5 

11 4061.4 3992.9 2417.5 3841.7 3093.6 3190.7 

12 1007.3 311.05 1354.2 2343.1 60.553 4302.2 

13 641.44 1039.4 1502.3 2711.9 20.156 439.59 

14 4498.9 213.6 1725.3 381.99 3122.7 389.05 

15 1291.7 649.23 2096 2441.9 2137.4 1073.8 

16 604.4 662.43 2188.9 450.77 38.288 150.02 

17 1592.4 726.54 972.45 3186.6 2050.1 1685.6 

18 2443.2 2156.4 968.9 2.4806 1099.1 1322.6 

19 2367.3 2632.2 1758.5 3362.8 602.98 2763.2 

20 4202.9 1733.3 2035.5 802.91 3368.7 2945.4 
 

Appendix 2.0a: Multivariate data from Algorithm 1 
 

Indiv. Angry Disgust Fear Happy Sad Surprise 

21 2649.6 2807.1 2181.8 388.48 2203 1093.8 

22 435.71 1929.4 115.94 1088.9 1845.6 5610.8 

23 974.95 1838.1 21.981 2655.7 3448.7 713.35 

24 2468.7 2045.5 3403 961.96 1571.8 2048.3 

25 3914.6 2149 2617.9 2952 1991.8 2543.7 

26 1960.6 832.35 986.1 1915.1 716.68 1099.8 

27 8971.9 2449.4 249.59 878.3 3907 517.22 

28 13519 10854 421.22 14982 1501.9 6786.5 

29 4172.6 2069.4 2502.5 1358.1 900.82 1927.7 

30 16692 703.38 4804.2 2626.1 751.38 2277 

31 497.09 3554.5 537.24 1834.1 3030.6 978.56 

32 577.03 1869.1 6.0795 1428.3 342.6 487.2 

33 1877 2814.1 3018.8 2190.9 430.11 2250.2 

34 1876.8 3680.2 3528.1 2197.5 1940.2 2460.5 

35 540.55 977.6 3713.8 1454.1 4722.7 3596.4 

36 598.35 1004.1 247.22 1411.1 662 1216.5 

37 2560.7 1592.4 365.71 657.07 2981.1 1623.5 

38 4335.3 6486.2 2552.9 1564.1 4242.9 680.9 

39 3086.1 9049.1 1717.6 3712.9 3998.4 1340.5 

40 490.52 239.92 1581.3 296.72 2493.8 1591.7 

41 312.47 1362.2 2670.1 4459.2 2594.1 180.96 

42 7593.3 3786.5 2211.3 6672.8 7580.7 4450.4 
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Appendix 2.0b: Multivariate data from Algorithm 2 
 

Indiv. Angry Disgust Fear Happy Sad Surprise 

1 3929.3 1918 2907.8 984.55 1742 2248.9 

2 1637 4053.6 921.14 152.62 122.54 114.62 

3 2989.6 945.27 1693.9 84.026 3856.2 3642.9 

4 1741.7 1329 2337.7 272.14 2404.7 4884.5 

5 5219 7353.3 5542.9 7505.9 6778.4 4785 

6 4900.5 4418.6 1258.3 7069.3 2382.7 1736 

7 2098.5 6856.2 64.71 749.39 4640.6 1429.5 

8 8407.7 7262.5 1341.1 2030 8003.2 7156 

9 3915.7 5193.4 5625.6 6103.2 5826 4427 

10 3906.4 1869 2432.6 42.758 254.16 1532.7 

11 7144.2 7174.7 7001.7 7722.8 7771.1 6110.5 

12 177.04 562.65 1252.1 1229.1 884.5 3956.1 

13 4545.3 6205.1 3990.9 1141.5 8371.8 5793.5 

14 6672.5 5363.1 2682 3198.5 5694.5 2677.7 

15 1094.5 3998.4 3502.7 2484.9 1843 2839.9 

16 4918.5 5932.7 1625.5 3949.6 4863 2854.8 

17 2627.6 4213.1 2539.8 751.27 6783 352.22 

18 12174 14077 3140.7 8239 10686 17268 

19 3018.2 1995.5 2996.9 1304.1 4832 2564.1 

20 1505.1 2684.6 977.25 4505.3 1772.7 1420.1 
 

Appendix 2.0b: Multivariate data from Algorithm 2 
 

Indiv. Angry Disgust Fear Happy Sad Surprise 

21 6934.2 10366 8812.9 3080.2 5346.2 907.24 

22 5300.4 11536 13774 8873.7 9510.6 2815.2 

23 3083.1 10613 5415.7 11820 14835 11604 

24 3338.9 3070.3 3024.4 1157.2 1415.9 574.77 

25 7904.7 5899.9 7441.7 7210 7234.5 5957 

26 5393.3 2711 3402.5 6448.5 2097.5 2860.9 

27 5950.3 6829.8 1126.5 951.82 5932.9 5839.2 

28 1158 881.27 1109.7 5.1759 1951.9 1178.9 

29 9067.7 8645.5 9289.1 9909.8 8146.8 6254 

30 330.9 6931.3 8995.5 13328 1857.6 2752.8 

31 3205.9 3275.2 8366.8 7883.2 7951.6 4761.1 

32 3818 4746.1 8554.9 3525.5 9534 4869.3 

33 3071.8 6427.1 3628.7 6806.8 7390.1 2400.4 

34 3422.8 4109.7 2993.2 3249.8 3521.3 1940.9 

35 2826.6 703.15 20.182 2048 373.76 864.58 

36 1199.3 719.29 6833.2 9573.9 6802.5 9171.2 

37 6985.2 7310.3 4305.4 7072.3 7992.7 5140.8 

38 737.83 119.12 4402.5 931.8 1390.3 3810.9 

39 4518.2 6239.7 3104.1 4036.8 4293.3 2421 

40 304.12 25.3 1876.7 4268.7 6646.2 6396.3 

41 4235.9 4675.4 5187.6 2814.8 5867.4 2581.4 

42 4217 2560.2 3816.8 4485.8 4647.4 2584.2 
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