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Abstract

We present various characterizations of a recently introduced distribution (Ghosh 2014), called Kumaraswamy-
Half- Cauchy distribution based on: (i) a simple relation between two truncated moments; (if) truncated moment
of certain function of the 1% order statistic; (iii) truncated moment of certain function of the random variable; (iv)
hazard function; (v) distribution of the 1*' order statistic; (vi) via record values. We also provide some remarks on
bivariate Gumbel copula distribution whose marginal distributions are Kumaraswamy- Half-Cauchy distributions.
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1. Introduction

In designing a stochastic model for a particular modeling problem, an investigator will be vitally interested to know
if their model fits the requirements of a specific underlying probability distribution. To this end, the investigator
will rely on the characterizations of the selected distribution. Generally speaking, the problem of characterizing a
distribution is an important problem in various fields and has recently attracted the attention of many researchers.
Consequently, various characterization results have been reported in the literature. These characterizations have
been established in many different directions. The present work deals with the characterizations of a newly in-
troduced univariate continuous distribution, called Kumaraswamy- Half- Cauchy (KwHC) distribution. These
characterizations are based on: (i) a simple relation between two truncated moments; (if) truncated moment of
certain function of the 1* order statistic; (iii) truncated moment of certain function of the random variable; (iv)
hazard function; (v) distribution of the 1% order statistic; (vi) via record values. We also make some remarks on
bivariate Gumbel copula distribution whose marginal distributions are (KwHC) distributions.

The (KwHC) distribution introduced by Ghosh (2014), has probability density function (pdf) and cumulative
distribution function (cdf) given, respectively, by

f=f(xa,b,0) = a(slfa” (1 + (g)z)l (arctan(g)){H X

[l —(7% arctan(%))ar—l R (1.1)

for x>0, and

ab
F(x)=F(x;a,b,0) =1 —[1 —(%arctan@)) } , x>0
b/ 1)

where a,b,0 are all positive parameters. For a detailed treatment of this distribution, we refer the interested
reader to Ghosh (2014).

The paper is organized as follows. We present our characterization results in section 2 via 6 subsections 2.1-2.6.
Section 3 deals with certain remarks concerning bivariate Gumel copula distribution.
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2. Characterization Results

We divide this section to 6 subsections each of which deals with one of the characterizations mentioned in the
Abstract as well as in the Introduction.

2.1 Characterizations Based on Two Truncated Moments

In this subsection we present characterizations of (KwCH) distribution in terms of a simple relationship between
two truncated moments. We like to mention here the works of Glinzel (1987, 1990), Glinzel et al. (1984), Glianzel
and Hamedani (2001) and Hamedani (2002, 2006, 2010) in this direction. Our characterization results presented
here will employ an interesting result due to Glinzel (1987) (Theorem 2.1.1 below). The advantage of the char-
acterizations given here is that, cdf F need not have a closed form and are given in terms of an integral whose
integrand depends on the solution of a first order differential equation, which can serve as a bridge between proba-
bility and differential equation.

Theorem 2.1.1. Let (Q,7,P) be a given probability space and let H = [a,b] be an interval for some
a<b (a=-o00, b=o0co mightas well be allowed). Let X : Q — H be a continuous random variable with the
distribution function F andlet g and & be two real functions defined on H such that

EgX) | X2x]=E[hX) |X=2xInkx), xe€H,

is defined with some real function n. Assume that g, h e C'(H),n € C%2(H) and F is twice continuously
differentiable and strictly monotone function on the set H . Finally, assume that the equation /#7 = g has no real
solution in the interior of H . Then F is uniquely determined by the functions g , 2 and 7, particularly

_ (" (W) B
P [ ¢l el s .

where the function s is a solution of the differential equation s" = ”’fg and C is a constant, chosen to make

nh
J,dF=1.

Again, following our previous work, we like to mention that this kind of characterization based on the ratio of
truncated moments is stable in the sense of weak convergence, in particular, let us assume that there is a sequence
{X,} of random variables with distribution functions {F,} such that the functions g, , h, and n, (n € N) satisfy
the conditions of Theorem 2.1.1 and let g, — g, h, — h for some continuously differentiable real functions g
and & . Let, finally, X be a random variable with distribution F . Under the condition that g, (X) and A, (X) are
uniformly integrable and the family {F,} is relatively compact, the sequence X, converges to X in distribution if
and only if 7, convergesto 7, where

n( = ELe@0 1X> ]
Eh(X)|X=x]

This stability theorem makes sure that the convergence of distribution functions is reflected by corresponding

convergence of the functions g, 7 and 7, respectively. It guarantees, for instance, the ’convergence’ of

characterization of the Wald distribution to that of the Lévy-Smirnov distribution if @ — oo, as was pointed out

in (2001).

A further consequence of the stability property of Theorem 2.1.1 is the application of this theorem to special tasks
in statistical practice such as the estimation of the parameters of discrete distributions. For such purpose, the
functions g, h and, specially, n should be as simple as possible. Since the function triplet is not uniquely
determined it is often possible to choose 7 as a linear function. Therefore, it is worth analyzing some special
cases which helps to find new characterizations reflecting the relationship between individual continuous univariate
distributions and appropriate in other areas of statistics.

Clearly, Theorem 2.1.1 can be stated in terms of two functions g and 7 by taking h(x) = 1, which will reduce
the condition given in Theorem 2.1.1to E [g(X) | X = x] = n(x). However, adding an extra function will give a
lot more flexibility, as far as its application is concerned.
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ayl-b
Proposition 2.1.2. Let X : Q — (0, 0) be a continuous random variable and let & (x) = [1 - (2 arctan (g )) ]

and g (x) = (arctan( )) h(x) for x € (0,00). The pdf of X is (1.1) if and only if the function n defined in
Theorem 2.1.1 has the form

i 2 “
n(x) = Sarl {1 +(7_r arctan(g)) }, x> 0.

Proof. Let X have density (1.1), then

(1-Fx) E[hX) | X > x] =b{1 —(%arctan(f)) } x>0,
b4 )
and

br

a 2a
(1=F () E[g(0) X2 4= 2o {1—(iarctan(§)) } x>0,
and finally

D)) —g () = @ {(g) - (arctan(g))a} >0 for x>0.

Conversely, if 7 is given as above, then

—1 w
ronw 1)) (e ()

T (e ()]

x>0,

and hence

2 x\\?
s(x) = —ln{ (ﬂarctan(g))}, x> 0.

Now, in view of Theorem 2.1.1, X has density (1.1).

Corollary 2.1.3. Let X : Q — (0,00) be a continuous random variable and let % (x) be as in Theorem 2.1.1.
The pdf of X is (1.1) if and only if there exist functions g and 7 defined in Theorem 2.1.1 satisfying the
differential equation

7 (X)h(x) (1 +( ) ) l(arctan (g))"_l

= X >

nWh =g 5{(z)" - (arctan (2))')

Remarks 2.1.4. (a) The general solution of the differential equation in Corollary 2.1.3 is

n(x) = [1 - (— arctan g )

a 2 —1
a2 ( ) arctan X

on?

[1—( arctan((—lg )] g(x)dx+D

for x >0, where D is aconstant. One set of appropriate functions is given in Proposition 2.1.2 with D = zaT
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(b) Clearly there are other triplets of functions (4, g, n) satisfying the conditions of Theorem 2.1.1. We presented
one such triplet in Proposition 2.1.2.

2.2 Characterizations Based on Truncated Moment of Certain Functions of the 1"" Order Statistic

Let Xy, < Xo,, < ... < X,y be n order statistics from a continuous cdf F. We present here a characterization
result base on some functions of the 1* order statistic. Our characterization will be a consequence of the following
proposition, which is an extended version of the one appeared in our previous work (Hamedani, 2010).

Proposition 2.2.1. Let X : Q — (a,) be a continuous random variable with cdf F . Let ¢ (x) and g(x) be

two differentiable functions on («,8) such that lim .,z (x)[1 = F (x)]" =0 and f [q(zf;)(z)] dt = co . Then

E[l/’(Xlzn)lxlzn > t] ZQ([) , [ >a,

implies

c—explo [ 4D
F(x)=1 exp{ fan[zp(t)—q(t)]d[}’ a<x<p.

Remarks 2.2.2. (a) Taking, e.g., ¢ (x) = 2 [1 - (% arctan (j—;))u]nb ,q(x) = () and (@.p) = (0,00),
Proposition 2.2.1 provides a characterization of (KwHC) distribution. (b) Clearly there are other suitable functions
¥ (x) and g (x). (c) Welike to point out that Proposition 2.2.1 holds true (with of course appropriate modifications)
if we replace Xj., with the base random variable X .

2.3 Characterization Based on Single Truncated Moment of Certain Function of the Random Variable

In this subsection we employ a single function 1 of X and characterize the distribution of X in terms of the
truncated moment of ¢ (X). The following proposition have already appeared in our previous work (Hamedani,
Technical Report, 2013), so we will just state it here which can be used to characterize (KwCH) distribution.

Proposition 2.3.1. Let X : Q — (a,B) be a continuous random variable with c¢df F . Let ¢;(x) be a
differentiable function on (a,) with lim,_,, ¢ (x) = 1. Thenfor £ # 1,

Ely1 X)X > x] =& (x),  x€(a,p),

if and only if

1_
) =A-F@)', xe(@p).
Remark 2.3.2. For ¢ = b—fl Ui () =1- (7% arctan(j—s‘))a and (a,B) = (0, 00), we have a characterization of
(KwHC) distribution.
2.4 Characterization Based on the Hazard Function
The following definition is stated here for the sake of completeness.

Definition 2.4.1. Let F be an absolutely continuous distribution with the corresponding pdf f . The hazard
function corresponding to F is denoted by /i and is defined by

I

he )= TR

yeESupp F, 24.1)

where Supp F is the support of F .

It is obvious that the hazard function of a twice differentiable distribution function satisfies the first order differential
equation

he ()
he ()

—hr M =q0Q),
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where ¢ (y) is an appropriate integrable function. Although this differential equation has an obvious form since

RO AN
fF o he )

for many univariate continuous distributions (2.4.2) seems to be the only differential equation in terms of the
hazard function. The goal of the characterization based on hazard function is to establish a differential equation
in terms of hazard function, which has as simple form as possible and is not of the trivial form (2.4.2) . For some
general families of distributions this may not be possible.

hr (y) , (2.4.2)

Proposition 2.4.2. Let X : Q — (0, o) be a continuous random variable. The random variable X has pdf (1.1)
(WLOG, for § = 1 and a > 1) if and only if its hazard function hr (x) satisfies the differential equation

hpy (x)=(a-1) ((l + x2) arctan x)71 hp (x) = 22 (l + x2)72 (arctan x)?~'x

i

2 a1-2 2 (2 a-1
[1 - (— arctan x) ] {— (— arctan x) (a + 2xarctan x) — 2x} , x>0, (2.4.3)
T m\m

with initial condition Ap (0) = 0.

Proof: If X has pdf (1.1), then clearly (2.4.3) holds. Now, if (2.4.3) holds, then

a a1-1
% {(arctanx)lfa hr (x)} = aif di;c {(1 + xz)_l [1 - (7_2r arctanx) ] },

from which we have

a

ab?2
hr (x) =

ﬂ-a

a1-1
-1 2
(1 + xz) (arctan x)*! [1 - (— arctan x) } .
s
Integrating both sides of the last equation from 0 to x, we arrive at

—In(1-F((x) = —bln{[l - (% arctanx) ]},

from which, in view of the initial condition, we obtain

2 ab
l—F(x)z[l—(;arctanx)} , x=0.

Remark 2.4.3. For a =1, (2.4.3) will have the following simple form

- 4b - 2 -
hy (%) +2x(1 +x2) th (x) = ﬁ(l +x2) 2[1 - ;arctanx] ,

with initial condition i (0) = 2”—". It is easy to show that the solution of the above equation is

2 b
F(x):l—[l——arctanx} , x>0.
T

2.5 Characterization Based on the Distribution of the 1st Order Statistic

We consider the following characterization based on the 1*' order statistic.
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Proposition 2.5.1. Suppose X;, X», -, X, are i.i.d. (independent and identically distributed) random variables.
The common distribution of X/s is (KwHC) distribution if only if X., has a (KwHC) distribution.

Proof. Follows immediately from the fact that

P(X1 > 2) = (P(X; > )"
= (1 - F(x))"

(1 Zaan(2)] ) 20

2.6 Characterization via Record Values

We will consider a direct application of the following theorem of Athar et al. (2014) as it has appeared in their
paper. In what follows, Xy is the rth record values of a random sample Xj,X>, ..., X,,. Characterization of
distributions through conditional expectation of record values have been considered among others by Nagaraja
(1988), Franco and Ruiz (1997), Dembinska and Wesolowski (2000), Khan and Alzaid (2004) and Wu (2004).
The following theorem is a particular type of generalization of the results mentioned in Khan et al. (2010). For
a detailed discussion on the related topic the reader is suggested to see Arnold et al. (1998) and the references
therein.

Theorem 2.6.1. Let X be a continuous random variable with cdf F (x) and pdf f (x) on the support (—co, o).
Then for two consecutive values of r and s and 1 < r < s < n, E[(h(Xui) - Xvw)) | Xvey = «]
a3, () (h ()Y (bja)’ if and only if F(x) = 1 = (ah(x)+b),a # 0, where a* = X7 (-D)* (?) (%)
and £ (x) is a continuous differentiable function of x.

Ss=r

Remark 2.6.2. Taking a=-1,b=1,c=1,h(x) = (% arctan ((—’;))a for x € (0, 00), we have a characterization
of (KwHC) distribution.

3. Related Remarks

In this section, we consider the general structure of a bivariate Kumaraswamy-G model (Nadarajah et al. 2011).
Nadarajah et al. (2011) define a bivariate Kumaraswamy-G distribution as follows. Let G(x|, x;) be an arbitrary
absolutely continuous bivariate cd f with corresponding pdf g(xi, x,). For positive parameters a and b , define

F(x1,x) =1—(1 - G%xy,x2)). (3.1

In order for (3.1) to be a valid absolutely continuous bivariate cdf , it must satisfy F(co,00) =1, F(—00,x;) =0

, F(x1,—0)) =0 and %%F(xl,xg) > 0 for all xq, xp.

Next, consider a bivariate Gumbel copula of the form G(x;,x;) = x;x; exp(—clogx;logx;), 0 < x; < 1,0 <
xp < 1. Note that, we will have Kumaraswamy marginals since Fy,(x;) = 1 — (1 — G*(xy, DY =1-01- x”l’)b
and Fx,(x) =1-(1- G”(l,xz))b =1-(01- x‘z’)b, using the fact that G is a copula. If we make the following

transformation X; = % arctan (%) and X, = % arctan (%) , for some § > 0O then, the resulting marginals will be
(KwHC), since

a\b
Fy,(y1)=1-(1 -G, 1))/’ =1- (1 - (% arctan(y—l)) ) , y1 =0,
bd 0

and

a\b
Fy,(p) =1-(1 =G 1))’ =1- (1 - (% arctan()ﬁ)) ) , ¥ >0.
n 0

So, we can state the following proposition: if the bivariate distribution (or bivariate Gumbel copula) is of the form
mentioned above, then the marginal distributions will be (KwHC) distributions with appropriate parameters.
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