
International Journal of Statistics and Probability; Vol. 4, No. 4; 2015
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

The Exponentiated Burr XII Poisson Distribution with
Application to Lifetime Data

Ronaldo V. da Silva1, Frank Gomes-Silva2, Manoel Wallace A. Ramos3 & Gauss M. Cordeiro4

1 Recife Military School, Recife, PE, Brazil
2 Department of Statistics and Informatics, Federal Rural University of Pernambuco, Recife, PE, Brazil
3 Federal Institute of Paraı́ba, João Pessoa, PB, Brazil
4 Department of Statistics, Federal University of Pernambuco, Recife, PE, Brazil

Correspondence: Frank S. Gomes da Silva, Department of Statistics and Informatics, Federal Rural University of
Pernambuco, Rua Dom Manoel de Medeiros, s/n, Campus Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil.
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Abstract

A five-parameter distribution, called the exponentiated Burr XII Poisson distribution, is defined and studied. The
model has as special sub-models some important lifetime distributions discussed in the literature, such as the
logistic, log-logistic, Weibull, Burr XII and exponentiated Burr XII distributions, among several others. We derive
the ordinary and incomplete moments, generating and quantile functions, Bonferroni and Lorenz curves, mean
deviations, reliability and two types of entropy. The order statistics and their moments are investigated. The method
of maximum likelihood is proposed for estimating the model parameters. We obtain the observed information
matrix. An application to a real data set demonstrates that the new distribution can provide a better fit than other
classical lifetime models. We hope that this generalization may attract wider applications in reliability, biology
and survival analysis.

Keywords: Beta distribution, Burr XII distribution, Maximum likelihood, Observed information matrix, Weibull
distribution

1. Introduction

The statistics literature has numerous distributions for modeling lifetime data. But many if not most of these
distributions lack motivation from a lifetime context. For example, there is not apparent physical motivation for
the gamma distribution. It only has a more general mathematical form than the exponential distribution with one
additional parameter, so it has nicer properties and provides better fits. The same arguments apply to the BXII
distribution, among others.

Zimmer et al. (1998) introduced the three parameter Burr XII (BXII) distribution with cumulative distribution
function (cdf) and probability density function (pdf) (for x > 0) given by

G(x; s, k, c) = 1 −
[
1 +

( x
s

)c]−k
(1)

and

g(x; s, k, c) = c k s−c xc−1
[
1 +

( x
s

)c]−k−1
, (2)

respectively, where k > 0 and c > 0 are shape parameters and s > 0 is a scale parameter. If c > 1, the density
function is unimodal with mode at x = s [(c − 1)/(ck + 1)]1/c and is L-shaped if c = 1. If q < c k, the qth moment
about zero is µ′q = sq k B(k − q c−1, 1+ q c−1), where B(p, q) = Γ(p) Γ(q)/Γ(p+ q) and Γ(p) =

∫ ∞
0 xp−1 e−x dx is the

gamma function.

The BXII distribution, having as sub-models the logistic and Weibull distributions, is a very popular distribution
for modeling lifetime data and phenomenon with monotone failure rates. When modeling monotone hazard rates,
the Weibull model may be an initial choice because of its negatively and positively skewed density shapes.
Nevertheless, it does not furnish a reasonable parametric fit for non-monotone failure rates such as the bathtub
shaped and unimodal failure rates that are common in reliability and biological studies.
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Several other authors including El-Bassiouny and Abdo (2010), Jayakumar and Mathew (2008), Brito et al. (2014)
and Ramos et al. (2015) proposed and developed the structural properties of various generalized Burr XII distri-
butions.

The cdf and the reliability function of the three-parameter BXII distribution can be expressed in closed-form, thus
simplifying the computation of the percentiles and the likelihood function for censored data. This distribution has
algebraic tails that are effective for modeling failures occurring with lesser frequency than with those models based
on exponential tails. Hence, it represents an adequate distribution for modeling failure time data (Zimmer et al.,
1998). Shao (2004) discussed maximum likelihood estimation of its parameters and Shao et al. (2004) studied
models for extremes based on the BXII distribution with application to flood frequency analysis. According to
Soliman (2005), this model generalizes a large number of distributions. Its versatility and flexibility turns it quite
attractive as a tentative model for lifetime data.

For an arbitrary baseline cdf G(x), a random variable is said to have the exponentiated-G (“Exp-G” for short) dis-
tribution with parameter a > 0, say X ∼ Exp-G(a), if its pdf and cdf are Ha(x) = Ga(x) and ha(x) = aGa−1(x) g(x),
respectively. Thus, the cdf and pdf of the exponentiated Burr XII (Exp-BXII) distribution is given by

Gα(x; s, k, c) =
{

1 −
[
1 +

( x
s

)c]−k}α
(3)

and

gα(x; s, k, c) = k c s−c α xc−1
[
1 +

( x
s

)c]−k−1 {
1 −

[
1 +

( x
s

)c]−k}α−1

, (4)

respectively.

We provide four motivations for the proposed lifetime model called the exponentiated BXII Poisson (Exp-BXIIP)
distribution. The first is based on failures of a system. Suppose that a system has N serial sub-systems functioning
independently at a give time, where N is a truncated Poisson random variable with probability mass function (pmf)

Pr(N = n) =
1

(eλ − 1)
λn

n!
(5)

for n = 1, 2, . . . Let X denote the time of failure of the first out of the N functioning systems defined by the
independent random variables Y1 ∼ Exp-BXII(α), . . . , YN ∼ Exp-BXII(α) given by the cdf (3). Then, X =
min(Y1, . . . , YN). So, the conditional cdf of X (for x > 0) given N is

F(x|N) = 1 − Pr(X > x|N) = 1 − Pr(Y1 > x, . . . ,YN > x)
= 1 − PrN(Y1 > x) = 1 − [1 − Pr(Y1 ≤ x)]N

= 1 −
{

1 −
[
1 −

[
1 +

( x
s

)c]−k]α}N

,

where s, k, c, α, λ > 0. Hence, the unconditional cdf of X is

F(x) =
1

(eλ − 1)

∞∑
n=1

{
1 −

[
1 −

(
1 −

[
1 +

( x
s

)c]−k)α]n}
λn

n!

=
1

(1 − e−λ)

{
1 − exp

{
−λ

[
1 −

(
1 +

( x
s

)c)−k]α}}
. (6)

Then,

F(x) =
1

(1 − e−λ)
{
1 − exp

[−λG(x)α
]}
, (7)

where G(x) = G(x; s, k, c) is given by (1). We refer to the distribution (6) as the Exp-BXIIP distribution. Proving
a new lifetime distribution is always precious for statisticians. The fact that the new model generalizes existing
commonly used distributions is also a positive point.
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The survival function associated with X becomes

S (x) = 1 − F(x) =
1

(1 − e−λ)

{
exp

{
−λ

[
1 −

(
1 +

( x
s

)c)−k]α}
− exp(−λ)

}
. (8)

The probability density function (pdf) corresponding to (6) is given by

f (x; s, k, c, α, λ) =
cks−c αλ

1 − e−λ
xc−1

[
1 +

( x
s

)c]−k−1 {
1 −

[
1 +

( x
s

)c]−k }α−1

× exp
{
−λ

[
1 −

(
1 +

( x
s

)c)−k ]α}
. (9)

Hereafter, a random variable X with density function (9) is denoted by X ∼ Exp-BXIIP(s, k, c, α, λ). Plots of the
density function of X for selected parameter values are displayed in Figure 1.
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Figure 1. Plots for the Exp-BXIIP density for some parameter values.
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The Exp-BXIIP hazard rate function (hrf) is given by

τ(x; s, k, c, α, λ) =
c k s−c αλ xc−1 [1 + ( x

s )c]−k−1 {1 − [1 + ( x
s )c]−k}α−1

exp{−λ[1 − (1 + ( x
s )c)−k]α} − exp(−λ)

× exp{−λ[1 − (1 + (
x
s

)c)−k]α}. (10)

Plots of the hazard rate functions for selected parameter values are displayed in Figure 2.
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Figure 2. The Exp-BXIIP hrf for some parameter values.

For a second motivation suppose that an ith system is made of α parallel components, so that the system will fail if
all of the components fail. Assume that the failure times of the components for the ith system, say Zi,1,Zi,2, . . . ,Zi,α,
are independent and identically BXII random variables with parameters s, k, c. Let Yi denote the failure time of the
ith system and that there is an unknown number N of independent systems. The cdf of the failure time X of the
first system out of the N functioning system is given by (6).

For the third motivation, we assume that N is the unknown number of carcinogenic cells for an individual left active
after the initial treatment has pmf (5) and that Yi is the time spent for the ith carcinogenic cell to produce a detectable
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cancer mass. Assuming that Y1, . . . , YN is a sequence of iid Exp-BXII random variables independent of N, the time
to relapse of cancer of a susceptible individual can be modeled by the Exp-BXIIP family of distributions.

Finally, the fourth motivation considers that the failure of a device occurs due to the presence of an unknown
number N of initial defects of the same kind, which can be identifiable only after causing failure and are repaired
perfectly. Define by Yi the time to the failure of the device due to the ith defect, for i ≥ 1. If we assume that
the Yi’s are iid Exp-BXII random variables independent of N having pmf (5), then the time to the first failure is
appropriately modeled by the Exp-BXIIP distribution. For reliability studies, the Exp-BXIIP models can arise in
series and parallel systems with identical components, which appear in many industrial applications and biological
organisms. These points indicate that the new family of distributions is well-motivated for industrial applications
and biological studies.

In this paper, we study some mathematical properties of the Exp-BXIIP model and illustrate its potentiality. In
Section 2, we demonstrate that the cdf and pdf of X can be expressed as a mixture of Exp-BXII densities. Explicit
expressions for the ordinary and incomplete moments are derived in Section 3. Generating and quantile functions
are derived in Section 4 and 5, respectively. In Section 6, mean deviations and reliability are derived. In Section 7,
we investigate the order statistics and some of their structural properties. Rényi and Shannon entropies are derived
in Section 8. Maximum likelihood estimation of the model parameters is performed and the observed information
matrix is determined in Section 9. In Section 10, we provide an application of the Exp-BXIIP to a real data set.
Finally, Section 11 ends with some concluding remarks.

2. Useful Expansions

Using the Taylor series

1 − e−z =

∞∑
k=1

(−1)k+1zk

k!
,

equation (6) can be expressed as

F(x) =
1

(1 − e−λ)

∞∑
j=0

(−1) jλ j+1

( j + 1)!

{
1 −

[
1 +

( x
s

)c]−k}( j+1)α

, (11)

and then

F(x) =
∞∑
j=0

ω j H( j+1)α(x; s, k, c), (12)

where ω j =
(−1) jλ j+1

( j+1)! (1−e−λ) and Hα(x; s, k, c) = Gα(x; s, k, c) is the Exp-BXII cdf. Clearly,
∑∞

j=1 w j = 1.

By differentiating (12), we can write

f (x) =
∞∑
j=0

ω j h( j+1)α(x; s, k, c), (13)

where h( j+1)α(x; s, k, c) denotes the Exp-BXII fdp with parameters s, k, c and power parameter ( j + 1)α. Equation
(13) reveals that the Exp-BXIIP density function is a mixture of Exp-BXII densities.

3. Properties

Some of the most important features and characteristics of a distribution can be studied through moments (e.g.,
tendency, dispersion, skewness and kurtosis).

Theorem 1 If X ∼ Exp-BXIIP(s, k, c, α, λ), we have the following approximations:

1.1 For α > 0 and λ > 0 real non-integers, we have the mixture representation

f (x) =

∞∑
r=0

vr g(x; s, k(r + 1), c), (14)

where g(x; s, k(r + 1), c) denotes the BXII density function with scale parameter s and shape parameters c
and k(r + 1), and the coefficients are given by

vr =
αλ

(r + 1)! (1 − e−λ)

∞∑
j=0

(−1) j+r λ j Γ[( j + 1)α]
j!Γ[( j + 1)α − r]

. (15)
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Clearly,
∑∞

r=0 vr = 1. Equation (14) reveals that the Exp-BXIIP density function is an infinite linear combina-
tion of BXII density functions. So, some structural properties of the Exp-BXIIP distribution can be obtained
from those of the BXII distribution.

1.2 For α > 0 and λ > 0 real non-integers, we obtain

F(x) =
∞∑

r=0

vr G(x; s, k(r + 1), c). (16)

1.3 If n < kc, the nth ordinary moment of the Exp-BXIIP distribution is given by

µ′n = E(Xn) = k sn
∞∑

r=0

vr B
[
k(r + 1) − n

c
,

n
c
+ 1

]
. (17)

Proof 1.1.

First, if z ∈ R, we have the power series

e−z =

∞∑
j=0

(−1) j

j!
z j. (18)

Second, if |z| < 1 and b is a nonnegative integer, the power series holds

(1 − z)b−1 =

∞∑
j=0

(−1) j Γ(b)
Γ(b − j) j!

z j. (19)

Using (18), the Exp-BXIIP density function (9) can be expressed as

f (x) =
cks−c αλ

(1 − e−λ)
xc−1

[
1 +

( x
s

)c]−k−1 ∞∑
j=0

[ (−1) j λ j

j!
(20)

×
{
1 −

[
1 +

( x
s

)c]−k }( j+1)α−1]
. (21)

Further, using (19), we obtain

f (x) =
ck(r + 1)s−c αλ

(1 − e−λ)
xc−1

∞∑
j,r=0

{ (−1) j+r λ j Γ[( j + 1)α]
j! (r + 1)! Γ[( j + 1)α − r]

(22)

×
[
1 +

( x
s

)c]−k(r+1)−1 }
.

Finally, we have

f (x) =
∞∑

r=0

vr g(x; s, k(r + 1), c),

where vr is given by (15) and g(x; s, k(r + 1), c) was defined before.

Proof 1.2.

Using Theorem 1.1 we obtain (16) by simple integration.

Proof 1.3.

The nth moment of X comes from Theorem 1.1

µ′n =
∞∑

r=0

vr E(Yr+1), (23)

117



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

where Yr+1 ∼ BXII(s, k(r + 1), c). Using a result in Zimmer et al. (1998), we obtain for n < kc

µ′n = k sn
∞∑

r=0

vr B[k(r + 1) − nc−1, nc−1 + 1].

The central moments (µs) and cumulants (κs) of X can be determined from (17) as

µs =

p∑
k=0

(−1)k
(
s
k

)
µ′s1 µ

′
s−k and κs = µ

′
s −

s−1∑
k=1

(
s − 1
k − 1

)
κk µ

′
s−k,

respectively, where κ1 = µ′1.

For lifetime models, it is usually of interest to compute the nth incomplete moment of X defined by mn(y) =∫ y
0 xn f (x)dx. The quantity mn(y) can be calculated from (14) as

mn(y) = k c
∞∑

r=0

(r + 1) vr

∫ y

0
xn−1

( x
s

)c
[
1 +

( x
s

)−k(r+1)−1
]

dx.

Setting t =
[
1 +

(
x
s

)c]−1
, we can write

mn(y) = k sn
∞∑

r=0

(r + 1) vr

∫ sc
sc+yc

0
tk(r+1)− n

c−1 (1 − t)
n
c dt

and then for n < kc

mn(y) = k sn
∞∑

r=0

(r + 1) vr B sc
sc+yc

(
k(r + 1) − n c−1, 1 + n c−1

)
, (24)

where Bz(a, b) =
∫ z

0 ta−1 (1 − t)b−1dt is the incomplete beta function.

4. Moment Generating Function

An explicit expression for M(t) can be obtained from equation (14) as an infinite weighted sum

M(t) =
∞∑

r=0

vr Mr+1(t), (25)

where Mr+1(t) is the moment generating function (mgf) of Yr+1 and vr is defined by (15). We provide a simple
representation for the mgf MBXII(t) of the BXII(s, k, c) distribution. We can write for t < 0

MBXII(t) = ck
∫ ∞

0
ey t yc−1(1 + yc)−(k+1)dy.

Now, we use the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
=

1
2πi

∫
L

m∏
j=1

Γ
(
b j + t

) n∏
j=1

Γ
(
1 − a j − t

)
p∏

j=n+1

Γ
(
a j + t

) p∏
j=m+1

Γ
(
1 − b j − t

) x−tdt,

where i =
√
−1 is the complex unit and L denotes an integration path; see Section 9.3 in Gradshteyn and Ryzhik

(2000) for a description of this path. The Meijer G-function contains as particular cases many integrals with
elementary and special functions (Prudnikov et al., 1986).

We now assume that c = m/k, where m and k are positive integers. This condition is not restrictive since every
positive real number can be approximated by a rational number. Using the integral (38) given in Appendix A, we
conclude for t < 0 that

MBXII(t) = mI
(
−st,

m
k
− 1,

m
k
,−k − 1

)
. (26)
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Now, from equation (25), the mgf of the Exp-BXIIP(s, k, c, α, λ) distribution (for t < 0) follows as

M(t) = m
∞∑

r=0

vr I
(
−st,

m
k(r + 1)

− 1,
m

k(r + 1)
,−k(r + 1) − 1

)
. (27)

Equation (27) is the main result of this section. For the special cases c = 1 and c = 2, we can obtain simple
expressions for MBXII(t) and, consequently, for M(t) using equations (1) (on page 16) and (2) (on page 20) of the
book by Prudnikov et al. (1992). For c = 1 and t < 0, we have

MBXII(t) = k(−st)k e−st Γ(−k,−st),

where Γ(v, x) =
∫ ∞

x tv−1e−stdt is the complementary incomplete gamma function. For c = 2 and t < 0, we obtain

MBXII(t) = 1F2

(
1;

1
2

; 1 − k;
s2t2

4

)
+

st
2

B
(
2, k − 1

2

)
1F2

(
1;

3
2

; k +
7
2

;
−s2t2

4

)
+
Γ(−2k)
(−st)−2k ,

where

1F2(a, b; c; x) =
∞∑

k=0

(a)k

(b)k(c)k

xk

k!

is a generalized hypergeometric function and (a)k = a(a + 1) . . . (a + k − 1) denotes the ascending factorial.

5. Quantile Function

The Exp-BXIIP quantile function, say x = Q(u), can be obtained by inverting (6). We have

x = Q(u) = F−1(u) = s
{[

1 −
{
− λ−1 log

[
1 − u(1 − e−λ)

]} 1
α
] −1

k − 1
} 1

c

. (28)

The shortcomings of the classical kurtosis measure are well-known. For example, the moments of X in (9) are
valid only for n < kc. There are many heavy-tailed distributions for which this quantile is infinite. So, it becomes
uniformative precisely when it needs to be. Indeed, our motivation to use quantile-based measures stemmed from
the non-existence of classical kurtosis for many generalized distributions. The Bowley skewness (see Kenney and
Keeping, 1962) is based on quartiles

B =
Q(3/4) − 2Q(1/2) + Q(1/4)

Q(3/4) − Q(1/4)

whereas the Moors kurtosis (see Moors, 1998) is based on octiles

M =
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
,

where Q(·) denotes the Exp-BXIIP quantile function given by (28). Plots of the B and M functions for selected
parameter values are displayed in Figure 3.

6. Other Measures

In this section, we calculate the following measures: means deviations, Bonferroni and Lorenz curves and the
reliability of the Exp-BXIIP distribution.

6.1 Mean Deviations

Here, we determine the mean deviations and Bonferroni and Lorenz curves of X. The amount of scatter in a
population is evidently measured to some extent by the totality of deviations from the mean and median. These are
known as the mean deviation about the mean and the mean deviation about the median – defined by

δ1(X) = 2µ′1 F(µ′1) − 2m1(µ′1) and δ2(X) = µ′1 − 2m1(M),

respectively, where µ′1 = E(X), F(µ′1) is obtained from (6), the median M of X is calculated from the quantile
function (28) by M = Q(1/2) and m1(q) =

∫ q
0 x f (x)dx is the incomplete mean of X given by (24) with n = 1.
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Figure 3. Plots of the B and M functions for some parameter values

Setting u = yc, we can write from equation (14)

m1(q) = k s
∞∑

r=0

(r + 1) vr

∫ ∞

(q/s)c
u1/c (1 + u)−k(r+1)−1du,

where the integral can be calculated using Maple as

m1(q) = k s
∞∑

r=0

(r + 1) vr J
([q

s

]c
,

1
c
, k(r + 1) + 1

)
. (29)

Here,

J(q, r, k) =

∫ ∞

q
ur (1 + u)−kdu

= −
[

2F1
[
(k, r + 1); (2 + r);−q

]
qr+1

(r + 1)
+
πΓ(k − r − 1) csc(πr)

Γ(k)Γ(−r)

]
,

where csc(·) is the cosecant function and 2F1 is the hypergeometric function defined by

2F1(a, b; c; x) =
∞∑

k=0

(a)k (b)k

(c)k

xk

k!
.

Equation (29) is the main result of this section from which δ1(X) and δ2(X) are immediately determined. The mean
deviations can be used to plot Lorenz and Bonferroni curves in fields like economics, reliability, demography,
insurance and medicine. For a given probability π, they are defined by L(π) = m1(q)/µ′1 and B(π) = m1(q)/(π µ′1),
respectively, where q = Q(π) comes directly from (28).

6.2 Reliability

In reliability, the stress-strength model describes the life of a component which has a random strength X1 that
is subjected to a random stress X2. The component fails at the instant that the stress applied to it exceeds the
strength, and the component will function satisfactorily whenever X1 > X2. Hence, R = Pr(X2 < X1) is a
measure of component reliability. It has many applications especially in engineering concepts, economics and
physical science. We derive the reliability R when X1 and X2 have independent Exp-BXIIP(s, k1, c, α1, λ1) and
Exp-BXIIP(s, k2, c, α2, λ2) distributions with identical scale parameter s and shape parameter c. The reliability is
given by

R =
∫ ∞

0
f1(x)F2(x)dx.
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The cdf of X2 and density of X1 are obtained from Theorem 1

F2(x) =
∞∑

r=0

vr(α2, λ2) G(x; s, k2(r + 1), c)

and

f1(x) =
∞∑

q=0

vq(α1, λ1) g(x; s, k1(q + 1), c).

Hence,

R =
c k1

sc

∞∑
r,q=0

(q + 1) vq(α1, λ1) vr(α2, λ2) I(c, s, k1, k2, r, q),

where

I(c, s, k1, k2, r, q) =

∫ ∞

0

(
xc−1

[
1 +

( x
s

)c]−k1(q+1)−1

×
{
1 −

[
1 +

( x
s

)c]−k2(r+1)})
dx.

Setting u = 1 + (x/s)c, we have

I(c, s, k1, k2, r, q) =
ck2(r + 1) − 1

ck1(q + 1) + ck2(r + 1)
,

and then we obtain R.

7. Order Statistics

We now derive an explicit expression for the density of the ith order statistic Xi:n, say fi:n(x), in a random sample
of size n from the Exp-BXIIP distribution. It is well-known that

fi:n(x) =
1

B(i, n − i + 1)
f (x)F(x)i−1[1 − F(x)

]n−i
,

for i = 1, . . . , n. Using the binomial expansion in the last equation, we readily obtain

fi:n(x) =

n−i∑
l=0

(−1)l
(

n−i
l

)
f (x)

B(i, n − i + 1)
F(x)i+l−1. (30)

We use the identity for k, v positive integer ( ∞∑
k=0

ak xk
)v
=

∞∑
k=0

cv,k xk, (31)

where cv,0 = av
0 and

cv, j =
1

j a0

j∑
q=1

[
(vq − j + q) aq cv, j−q

]
. (32)

Then, we can write

Fv(x) =
1

(1 − e−λ)v

{
1 −

[
1 +

( x
s

)c]−k}vα
{ ∞∑

j=0

(−1) j λ j+1

( j + 1)!

×
{
1 −

[
1 +

( x
s

)c]−k} jα
}v

=
1

(1 − e−λ)v

{
1 −

[
1 +

( x
s

)c]−k}vα
∞∑
j=0

cv, j

{
1 −

[
1 +

( x
s

)c]−k} jα

=
1

(1 − e−λ)v

∞∑
j=0

cv, j

{
1 −

[
1 +

( x
s

)c]−k}( j+v)α
, (33)
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where cv, j is given in (32) and a j =
(−1) j λ j+1

( j+1)! .

Setting v = i + l − 1 and substituting (20) and (33) into equation (30), the density fi:n(x) can be expressed as

fi:n(x) =
1

(1 − e−λ)i+l−1

n−i∑
l=0

∞∑
j=0

[ (−1)l
(

n−i
l

)
ci+l−1, j f (x)

B(i, n − i + 1)

×
{
1 −

[
1 +

( x
s

)c]−k}](i+ j+l−1)α

=
1

(1 − e−λ)i+l

n−i∑
l=0

∞∑
j,m=0

(−1)l+m
(

n−i
l

)
λm ci+l−1, j

m! B(i, n − i + 1)
c k s−c αλ xc−1

×
[
1 +

( x
s

)c]−k−1 {
1 −

[
1 +

( x
s

)c]−k}(i+ j+l+m)α−1

=
1

(1 − e−λ)i+l

n−i∑
l=0

∞∑
j,m=0

(−1)l+m
(

n−i
l

)
λm+1 ci+l−1, j

(i + j + l + m) m! B(i, n − i + 1)
c k s−c α

× (i + j + l + m) xc−1
[
1 +

( x
s

)c]−k−1 {
1 −

[
1 +

( x
s

)c]−k}(i+ j+l+m)α−1
.

Thus, fi:n(x) can be written as

fi:n(x) =

n−i∑
l=0

∞∑
j,m=0

δ j,l,m h(i+ j+l+m)α(x), (34)

where

δ j,l,m =
(−1)l+m

(
n−i

l

)
λm+1 ci+l−1, j

(i + j + l + m) m! (1 − e−λ)i+l B(i, n − i + 1)
,

and

h(i+ j+l+m)α(x) = c k s−c (i + j + l + m)α xc−1
[
1 +

( x
s

)c]−k−1

×
{
1 −

[
1 +

( x
s

)c]−k}(i+ j+l+m)α−1
.

Thus, from equation (34), the tth ordinary moment of the Exp-BXIIP order statistics is

E(Xt
i:n) =

n−i∑
l=0

∞∑
j,m=0

δ j,l,m E(Y(i+ j+l+m)α), (35)

where Y(i+ j+l+m)α ∼ Exp-BXII(s, k, c,Y(i+ j+l+m)α). Clearly, E(Xt
i,l) can be calculated directly from equation (23)

with the parameters of this Exp-BXII distribution.

An alternative expression to (35) can be derived using a result due to Barakat and Abdelkader (2004). We have

E(Xt
i:n) = t

n∑
p=n−i+1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

) ∫ ∞

0
xt−1S (x)pdx, (36)

where S (x) = 1 − F(x) is the Exp-BXIIP survival function. Using the binomial expansion for [1 − F(x)]p in (36),
the last integral becomes

L =
∫ ∞

0
xt−1S (x)pdx =

p∑
l=0

(−1)l
(
p
l

) ∫ ∞

0
xt−1F(x)ldx. (37)
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Substituting (33) into equation (37), we can rewrite L as

L =
p∑

l=0

∞∑
j=0

(−1)l
(

p
l

)
cl, j

(1 − e−λ)l

∫ ∞

0
xt−1

{
1 −

[
1 +

( x
s

)c]−k}( j+l)α
dx,

where cl, j can be obtained from (32).

Using the power series expansion, we can write L as

L =
p∑

l=0

∞∑
j,m=0

(−1)l+m
(

p
l

)
cl, j Γ[( j + l)α + 1]

m! (1 − e−λ)l Γ[(j + l)α + 1 −m]

∫ ∞

0
xt−1

[
1 +

( x
s

)c]−km
dx.

Setting u = (x/s)c, we obtain

L =
p∑

l=0

∞∑
j,m=0

(−1)l+m
(

p
l

)
st cl, j Γ[( j + l)α + 1]

c m! (1 − e−λ)l Γ[(j + l)α + 1 −m]

[
Γ(km − t

c ) Γ( t
c )

Γ(km)

]
.

Finally, equation (36) reduces to

E(Xt
i:n) = t

n∑
p=n−i+1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

) p∑
l=0

∞∑
j,m=0

(−1)l+m
(

p
l

)
st cl, j

c m! (1 − e−λ)l

×
[
Γ[( j + l)α + 1]Γ(km − t

c )Γ( t
c )

Γ[( j + l)α + 1 − m] Γ(km)

]
.

The L moments (Hosking, 1990) are expectations of certain linear combinations of order statistics and can be used
to calculate quantities analogous to standard deviation, skewness and kurtosis, termed the L scale, L skewness and
L kurtosis respectively. They are defined by

λr+1 = (r + 1)−1
r∑

k=0

(−1)k
(
r
k

)
E(Xr+1−k:r+1), r = 0, 1, . . .

The first four L-moments are: λ1 = E(X1:1), λ2 =
1
2 E(X2:2 −X1:2), λ3 =

1
3 E(X3:3 − 2X2:3 +X1:3) and λ4 =

1
4 E(X4:4 −

3X3:4 + 3X2:4 − X1:4). From equation (35) for the moments of the order statistics, we can obtain expansions for the
L-moments of the Exp-BXIIP distribution as linear functions of the means of suitable Exp-BXII distributions.

8. Rényi and Shannon Entropy

The entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty. For any
real parameter ω > 0 and ω , 1, the Rényi entropy of the Exp-BXIIP distribution is given by

IR(γ) =
1

(1 − γ) log
∫ ∞

0
f γ(x)dx

=
1

(1 − γ) log
{[

c k s−c αλ

1 − e−λ

]γ ∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
∫ ∞

0
x(c−1)γ

[
1 +

( x
s

)c]−k(r+γ)−γ
dx

}

=
1

(1 − γ) log
{[

c k s−c αλ

1 − e−λ

]γ s(c−1)γ+1

c

∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
[Γ[ (c−1)γ+1

c ] Γ[ ck(r+γ)+γ−1
c ]

Γ[k(r + γ) + γ]

]}
.

The details of the proof are given in Appendix B.
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For the Shannon entropy, we have

E{− log[ f (X)]} = log(1 − e−λ) − log(α) − log(λ)

+ (α − 1)
∞∑

j,r=0

(r + 1) vr

( j + 1) ( j + r + 2)

+ λ

∞∑
j,r=0

(−1) j(r + 1) vr Γ(α + 1)
( j + r + 1) j! Γ(α − j)

− E{log[g(X; s, k, c)]},

where vr is defined in Theorem 1 and E{log[g(X; s, k, c)]} can be computed from (2) at least numerically. The
details of the proof are given in Appendix C.

9. Estimation

Let Xi be a random variable following (9) with the vector θ = (s, k, c, α, λ)T of parameters. The data encountered
in survival analysis and reliability studies are often censored. The censored log-likelihood l(θ) for the model
parameters is

l(θ) = log(c) + log(k) − c log(s) + log(α) + log(λ) − log(1 − e−λ)

+
(c − 1)

n

n∑
i=1

log(xi) +
k
n

n∑
i=1

log(qi,−1) +
(α − 1)

n

n∑
i=1

log(vi,1)

− λ

n

n∑
i=1

vi,α.

The score functions for the parameters s, k, c α and λ are given by

Us(θ) = −
c
s
− kc

ns

n∑
i=1

ui qi,1 −
ck(α − 1)

ns

n∑
i=1

ui qi,k+1

vi,1
,

Uk(θ) =
1
k
+

1
n

n∑
i=1

log(qi,−1) +
(α − 1)

n

n∑
i=1

qi,k log(qi,−1)
vi,1

,

Uc(θ) =
1
c
− log(s) +

1
n

n∑
i=1

log(xi) +
k
n

n∑
i=1

ui log(u1/c
i )

qi,−1
,

Uα(θ) =
1
α
+

1
n

n∑
i=1

log(vi,1) − λ
n

n∑
i=1

vi,α log(vi,1),

and

Uλ(θ) =
1
λ
− e−λ

1 − e−λ
−

n∑
i=1

vi,α,

where ui =
(

xi
s

)c
, qi,k =

[
1 +

(
xi
s

)c]−k
and vi,α =

{
1 −

[
1 +

(
xi
s

)c]−k}α
.

The maximum likelihood estimate (MLE) θ̂ of θ is obtained by solving the nonlinear likelihood equations Us(θ) =
0, Uk(θ) = 0, Uc(θ) = 0, Uα(θ) = 0 and Uλ(θ) = 0. These equations cannot be solved analytically and statistical
software can be used to solve them numerically. We can use iterative techniques such as a Newton-Raphson type
algorithm to obtain θ̂. The computations are performed using the software R version 3.0.0 (package bbmle).

For interval estimation of (s, k, c, α, λ) and hypothesis tests on these parameters, we obtain the observed information
matrix since its expectation requires numerical integration. The 5 × 5 observed information matrix J(θ) is

J(θ) = −


Uss Usk Usc Usα Usλ

. Ukk Ukc Ukα Ukλ

. . Ucc Ucα Ucλ

. . . Uαα Uαλ

. . . Uλλ

 ,
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whose elements are given in Appendix D. The matrix J(θ) is useful to obtain approximate confidence intervals for
the parameters.

10. Application

In this section, we illustrate the usefulness of the Exp-BXIIP distribution applied to a real data set. These data on
failure times are reported in the book “Weibull Models by Murthy” et al. (2004, page 297). We also fit the density
functions of the Exponentiated Burr XII Poisson (Exp-BXIIP), Beta Burr XII (BBXII), Kumaraswamy Burr XII
(KwBXII) and McDonald Burr XII (McBXII) distributions given by

fExp-BXIIP(x; s, k, c, α, λ) =
c k s−c αλ

1 − e−λ
xc−1

[
1 +

( x
s

)c]−k−1{
1 −

[
1 +

( x
s
)c]−k

}α−1

× exp
{ − λ[1 − (

1 +
( x

s
)c
)−k]α}

,

fBBXII(x; s, k, c, a, b) =
c k s−c

B(a, b)
xc−1

[
1 +

( x
s

)c]−k b−1{
1 −

[
1 +

( x
s

)c]−k}a−1
,

fKwBXII(x; s, k, c, a, b) = a b c k s−c xc−1
[
1 +

( x
s

)c]−k−1{
1 −

[
1 +

( x
s

)c]−k}α−1

×
{

1 −
{
1 −

[
1 +

( x
s

)c]−k}a
}b−1

,

fMcBXIIP(x; s, k, c, a, b, α) =
c k s−c α

B(a, b)
xc−1

[
1 +

( x
s

)c]−k−1{
1 −

[
1 +

( x
s

)c]−k}aα−1

×
{

1 −
{
1 −

[
1 +

( x
s

)c]−k}α}b−1

,

respectively, where all parameters are positive.

Further, we apply the Cramér-von Mises (W∗) and Anderson-Darling (A∗) statistics described in details in Chen
and Balakrishnan (1995) to verify which distribution fits better to these data. In general, the smaller the values
of the statistics W∗ and A∗, the better the fit to the data. Let H(x; θ) be the cdf, where the form of H is known
but θ (a k-dimensional parameter vector, say) is unknown. To obtain the statistics W∗ and A∗, one can proceed as
follows: (i) Compute vi = H(xi; θ̂), where the xi’s are in ascending order; (ii) Compute yi = Φ

−1(vi), where Φ(·)
is the standard normal cdf and Φ−1(·) its inverse; (iii) Compute ui = Φ{(yi − ȳ)/sy}, where ȳ = n−1 ∑n

i=1 yi and
s2

y = (n− 1)−1 ∑n
i=1(yi − ȳ)2; (iv) Calculate W2 =

∑n
i=1{ui − (2i− 1)/(2n)}2 + 1/(12n) and A2 = −n− (1/n)

∑n
i=1{(2i−

1) log(ui)+(2n+1−2i) log(1−ui)}; (v) Modify W2 into W∗ = W2(1+0.5/n) and A2 into A∗ = A2(1+0.75/n+2.25/n2).
Table 1 and 2, respectively, lists the MLEs, their standard errors in parentheses and the statistics W∗ and A∗ and p-
values for the failure times data. They indicate that the Exp-BXIIP and McBXII distributions are the best models
to these data. Morever, the standard errors are much smaller compared with their estimates for the Exp-BXIIP
distribution.

Table 1. MLEs
Distribution Estimatives
Exp-BXIIP ŝ k̂ ĉ α̂ λ̂

14.8518 5.9646 5.3264 0.4471 22.7252
(0.0726) (0.2732) (0.0734) (0.0427) (5.9532)

KwBXII ŝ k̂ ĉ â b̂

5.7916 6.3749 7.0604 0.2510 1.4676
(1.3907) (5.8618) (0.0207) (0.0584) (0.9002)

McBXII ŝ k̂ ĉ â b̂ α̂

6.5058 6.7187 6.6588 0.5303 2.3546 0.5081
(0.0103) (6.6788) (0.0103) (0.6782) (1.8471) (0.6112)

BBXII ŝ k̂ ĉ â b̂

7.5361 6.5139 6.3234 0.2584 6.4360
(0.0553) (9.2920) (0.0599) (0.0357) (9.1064)
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Table 2. Measures W∗ and A∗

Distribution W∗ p-value A∗ p-value

Exp-BXIIP 0.05853 0.395 0.58938 0.124

KwBXII 0.09915 0.115 0.68478 0.074

McBXII 0.10423 0.098 0.95368 0.016

BBXII 0.13694 0.035 1.19636 0.004

More information is provided by a visual comparison of the fitted densities to the histogram of the data. The plots
of the fitted Exp-BXIIP, BBXII, KwBXII and McBXII density functions are displayed in Figure 4. These plots
indicate that the new distribution provides a good fit to these data and that it is also a very compettitive model to
other lifetime distributions.
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Figure 4. Fitted densities to the histogram of the current data.

11. Conclusions

We define and study a new five-parameter lifetime model called the exponentiated Burr XII Poisson distribution,
which extends some well-known lifetime distributions. Due to its flexibility in accommodating different forms of
the hazard rate function, it is an important model for modeling lifetime data. We provide a mathematical treatment
of the proposed distribution including a useful expansion for its density function. We derive explicit expressions
for the moments, generating and quantile functions, mean deviations, reliability and entropies, which hold in
generality for any parameter values. The model parameters are estimated by maximum likelihood. Additionally,
the observed information matrix is determined. In one application to a real data set, we illustrate the potentiality
of the new model.

Appendix A - Generating function

We have the following result which holds for m and k positive integers, µ > −1 and p > 0 (Prudnikov et al., 1992,
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page 21)

I
(
p, µ,

m
k
, ν

)
=

∫ ∞

0
exp(−px) xµ (1 + x

m
k )νdx

=
k−νmµ+

1
2

(2π)
(m−1)

2 Γ(−ν)pµ+1
×

Gk,k+m
k+m,k

(
mm

pm

∣∣∣∣∣∣ ∆(m,−µ),∆(k, ν + 1)
∆(k, 0)

)
, (38)

where ∆(k, a) = a
k ,

a+1
k , · · · ,

a+k
k .

Appendix B - Rényi entropy

The entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty. For any
real parameter ω > 0 and ω , 1, the Rényi entropy is given by

IR(γ) =
1

(1 − γ) log
∫ ∞

0
f γ(x)dx,

where

f (x)γ =
[
c k s−c αλ

1 − e−λ

]γ
x(c−1)γ

[
1 +

( x
s

)c]−(k+1)γ {
1 −

[
1 +

( x
s

)c]−k}(α−1)γ

× exp
{
−λ γ

{
1 −

[
1 +

( x
s

)c]−k}α}
=

[
c k s−c αλ

1 − e−λ

]γ
x(c−1)γ

[
1 +

( x
s

)c]−(k+1)γ
∞∑
j=0

(−1) j λ j γ j

j!

×
{

1 −
[
1 +

( x
s

)c]−k
}( j+γ)α−γ

=

[
c k s−c αλ

1 − e−λ

]γ
x(c−1)γ

∞∑
j,r=0

(−1) j+r λ j γ j
(

( j+γ)α−γ)
r

)
j!

[
1 +

( x
s

)c]−k(r+γ)−γ
.

Thus,

IR(γ) =
1

(1 − γ) log
{[

c k s−c αλ

1 − e−λ

]γ ∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
∫ ∞

0
x(c−1)γ

[
1 +

( x
s

)c]−k(r+γ)−γ
dx

}

=
1

(1 − γ) log
{[

c k s−c αλ

1 − e−λ

]γ s(c−1)γ+1

c

∞∑
j,r=0

(−1) j+rλ j γ j
(

( j+r)α−γ
r

)
j!

×
[Γ[ (c−1)γ+1

c ] Γ[ ck(r+γ)+γ−1
c ]

Γ[k(r + γ) + γ]

]}
.

Appendix C - Shannon entropy

The Shannon entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty.
The Shannon entropy is given by

E{− log[ f (X)]} = log(1 − e−λ) − log(α) − log(λ) − (α − 1) E{log[G(X)]}
+ λ E[Gα(X)] − E{log[g(X)]}

= log(1 − e−λ) − log(α) − log(λ) + (α − 1)
∞∑

j,r=0

(r + 1) vr

( j + 1) ( j + r + 2)

+ λ

∞∑
j,r=0

(−1) j(r + 1) vr Γ(α + 1)
( j + r + 1) j! Γ(α − j)

− E{log[g(X)]}.
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We use the power series

Gα(X) =
{
1 −

[
1 +

( x
s

)c]−k}α
=

∞∑
j=0

(−1) j Γ(α + 1)
j! Γ(α − j)

[
1 +

( x
s

)c]− jk

and

log[G(X)] =

∞∑
j=0

(−1) j

j + 1

[
G(x) − 1

] j+1
=

∞∑
j=0

(−1) j

j + 1

{
−

[
1 +

( x
s

)c]−k} j+1

=

∞∑
j=0

(−1)2 j+1

j + 1

[
1 +

( x
s

)c]−k( j+1)
= −

∞∑
j=0

1
j + 1

[
1 +

( x
s

)c]−k( j+1)
.

Next, we have

E[Gα(X)] =

∞∑
r=0

vr

∫ ∞

0
Gα(x) g(x; s, k(r + 1), c)dx

= c k s−c Γ(α + 1)
∞∑

j,r=0

(−1) j (r + 1) vr

j! Γ(α − j)

∫ ∞

0
xc−1

[
1 +

( x
s

)c]−k( j+r+1)−1
dx

= c k s−c Γ(α + 1)
∞∑

j,r=0

(−1) j (r + 1) vr

j! Γ(α − j)
sc

c

∫ ∞

0

(
1 + u

)−k( j+r+1)−1dx

=

∞∑
j,r=0

(−1) j Γ(α + 1) (r + 1) vrΓ(α + 1)
( j + r + 1) j!Γ(α − j)

and

E{log[G(X)]} =
∞∑

r=0

vr

∫ ∞

0
log G(x) g(x; s, k(r + 1), c)dx

= −c k s−c
∞∑

j,r=0

(r + 1) vr

j + 1

∫ ∞

0
xc−1

[
1 +

( x
s

)c]−k( j+r+2)−1
dx

= −c k s−c
∞∑

j,r=0

(r + 1) vr

j + 1
sc

c

∫ ∞

0

(
1 + u

)−k( j+r+2)−1dx

= −
∞∑

j,r=0

(r + 1) vr

( j + 1)( j + r + 2)
.

Thus,

E{− log[ f (X)]} = log(1 − e−λ) − log(α) − log(λ) + (α − 1)
∞∑

j,r=0

(r + 1) vr

( j + 1) ( j + r + 2)

+ λ

∞∑
j,r=0

(−1) j(r + 1) vr Γ(α + 1)
( j + r + 1) j! Γ(α − j)

− E[log g(X)].

Appendix D - Information matrix

The elements of the observed information matrix J(θ) for the parameters (s, k, c, α, λ) are
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Uss(θ) =
c
s2 +

kc
ns2

n∑
i=1

u2
i (c + qi,−1)

qi,−2

+
kc(α − 1)

ns2

n∑
i=1

ui

[
c
(
1 + k ui qi,−k − qi,−k

)
− qi,−1(qi,−k − 1)

]
qi,−2 (qi,−k − 1)2

− kcαλ
ns2

n∑
i=1

ui vi,α

{
c
[
− k ui(qi,−k − α) + (qi−k − 1)

]
+ qi,−1(qi,−k − 1)

}
qi,−2 (qi,−k − 1)2 ,

Usk(θ) = − c
ns2

n∑
i=1

xi u(c−1)/c
i

qi,−1
+

c(α − 1)
ns

n∑
i=1

ui

[
1 − qi,−k + k qi,−k log(qi,−1)

]
qi,−1 (qi,−k − 1)2

− cαλ
ns

n∑
i=1

ui vi,α

[
− k log(qi,−1)ui(qi,−k − α) + qi−k − 1

]
qi,−1 (qi,−k − 1)2 ,

Usc(θ) = −1
s
− k

ns

n∑
i=1

ui

[
qi,−1 + c log(u1/c

i )
]

qi,−2

+
k(α − 1)

ns

n∑
i=1

ui

{
c log(u1/c

i )
[
1 + k ui qi,−k − qi,−k

]
− qi,−1(qi,−k − 1)

}
qi,−2 (qi,−k − 1)2

− kcαλ
ns

n∑
i=1

ui vi,α

{
log(u1/c

i )
[
k ui(qi,−k − α) − vi,1 − qi,−1(qi,−k − 1)

]}
qi,−2 (qi,−k − 1)2 ,

Usα(θ) = − kc
ns2

n∑
i=1

xi u(c−1)/c
i qi,k+1

vi,1
+

kcλ
ns

n∑
i=1

ui vi,α

[
1 + α log(vi,1)

]
qi,−1 (qi,−k − 1)

,

Usλ(θ) =
kcα
ns

n∑
i=1

ui qi,k+1

vi,α−1
,

Ukk(θ) = − 1
k2 −

(α − 1)
n

n∑
i=1

qi,−k log2(qi,−1)
(qi,−k − 1)2 +

αλ

n

n∑
i=1

vi,α (qi,−k − α) log2(qi,−1)
(qi,−k − 1)2 ,

Ukc(θ) =
1
n

n∑
i=1

ui log(u1/c
i )

qi,−1
− (α − 1)

n

n∑
i=1

ui log(u1/c
i )

[
1 − qi,−k + k qi,−k log(qi,−1)

]
qi,−1 (qi,−k − 1)2

+
kαλ

n

n∑
i=1

ui log(u1/c
i ) vi,α log(qi,−1)

qi,−1 (qi,−k − 1)2 ,

Ukα(θ) =
1
n

n∑
i=1

qi,k log(qi,−1)
vi,1

− λ
n

n∑
i=1

log(qi,−1) vi,α

[
1 + α log(vi,1)

]
qi,−k − 1

,
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Ukλ(θ) = −α
n

n∑
i=1

qi,k vi,α log(qi,−1),

Ucc(θ) = − 1
c2 +

k
n

n∑
i=1

ui log2(u1/c
i )

qi,−2

− k(α − 1)
n

n∑
i=1

ui log2(u1/c
i )

[
1 + k ui qi,−k − qi,−k

]
qi,−2 (qi,−k − 1)2

− kαλ
n

n∑
i=1

ui log2(u1/c
i ) vi,α

[
− k ui(qi,−k − α) + qi−k − 1

]
qi,−2 (qi,−k − 1)2 ,

Ucα(θ) =
k
n

n∑
i=1

ui qi.k+1 log(u1/c
i )

vi,1
− kλ

n

n∑
i=1

ui log(u1/c
i ) vi,α

[
1 + α log(vi,1)

]
qi,−1 (qi,−k − 1)

,

Ucλ(θ) = −kα
n

n∑
i=1

ui qi,k+1 vi,α−1 log(u1/c
i ),

Uαα(θ) = − 1
α2 −

λ

n

n∑
i=1

vi,α log2(vi,1),

Uαλ(θ) = −1
n

n∑
i=1

vi,α log(vi,1),

Uλλ(θ) = − 1
λ2 +

eλ

(eλ − 1)2 ,

where ui, qi,k, vi,α are given in Section 9.
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