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Abstract

It is common in environmental and biomedical data analysis to deal with censored data that are log-normally
distributed. This paper is concerned with the statistical analysis for comparing the means of two independent log-
normal distributions from censored data with a single detection limit. The method of maximum likelihood will
be used to obtain closed form estimates for population parameters under different hypotheses. A test procedure
for comparing the means of two independent log-normal populations in the presence of censored data is also
introduced and evaluated. Asymptotic chi-square test is used in the proposed test procedure. Worked example
is given illustrating the use of the methods provided utilizing a computer program written in the R language. A
simulation study was performed to examine the power of the proposed test procedure introduced in this article.

Keywords: detection limits, censored data, normal and log-normal distributions, maximum likelihood estimators,
likelihood ratio test

1. Introduction

The processing of the analytical results of environmental data containing potentially hazardous chemicals is often
complicated by the fact that some of these pollutants are present at trace levels which cannot be measured reliably
and consequently are reported as results lying numerically below a detection limit, DL. In general, censoring
means that observations at one or both tails are not available. Left-censored data commonly arise in environmental
contexts. Left-censored data (data reported as less than detection limit) can occur when the substance or attribute
being measured is either absent or exists at such low concentrations that the substance is not present above the DL
level. Data sets containing left-censored observations are referred to as left-censored data. When more than two
distinct detection limits DL1, DL2 , ..., DLk (k ≥ 3) are reported, the data are said to be multiply-left-censored,
(USPEA 1989b). It is common to have environmental data contains detection limits. Left censoring frequently
arises in environmental studies due to: (1) sometimes nondetect is reported because the measurement lies below a
threshold set by the client or laboratory, (2) sometimes the instrumentation registers a low signal, but the chemist
decides that ”unpollutant” environmental samples could give a similar signal and reports nondetect instead of the
observed measurement, (3) sometimes the signal produced by the pollutant is too small for the instrumentation to
discriminate from background noise, or (4) sometimes a signal is registered, but certain criteria that identify the
compound are not met. A sample for which some observations are known only to fall above a known detection
limit, while the remaining observations falling below the detection limit are fully measured and reported is called
right censored. This type of data are so common in biomedical studies. In many environmental applications the
distribution of variables such as chemical concentration, inhalation, digestion, and consumption rates are positive
and skewed to the right. Hence, censored observations occur between zero and DL. In some instances a log
transformation can provide a more natural scale to analyze such measurements. Samples to be considered in this
paper are those that are Type I single-left-censored. Suppose that a sample of n data points is given of which m
data points are non-censored (fully measured), and the remaining mc = n − m observations are left-censored with
a single detection limit DL. In such Type I censored samples DL is fixed, whereas m and mc are random.

Nondetect values can cause an especially difficult problem when the goal is to compare two different populations.
There has been a great deal of literature on the subject of the statistical inference of the parameters of normal and
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log-normal populations from both fully measured and censored data. Gupta and Li (2006) developed a score test
for testing the equality of the means of two independent log-normal populations from fully measured data. Zhou et
al (1997) considered two methods for comparing the means of two independent log-normal non-censored samples.
Harris (1991) considered two parametric and two non-parametric methods for testing the equality of medians of
two independent log-normal distributions when some data are left-censored. Prentice (1978) developed linear rank
tests with right censored data. Millard and Deverel (1988) adapted several existing right censored non-parametric
procedure so that they can be used in environmental setting with left-censored data. Methods for the estimation
of the log-normal parameters for one-sample cases where there may exist left-censored data are discussed by El-
Shaarawi (1989). Stoline (1993) extended results first suggested by Harris (1991) and proposed a procedure for
comparing medians of two independent log-normal distributions where some data may be left-censored. Stoline
(1993)used the Expectation Maximization (EM) algorithm introduced by Dempster et al. (1977) to calculate
the maximum likelihood estimates of population parameters µ and σ. Other suggested methods for estimating
population parameters from censored samples are discussed in Marco (2005), Jin et al (2010), Gibbons (1994),
Gleit (1985), El-Shaarawi and Esterby (1992), Elshaarawi and Dolan (1989), Gilbert (1987) and Schneider (1986).

The purpose of this paper is to provide a parametric procedure for comparing means of two independent log-
normally distributed populations utilizing left-censored data sets. The method of maximum likelihood will be used
to obtain estimates of population parameters µ and σ. To facilitate the application of this procedure, a computer
program is written in the R language which calculates the maximum likelihood estimates, asymptotic chi-square
test statistics and their p-values. A numerical example is given illustrating the use of this procedure utilizing a
computer program written in the R language.

2. Assumptions and Notations

Assume that there exists two random samples of n1 and n2 data values: y11, y12, ..., y1m1 , y1m1+1, ..., y1n1 and
y21, y22, ..., y2m2 , y2m2+1, ..., y2n2 taken from two independent log-normal populations LN(µ1, σ1) and LN(µ2, σ2),
respectively. Where LN(µ, σ) denotes a log-normally distributed variable y with the probability density function

f (y; µ, σ) =
1

y σ
√

2π
e−

(log y−µ)2
2σ2 , for y > 0,

where −∞ < µ < ∞ and σ > 0. For convenience, for each sample i let us assume that the first mi observations
yi1, yi2, ..., yimi are non-censored (fully measured) and the remaining mci = ni−mi observations are left-censored for
i = 1, 2. It is assumed that each sample i has a detection limit LDLi, for i = 1, 2, where LDLi is the detection limit
in lognormal sample i for i = 1, 2. For left censored observations, it is assumed that for each sample i it is only
known that there are mci observations less than LDLi, for i = 1, 2. That is for sample i, yi j < LDLi for i = 1, 2 and
j = 1, 2, ...,mci . The parameters for the ith log-normal population can be expressed as functions of the parameters
µ and σ as:

mean : µyi = eµi+
σ2

i
2

medain : Myi = eµi

variance : σ2
yi
= γi(γi − 1) e2µi

skewness : syi = (γi + 2)
√

(γi − 1)

where γi = eσ
2
i for i = 1, 2.

Let

xi j =

ln(yi j) , for i = 1, 2 and j = 1, 2, ...,mi,

DLi = ln(LDLi) , for i = 1, 2 and j = 1, 2, ...,mci .

where LDLi is the detection limit in the ith lognormal sample.

To simplify the presentation in this paper, the analysis is described and illustrated by reference to the analysis
of normally distributed data, though this condition occurs infrequently in typical environmental data analysis.
However, it is frequently necessary to transform real environmental data before analysis; typically the logarithmic
transformation of xi j = ln(yi j) is used, although other transformations are possible. When the logarithmic or other
transformation is used prior to censored data set analysis, it is necessary to transform the analysis results back to
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the original scale of measurement following parameter estimation. For each sample i let

x̄mi =
1
mi

mi∑
j=1

xi j , and s2
mi
=

1
mi

mi∑
j=1

(xi j − x̄mi )
2

be the sample mean and sample variance of the mi non-censored observations xi1, xi2, ..., ximi , for i = 1, 2. Let the
functions ϕ(.) and Φ(.) be the pd f and cd f of the standard unit normal. Define

Φ(ξi) =
∫ ξi

−∞
ϕ(t)dt , where ξi =

DLi − µi

σi
for i = 1, 2,

and

Φ(ξ) =
∫ ξ

−∞
ϕ(t)dt , where ξ =

DL − µ
σ

.

We also define
DL =

DL1 + DL2

2
, ξ̄ =

ξ1 + ξ2
2

and W(x) =
ϕ(x)
Φ(x)

.

The likelihood function of the samples under consideration is given by:

L(µ1, µ2, σ1, σ2) =
2∏

i=1

 ni!
mi! mc1

!
[Φ(ξi)]

mci [
1

σi
√

(2π)
]

mi e
− 1

2σ2
i

∑mi
j=1(xi j−µi)2

 (2.1)

The two log-normal population means are confirmed equal whenever the null hypothesis H0LN : µy1 = µy2 is
accepted in favor of the alternative hypothesis HALN : µy1 , µy2 or equivalently whenever the null hypothesis
H0N : µ1 = µ2 = µ and σ1 = σ2 = σ (overall homogeneity) is accepted in favor of one of the alternative
hypotheses: HA1N : µ1 , µ2 and σ1 , σ2 (overall heterogeneity), HA2N : µ1 , µ2 and σ1 = σ2 = σ
(mean heterogeneity, variance homogeneity), or HA3N : µ1 = µ2 = µ and σ1 , σ2 (mean homogeneity, variance
heterogeneity). For the sake of simplicity the test procedure for the null hypothesis H0N versus the alternative
hypothesis HA1N will be considered in this paper. The method of maximum likelihood will be used to obtain the
maximum likelihood estimates of population parameters under the hypotheses H0N and HA1N .

3. Maximum Likelihood Estimates of Population Parameters

In this section the maximum likelihood estimates of population parameters µi and σi, for i = 1 and 2, are derived
under each of the hypotheses H0N and HA1N . The derivation of these estimates is now described.

3.1 Maximum Likelihood Estimates under H0N

Under the hypothesis H0N , xi j, for i = 1, 2 and j = 1, 2, ..., ni, are assumed to be normally distributed with mean
µ and standard deviation σ. That is, it is assumed that there exists a random sample of n = n1 + n2 data values
taken from a normal population with mean µ and standard deviation σ. For convenience, let us assume that the
first m = m1 + m2 observations are non-censored (fully measured) and the remaining mc = mc1 + mc2 = n − m
observations are left-censored. For left censored observations, it is only known that mc1 observations are reported
as less than DL1 and mc2 observations are reported as less than DL2.

Case 1: In this case it is assumed that DL1 , DL2. The likelihood function LH0N (µ, σ) under H0N determined
by the pooled sample x11, x12, ..., x1m1 , x2(m1+1), ..., x2m, x1(m+1), ..., x1(m+mc1 ), x2(m+mc1+1), ..., x2n, where m = m1 +m2,
mc = mc1 + mc2 and n = n1 + n2 = m + mc, is given by:

LH0N
(µ, σ) =

2∏
i=1

(
ni!

mci ! mi!
[Φ(ξi)]mci [

1

σ
√

2π
]mi e−

1
2σ2

∑mi
j=1(xi j−µ)2

)
(3.1)

Hence, the corresponding log-likelihood function of (3.1) is given by:

ℓH0N
(µ, σ) = ln

 2∏
i=1

ni!
mci ! mi!

[2π]
− mi

2

 − 2∑
i=1

mi ln(σ) +
2∑

i=1

mci ln[Φ(ξi)]

−
2∑

i=1

1
2 σ2

mi∑
j=1

(xi j − µ)2

(3.2)
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For convenience, define h = mc
n , hi =

mci
n , and mci

m =
hi

1−h , for i = 1, 2. For the pooled sample let

x̄m =
1
m

2∑
i=1

m∑
j=1

xi j , and s2
m =

1
m

2∑
i=1

mi∑
j=1

(xi j − x̄m)2

be the sample mean and sample variance of the m non-censored observations x11, x12, ...,
x1m1 , x2(m1+1), ..., x2m, respectively.

The maximum likelihood estimates for µ̂ and σ̂ of µ and σ are the solutions to equations (3.3) and (3.4), the partial
derivatives for the log-likelihood equation with respect to µ and σ:

∂ℓH0N
(µ, σ)

∂µ
=

2∑
i=1

mi∑
j=1

(
xi j − µ
σ

) −
2∑

i=1

mci

ϕ(ξi)
Φ(ξi)

= 0 (3.3)

∂ℓH0N
(µ, σ)

∂σ
=

2∑
i=1

mi∑
j=1

(
xi j − µ
σ

)2 −
2∑

i=1

mi −
2∑

i=1

mciξi
ϕ(ξi)
Φ(ξi)

= 0 (3.4)

The expectation maximization (EM) algorithm will be used iteratively to obtain the solutions µ̂ and σ̂ to the max-
imum likelihood equations (3.3) and (3.4). The EM algorithm was proposed by Dempster et. al. (1977) for
calculating the maximum likelihood estimated from censored samples. The procedure consists of alternately es-
timating the censored observations from the current parameter estimates and estimating the parameters from the
actual and estimated observations. The EM algorithm can be used to calculate the maximum likelihood estimates
for the mean µ and standard deviation σ of a normal distribution from both singly- and multiply-censored samples.
A brief description for the EM algorithm is given here.

At step 0 of the EM algorithm all non-censored observations are used to calculate the initial estimates of µ and σ
as follows:

µ̂0 = x̄m =
1
m

2∑
i=1

m∑
j=1

xi j , and σ̂2
0 = s2

m =
1
m

2∑
i=1

mi∑
j=1

(xi j − x̄m)2

Let µ̂s and σ̂s be the maximum likelihood estimates of µ and σ at step s of this procedure. At step s + 1, each
censored observation xi j (where i=1,2; j=1,2,..., mci ) is replaced by an estimate of µ̂s − σ̂sW( xi j−µ̂s

σ̂s
).

Let the values ui j be calculated at step s + 1 as follows:

ui j =


xi j , for non-censored data values

µ̂s − σ̂sW( xi j−µ̂s

σ̂s
) , for censored data values

So the updated estimates µ̂s+1 and σ̂s+1 of µ and σ are given by

µ̂s+1 =

∑2
i=1

∑mi
j=1 ui j +

∑2
i=1

∑mci
j=1 ui j

n
and

σ̂2
s+1 =

∑2
i=1

∑mi
j=1(ui j − µ̂s+1)2 +

∑2
i=1

∑mci
j=1(ui j − µ̂s+1)2∑2

i=1 mi +
∑2

i=1
∑mci

j=1 γ(
xi j−µ̂s

σ̂s
)

where the function γ(t) is defined as:

γ(t) = W(t)(W(t) + t) and W(t) =
ϕ(t)
Φ(t)

More details about the EM algorithm procedure can be found in Wolynetz (1979). Convergence is achieved if both
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|µ̂s − µ̂s+1| < 0.00001 and |σ̂s − σ̂s+1| < 0.00001 occur. When these convergence criteria are met, the maximum
likelihood estimates for µ and σ are then given by µ̂ = µ̂s and σ̂ = σ̂s, respectively.

Case 2: In this case it is assumed that DL1 = DL2 = DL. The likelihood function LH0N (µ, σ) under H0N determined
by the pooled sample of n = n1 + n2 observations of which mc = mc1 + mc2 are left censored and share the same
detection limit DL, is given by:

LH0N
(µ, σ) =

n!
m! mc!

[
Φ(ξ)

]mc

[
1

σ
√

2π

]m

e
1

2σ2
∑m

j=1(x j−µ)2
(3.5)

Hence, the corresponding log-likelihood function of (3.10) is given by:

ℓH0N
(µ, σ) = ln

(
n!

m! mc!
[2π]

− m
2

)
+ mc ln[Φ(ξ)] − m ln(σ) − 1

2σ2

m∑
j=1

(x j − µ)2 (3.6)

The maximum likelihood estimates for µ̂ and σ̂ of µ and σ are the solutions to equations (3.5) and (3.6), the partial
derivatives for the log-likelihood equation with respect to µ and σ:

∂ℓH0N
(µ, σ)

∂µ
= −mc

ϕ(ξ)
Φ(ξ)

+

m∑
j=1

(
x j − µ
σ

) = 0 (3.7)

∂ℓH0N
(µ, σ)

∂σ
=

m∑
j=1

(
x j − µ
σ

)2 − m − mc ξ
ϕ(ξ)
Φ(ξ)

= 0 (3.8)

By solving equations (3.7) and (3.8) for µ and σ lead to the following maximum likelihood estimating equations:

µ = x̄m − λ0 (x̄m − DL ) , (3.9)

σ =

√
s2

m + λ0 (x̄m − DL )2
, (3.10)

and

γ =

[
1 − ( h

1−h ) Z(ξ)
(
( h

1−h ) Z(ξ) − ξ
)]

[
( h

1−h ) Z(ξ) − ξ
]2 , (3.11)

where

λ0 =
( h

1−h ) Z(ξ)

( h
1−h ) Z(ξ) − ξ

, (3.12)

and

γ =
s2

m

[x̄m − DL ]2 .

To obtain the desired maximum likelihood estimates of µ and σ from (3.9)-(3.12), it is necessary to estimate the
auxiliary function λ = λ(ξ, h). To obtain the estimate value λ̂ of λ, it is necessary to solve the rather complex non-
linear estimating equation (3.11) for the estimate ξ̂ of ξ. Because of the difficulty of solving this equation explicitly
for ξ, an iterative method proposed by Aboueissa and Stoline (2004) will be used for obtaining the maximum
likelihood estimates µ̂0 and σ̂0 of µ and σ. Let ξ̂ be the estimate of ξ. Thus the maximum likelihood estimates µ̂0
and σ̂0 of µ and σ are given by:

µ̂0 = x̄m − λ̂0 (x̄m − DL ) , (3.13)

and
σ̂0 =

√
s2

m + λ̂0 (x̄m − DL )2
, (3.14)

where
λ̂0 = λ0(ξ̂, h) .

Alternatively, the EM algorithm estimation procedure presented in case 1 can be used to obtain the maximum
likelihood estimates µ̂ and σ̂ for µ and σ using equations (3.7) and (3.8).
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3.2 Maximum Likelihood Estimates under HA1N

Under the hypothesis HA1N xi j are assumed to be normally distributed with mean µi and standard deviation σi, for
i = 1, 2 and j = 1, 2, ..., ni. Thus the likelihood function under HA1N is given by:

LHA1N
(µ1, µ2, σ1, σ2) =

2∏
i=1

(
ni!

mci ! mi!
[Φ(ξi)]mci [

1

σi
√

2π
]

mi e
− 1

2σ2
i

∑mi
j=1(xi j−µi)2

)
(3.15)

Hence, the corresponding log-likelihood function of (3.15) is given by:

ℓHA1N
(µ1, µ2, σ1, σ2) = ln

 2∏
i=1

ni!
mci ! mi!

[2π]
− mi

2

 − 2∑
i=1

mi ln(σi) +
2∑

i=1

mci ln[Φ(ξi)]

−
2∑

i=1

1
2 σ2

i

mi∑
j=1

(xi j − µi)2

(3.16)

The maximum likelihood estimates for µ̂i and σ̂i of µi and σi are the solutions to equations (3.17) and (3.18) for
i = 1, 2.

∂ℓH1N
(µi, σi)

∂µi
= −mci

ϕ(ξi)
Φ(ξi)

+

mi∑
j=1

(
xi j − µi

σi
) = 0 (3.17)

∂ℓH10N
(µi, σi)

∂σi
=

mi∑
j=1

(
xi j − µi

σi
)2 − mi − mci ξi

ϕ(ξi)
Φ(ξi)

= 0 (3.18)

By solving equations (3.17) and (3.18) for µi and σi lead to the following maximum likelihood estimating equa-
tions:

µi = x̄mi − λi (x̄mi − DLi ) , (3.19)

σi =

√
s2

mi
+ λi (x̄mi − DLi )2

, (3.20)

and

γi =

[
1 − ( hi

1−hi
) Z(ξi)

(
( hi

1−hi
) Z(ξi) − ξi

)]
[
( hi

1−hi
) Z(ξi) − ξi

]2 , (3.21)

where

λi =
( hi

1−hi
) Z(ξi)

( hi
1−hi

) Z(ξi) − ξi
, (3.22)

and

γi =
s2

mi[
x̄mi − DLi

]2 .

for i = 1, 2, where hi =
mci
ni

.

To obtain the desired maximum likelihood estimates of µ1 and σ1 from (3.19)-(3.22), it is necessary to estimate
the auxiliary functions λi(ξi, hi). To obtain the estimate value λ̂i of λi, it is necessary to solve the rather complex
non-linear estimating equation (3.21) for estimates ξ̂i of ξi for i = 1, 2. Because of the difficulty of solving this
equation explicitly for ξi, an iterative method proposed by Aboueissa and Stoline (2004) will be used for obtaining
the maximum likelihood estimates µ̂i and σ̂i of µi and σi, for i = 1, 2. Let ξ̂i be the estimates of ξi for i = 1, 2.
Thus the maximum likelihood estimates µ̂i and σ̂i of µi and σi under the hypothesis HA1N are given by:

µ̂i = x̄mi − λ̂i (x̄mi − DLi ) , (3.23)

and
σ̂i =

√
s2

mi
+ λ̂i (x̄mi − DLi )2

, (3.24)
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where
λ̂i = λi(ξ̂i, hi) .

for i = 1, 2.

Alternatively, the EM algorithm estimation procedure presented above can be used to obtain the maximum like-
lihood estimates µ̂1 and σ̂1 for µ1 and σ1 using equations (3.17) and (3.18) for i = 1. Similarly, the maximum
likelihood estimates µ̂2 and σ̂2 for µ2 and σ2 using equations (3.17) and (3.18) for i = 2.

4. Asymptotic Chi-Square Test

The estimated log-likelihood functions ℓ̂H0N
and ℓ̂HA1N

under the hypotheses H0N (Case 1 and Case 2)and HA1N ,
respectively; are obtained by replacing population parameters by their maximum likelihood estimates. Therefore
from (3.2), (3.6) and (3.16) we get:

ℓ̂H0N
Case 1: DL1 , DL2

ℓ̂H0N
= ℓH0N

(µ̂, σ̂)

= ln

 2∏
i=1

ni!
mci ! mi!

[2π]
− mi

2

 − 2∑
i=1

mi ln(σ̂) +
2∑

i=1

mci ln[Φ(ξ̂i)]

− 1
2

2∑
i=1

mi∑
j=1

(
xi j − µ̂
σ̂

)2 ,

(4.1)

ℓ̂H0N
Case 2: DL1 = DL2 = DL

ℓ̂H0N
= ℓH0N

(µ̂, σ̂)

= ln
(

n!
m! mc!

[2π]
− m

2

)
+ mc ln[Φ(ξ̂)] − m ln(σ̂)

− 1
2

m∑
j=1

(
x j − µ̂
σ̂

)2 ,

(4.2)

and
ℓ̂HA1N

= ℓHA1N
(µ̂1, µ̂2, σ̂1, σ̂2)

= ln

 2∏
i=1

ni!
mci ! mi!

[2π]
− mi

2

 − 2∑
i=1

mi ln(σ̂i) +
2∑

i=1

mci ln[Φ(ξ̂i)]

− 1
2

2∑
i=1

mi∑
j=1

(
xi j − µ̂i

σ̂i
)2

(4.3)

Asymptotic α−level chi-square test will be used to test the equality of the means of two independent log-normal
populations. Asymptotic α−level chi-square test to test the null hypothesis H0LN : µy1 = µy2 versus the alternative
HALN : µy1 , µy2 or equivalently to test the null hypothesis H0N : µ1 = µ2 = µ and σ1 = σ2 = σ versus the
alternative hypotheses HA1N : µ1 , µ2 and σ1 , σ2 is defined by:

χ2
0 = −2(ℓ̂H0N

− ℓ̂HA1N
) > χ2

(α,2) (4.4)

where χ2
(α,2) is the upper α−point for a chi-square random variable with 2 degrees of freedom. The p-value of this

test statistic is defined by:
p − value = P(χ2

(2) > χ
2
0). (4.5)

Thus the null hypothesis that the means of two independent log-normal populations are equal will be rejected if
χ2

0 > χ
2
(α,2) or equivalently if p − value < α.

Computer Programs: To facilitate the application of parameter estimation method described in this article, a
computer program called “Abou.Two.Lognormal.Estimates” is written in the R language to automate parameters
estimation from left-censored data sets that are normally or log-normally distributed and to obtain the estimated
values of the log-likelihood functions under the hypotheses H0N and HA1N . In addition, this computer program will
be used to obtain the asymptotic α−level chi-square test statistic and its p-value. Copy of source code is given in
the Appendix section.
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5. Case Study Example

Millard and Deverel (1988) compared the median copper and zinc trace element concentrations in groundwater
sampled from two geological areas in the San Joaquin Valley, the Basin-Trough Zone and the Alluvial Fan Zone
in California. Data from both sites are given in Table 1.

Table 1. Millard and Deverel copper and zinc data: Groundwater concentrations of copper and zinc at two geolog-
ical zones in the San Joaquin valley, California

< 1 < 1 3 3 5 1 4 4 2 2 1 2 < 5 11
Alluvial Fan < 1 2 2 2 2 < 20 2 2 3 3 < 20 < 10

Zone 7 5 2 2 < 10 7 12 < 1 20 16 < 5 1
n = 65 2 < 5 3 2 8 7 5 < 5 2 < 10 < 5 < 5

copper 2 10 2 4 < 5 2 3 9 < 5 2 2 2 2 1 1
Basin-Trough 2 2 12 2 1 < 10 < 10 4 < 10 < 1 1 < 2

Zone < 2 1 2 < 10 3 < 1 1 1 3 < 5 17 23 9
n = 49 9 3 3 < 15 < 5 4 < 5 < 5 < 5 4 8 1 15

3 3 1 6 3 6 3 4 5 14 4
< 10 9 5 18 < 10 12 10 11 11 19 8

Alluvial Fan < 3 < 10 < 10 10 10 10 10 < 10 10 < 10
Zone 10 < 10 10 < 10 10 10 20 20 < 10 20 20

n = 67 20 < 10 10 20 620 40 50 33 10 20 10 10
zinc 10 30 20 10 20 20 20 < 10 20 23 17 10

< 10 10 20 29 20 < 10 10 < 10 10 7 < 10
Basin-Trough 20 10 60 20 12 8 < 10 14 < 10 17 < 3

Zone 11 5 12 4 3 6 3 15 13 4 20 20 70 60
n = 50 40 30 40 17 10 20 20 5 10 50 30 25 10

< 10 40 20 10 20 20 30 20 30 50 90 20

These data sets contains seven distinct detection limits (LDL : 1 , 2 , 3 , 5 , 10 , 15 , 20) with censoring
level (percentage of non-detected observations) of 22%. Millard and Deverel (1988) give three possible causes
for multiple left-censoring when measuring the concentration of copper and/or zinc in shallow groundwater. First
cause may be decreasing detection limits over time as measurement devices improve. Second, there may be more
than one method available, and each method may be optimal in different ranges of zinc and/or copper concentration.
A third cause involves the amount of dilution that a lab technician may use. In this article it is assumed that
both data sets are singly left-censored, thus to utilize the estimation methods described here, the left-censored
observations within each data set will be set to equal to the average of detection limits. Table 2 contains estimates
of the normal and log-normal population parameters. It is noted that the highest reported concentration of zinc
(620) in the Alluvial Fan Zone seems to be unusual data value since the second highest observed zinc concentration
is (50) in this zone. Two different estimates of the normal and log-normal population parameters for the zinc data
sets are reported. The first estimate includes all data and the second includes all data with the zinc data value

620 removed (ZincW620R). The corresponding estimates of the zinc means µyi = eµi+
σ2

i
2 and medians myi = eµi

are also included in Table 2. The influence of the single large zinc data value 620 can be most clearly seen
by comparing the estimates for σ1 under the hypothesis HA1N . The estimate is σ̂1 = 0.887 with the 620 value
included and σ̂1 = 0.674 with the 620 value removed. The estimates for µ1 with the 620 value included and with
the 620 value removed do not differ appreciably. These estimates for µ1 are µ̂1 = 2.405 and µ̂1 = 2.382 for these
two cases, respectively. The corresponding estimates of the log-normal median zinc concentration in the Alluvial
Fan Zone are m̂y1 = 11.078 with the 620 value included and m̂y1 = 10.827 with the 620 value removed. The
comparable estimates of the log-normal mean zinc concentration are µ̂y1 = 16.418 with the 620 value included and
µ̂y1 = 13.587 with the 620 value removed. In addition, the estimates of the log-normal standard deviation for zinc
concentration in the Alluvial Fan Zone are σ̂y1 = 14.7580 with the 620 value included and σ̂y1 = 10.343 with the
620 value removed. The estimates of the log-normal median are similar, but the estimates of the log-normal mean
and standard deviation are appreciably different, owing to the influence of the single large zinc data value 620.
Table 2 contains the p-value results associated with the application of the recommended asymptotic chi-square test
to the the Millard and Deverel (1988) copper and zinc data presented in Table 1. The Millard and Deverel (1988)
p-value results using the normal scores permutation variance (NS 2P) procedure are also presented in Table 2.
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Table 2. Estimates of normal and log-normal parameter values from the copper and zinc data given in Table 1

Copper Zinc ZincW620R
Hypothesis Alluvial Fan Zone Basin-Trough Zone Alluvial Fan Zone Basin-Trough Zone Alluvial Fan Zone Basin-Trough Zone

Estimations of Normal Parameters
H0N µ̂0 = 1.108 σ̂0 = 0.773 µ̂0 = 2.524 σ̂0 = 0.910 µ̂0 = 2.501 σ̂0 = 0.819

HA1N µ̂1 = 1.077
σ̂1 = 0.717

µ̂2 = 1.144
σ̂2 = 0.842

µ̂1 = 2.405
σ̂1 = 0.887

µ̂2 = 2.683
σ̂2 = 0.918

µ̂1 = 2.382
σ̂1 = 0.674

µ̂2 = 2.683
σ̂2 = 0.918

Estimations of Log-normal Parameters
H0LN µ̂0y = 4.0833 m̂0y = 3.029 σ̂0y = 3.339 µ̂0y = 18.879 m̂0y = 12.478 σ̂0y = 17.324 µ̂0y = 16.929 m̂0y = 12.195 σ̂0y = 14.255

HALN µ̂y1
= 3.796

m̂y1
= 2.936

σ̂y1
= 2.976

µ̂y2
= 4.479

m̂y2
= 3.139

σ̂y2
= 3.869

µ̂y1
= 16.418

m̂y1
= 11.078

σ̂y1
= 14.758

µ̂y2
= 22.295

m̂y2
= 14.629

σ̂y2
= 20.609

µ̂y1
= 13.587

m̂y1
= 10.827

σ̂y1
= 10.343

µ̂y2
= 22.295

m̂y2
= 14.629

σ̂y2
= 20.609

Test The Asymptotic Chi-square Test: χ2
0 (P-value)

H0N vs. HA1N 1.5016 (0.2204) 2.7324 (0.0983) 8.8602 (0.0029)

Test The P-value of the Median equality test, Millard and Deverel (1988)
my1 = my2 0.320 0.020 − − − − −

ZincW620R: Alluvial Fan Zone zinc data set with the data value 620 removed.

Copper Case: The p-value of the asymptotic chi-square test statistic of testing the null hypothesis H0N versus HA1N

or equivalently H0LN versus HALN is 0.2204. Therefore the hypothesis of equal means is accepted for copper at
significance level of α = 0.05. The reported p-value for equality of medians of Millard and Deverel NS 2P is 0.320.

Zinc Case: The p-value of the asymptotic chi-square test statistic of testing the null hypothesis H0N versus HA1N

or equivalently H0LN versus HALN is 0.0983 with the 620 value included. Therefore with the 620 value included
the hypothesis of equal means is accepted for zinc at significance level of α = 0.05. The p-vale of testing the null
hypothesis H0N versus HA1N or equivalently H0LN versus HALN is 0.0029 with the 620 value removed. Therefore
with the 620 value removed the hypothesis of equal means is rejected for zinc at significance level of α = 0.05.
The reported p-value for equality of medians of Millard and Deverel NS 2P is 0.020.

6. Simulation Study

In this simulation study, type I error rates and power of the test procedure introduced in this article are investigated.
A computer program was written in the R language for this purpose. For each combination of the population
parameters µ1 , µ2, σ1 and σ2 described below, two sample size cases were considered: in case one, n1 = n1 = 25
and in the second case, n1 = n2 = 75. The first case will be referred to as the small sample size case and the second
as the large sample size case.Censoring at two different detection limits was used for each case. The simulation
study was performed with 10,000 repetitions (N = 10, 000) of sample normal distributions for each combinations
of n, µ1, µ2, σ1, σ2, and censoring level(s). Censoring levels were set at the 15th and 30th percentiles of the parent
distribution(s). In order to check the Type I error, the population parameters were specified as µ1 = µ2 = 0, and
σ1 = σ2 = 1 as shown in Table 3. In order to check the power, the population parameters were specified as µ1 = 0,
µ2 = 0.1(0.1)1.0, σ1 = 1 , and σ2 = 1.0(0.1)2.0 as shown in Table 4.

Table 3. The Estimated Simulated Type I Error Rates: µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1

Sample Size Censoring Level Estimated α
Small (n = 25) 15% 0.067
Small (n = 25) 30% 0.063
Large (n = 75) 15% 0.054
Large (n = 75) 30% 0.056

The following observations and conclusions are made from an examination of the simulation results reported in
Tables 3 and 4.

From Table 3, one can see that the estimated simulated Type I error rates are slightly higher than 0.06 (0.067, 0.063)
for the small sample size case, and slightly higher than 0.05 (0.054, 0.056) for the large sample size case. The
censoring levels do not seem to affect the value of Type I error rate, α.
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Table 4. The Estimated Simulated Power Rates

Small Sample Size (n = 25) Large Sample Size (n = 75)
(µ1, µ2, σ1, σ2) Censoring Level (15%) Censoring Level (30%) Censoring Level (15%) Censoring Level (30%)

(0, 0.1, 1, 1.1) 0.1893 0.1763 0.2714 0.2657
(0, 0.2, 1, 1.2) 0.3187 0.2748 0.5348 0.5749
(0, 0.3, 1, 1.3) 0.4615 0.4158 0.8357 0.8143
(0, 0.4, 1, 1.4) 0.5834 0.5857 0.9518 0.9435
(0, 0.5, 1, 1.5) 0.7443 0.7246 0.9947 0.9858
(0, 0.6, 1, 1.6) 0.8387 0.8195 0.9994 0.9986
(0, 0.7, 1, 1.7) 0.9035 0.8963 1.0000 1.0000
(0, 0.8, 1, 1.8) 0.9526 0.9375 1.0000 1.0000
(0, 0.9, 1, 1.9) 0.9628 0.9624 1.0000 1.0000
(0, 1.0, 1, 2.0) 0.9893 0.9758 1.0000 1.0000

From Table 4, one can see that the estimated simulated power is higher for large sample size case than the small
sample size case, and slightly higher for the lower level of censoring. Specifically, in the small sample size case
with 15% (30%) censoring level we reach a power of 0.9893 (0.9758) when the difference between µ1 and µ2 is
1.0, and the difference between σ1 and σ2 is 1.0. Alternatively, in the large sample size case with 15% (30%)
censoring we reach a power above 0.99 when the difference between µ1 and µ2 is 0.6, and the difference between
σ1 and σ2 is 0.6; and a power of 1.0 when the difference between µ′s and σ′s is 0.7.

In summary, the test procedure introduced in this article maintains its stated significance level and has much power
with larger sample size and a bit less power with greater censoring levels. In addition, the power decreases when
the censoring level moves from 0.15 to 0.30. Also, the power increases greatly when the sample size moves from
the order of 25 to the order of 75.

7. Conclusions and Remarks

It is well known that the log-normal distribution is widely used in modeling environmental and biomedical censored
data. This article has dealt with the problem of comparing means of two independent log-normal populations in
the presence of singly left-censored data. The EM Algorithm is employed to obtain the maximum likelihood
estimates of population parameters under different hypotheses. A parametric test procedure for testing the equality
of means of two independent log-normal in the presence of censored data with single detection limit is presented.
The performance of the test procedure presented in this article is evaluated by means of simulation studies. A
detailed case study example of the method is provided using copper and zinc data presented in Millard and Deverel
(1998). It is seen in the analysis of the Millard and Deverel (1998) data as shown in the study case example that
large (unusual) data values do influence the estimate of the mean, but do not influence the estimate of the median
in log-normal parametric model analysis. The nonparametric median comparison methods are not as sensitive to
these unusual data values. I hope that my paper would be useful to researchers using the log-normal distribution in
their analysis of the censored data.
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Appendix

Computer Programs

The following computer program, ”Abou.Two.Lognormal.Estimates”, is written in the R language to automate
parameters estimation from left-censored data sets that are normally or log-normally distributed and to obtain the
estimated values of the log-likelihood functions under the hypotheses H0N and HA1N . In addition, this computer
program will be used to obtain the asymptotic α−level chi-square test statistic and its p-value.

Abou.Two.Lognormal.Estimates<-function(data1, data2, NumI, LogN) {
#
# NumI is the number of iterations suggested by users.
# data1 and data2 are matrices containing of two columns each
# the first column is the data set and the second column
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# is indicator 0 for uncensored and 1 for censored observations.
# LogN = T if the data are log-normally distributed

n1<-length(data1[,1])
n2<-length(data2[,1])

table1 <- table(data1[data1[, 2]==1, 1])
DLV1<-as.numeric(dimnames(table1)[[1]])
mcV1<-as.vector(table1)
##print(mcV1)
DL1<-mean(DLV1)
table2 <- table(data2[data2[, 2]==1, 1])
DLV2<-as.numeric(dimnames(table2)[[1]])
mcV2<-as.vector(table2)
DL2<-mean(DLV2)
for(i in 1:n1){
if(data1[i,2]==1) data1[i,1]<-DL1 else data1[i,1]<-data1[i,1]
}
for(i in 1:n2){
if(data2[i,2]==1) data2[i,1]<-DL2 else data2[i,1]<-data2[i,1]
}
if(LogN==T) data1[,1]<-log(data1[,1]) else data1[,1]<-data1[,1]

if(LogN==T) data2[,1]<-log(data2[,1]) else data2[,1]<-data2[,1]
datacomb<-rbind(data1,data2)
n<-length(datacomb[,1])
table <- table(datacomb[datacomb[, 2]==1, 1])
DLV<-as.numeric(dimnames(table)[[1]])
mcV<-as.vector(table)
k<-length(mcV)

################### EM Algorithm ###################
AbouEMmultvect<-function(data, NumI) {

#
# N is the number of iterations suggested by users.
# data is a matrix containing of two columns
# the first column is the data set and the second column
# is indicator 0 for uncensored and 1 for censored obs.
#
n<-length(data[,1])
table <- table(data[data[, 2]==1, 1])
DLV<-as.numeric(dimnames(table)[[1]])
mcV<-as.vector(table)
Xmbar<-tapply(data[,1],list(data[,2]),mean)["0"]
Smsquare<-tapply(data[,1],list(data[,2]),var)["0"]
g<-Smsquare/(Xmbar-(sum(DLV)/2))ˆ2
n<-length(data[,1])
m<-sum(data[,2]==0)
k<-length(DLV)
mc<-numeric(k)

mc<-numeric(k)
u<-numeric(n)

for(r in 1:k) {
for(i in 1:n) {
if(data[i,1]==DLV[r] && data[i,2]==1)
u[i]<-1
else
u[i]<-0
}
mc[r]<-sum(u)
}
mu0.hat<-Xmbar
sig0.hat<-Smsquare

muhat<-numeric(NumI)
sighat<-numeric(NumI)

w<-matrix(0,n,2)
ww<-matrix(0,n,2)
w[,2]<-data[,2]
ww[,2]<-data[,2]

for(i in 1:n) {
if(data[i,2]==1) {
z0<-(data[i,1]-mu0.hat)/sqrt(sig0.hat)
d0<-dnorm(z0)
p0<-pnorm(z0)
wdp0<-d0/p0
w[i,1]<-mu0.hat-(sqrt((sig0.hat))*wdp0)
ww[i,1]<-(wdp0)*(wdp0+z0)

}
else {

w[i,1]<-data[i,1]
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ww[i,1]<-data[i,1]
}
muhat[1]<-mean(w[,1])
num0<-sum((w[,1]-muhat[1])ˆ2)
dnum1<-tapply(ww[,1],list(ww[,2]),sum)["1"]
dnum0<-m+dnum1
sighat[1]<-num0/dnum0
}
for(j in 2:NumI) {
for(i in 1:n) {
if(data[i,2]==1) {
ze<-(data[i,1]-muhat[j-1])/sqrt(sighat[j-1])
de<-dnorm(ze)
pe<-pnorm(ze)
wdpe<-de/pe
w[i,1]<-muhat[j-1]-(sqrt((sighat[j-1]))*wdpe)
ww[i,1]<-(wdpe)*(wdpe+ze)

}
else {
w[i,1]<-data[i,1]
ww[i,1]<-data[i,1]

}
muhat[j]<-mean(w[,1])
nume<-sum((w[,1]-muhat[j])ˆ2)
dnum2<-tapply(ww[,1],list(ww[,2]),sum)["1"]
dnume<-m+dnum2
sighat[j]<-nume/dnume

}
if(abs(muhat[j]-muhat[(j-1)])<1e-007 && abs(sighat[j]
-sighat[(j-1)])<1e-007) break
muhatf<-muhat[j]

sigsqhatf<-sighat[j]
sighatf<-sqrt(sighat[j])

}
musighat<-c(muhatf,sighatf)
musighat

}

EM.EstimatesPooled<-AbouEMmultvect(datacomb,NumI)
EM.Estimates1<-AbouEMmultvect(data1,NumI)
EM.Estimates2<-AbouEMmultvect(data2,NumI)
EM.Estimates<-rbind(EM.EstimatesPooled,EM.Estimates1,EM.Estimates2)
datacombest<-numeric(n)

for(i in 1:n){
if(datacomb[i,2]==1) datacombest[i]<-log(pnorm((datacomb[i,1]
-EM.EstimatesPooled[1])/EM.EstimatesPooled[2]))

else datacombest[i]<-log((1/EM.EstimatesPooled[2])
*dnorm((datacomb[i,1]-EM.EstimatesPooled[1])/EM.EstimatesPooled[2]))
}
Loglikelihood.H0<-sum(datacombest)

data1est1<-numeric(n1)
for(i in 1:n1){
if(data1[i,2]==1) data1est1[i]<-log(pnorm((data1[i,1]
-EM.Estimates1[1])/EM.Estimates1[2]))

else data1est1[i]<-log((1/EM.Estimates1[2])*dnorm((data1[i,1]
-EM.Estimates1[1])/EM.Estimates1[2]))
}
Loglikelihood.HAdata1<-sum(data1est1)

data1est2<-numeric(n2)
for(i in 1:n2){
if(data2[i,2]==1) data1est2[i]<-log(pnorm((data2[i,1]
-EM.Estimates2[1])/EM.Estimates2[2]))

else data1est2[i]<-log((1/EM.Estimates2[2])
*dnorm((data2[i,1]-EM.Estimates2[1])/EM.Estimates2[2]))
}
Loglikelihood.HAdata2<-sum(data1est2)
Loglikelihood.HA<-Loglikelihood.HAdata1+Loglikelihood.HAdata2
chisquare0<- -2*(Loglikelihood.H0 - Loglikelihood.HA)
p.value<- 1 - pchisq(chisquare0 , 1)
Test.Result <- c(chisquare0,p.value)
Test.Output<- rbind(EM.EstimatesPooled,EM.Estimates1
,EM.Estimates2,Test.Result)
Test.Output

As<-matrix(0,4,6)
As[1,1]<-"------"
As[1,2]<-"----------"
As[1,3]<-"----------------"
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As[1,4]<-"----------------"
As[1,5]<-"----------"
As[1,6]<-"-------"
As[2,1]<-round(EM.EstimatesPooled[1], 4)
As[2,2]<-round(EM.EstimatesPooled[2], 4)
As[2,3]<-round(Loglikelihood.H0, 4)
As[2,4]<-round(Loglikelihood.HA ,4)
As[2,5]<-round(chisquare0, 4)
As[2,6]<-round(p.value, 4)
As[3,1]<-round(EM.Estimates1[1], 4)
As[3,2]<-round(EM.Estimates1[2], 4)
As[3,3]<-" "
As[3,4]<-" "
As[3,5]<-" "
As[3,6]<-" "
As[4,1]<-round(EM.Estimates2[1], 4)
As[4,2]<-round(EM.Estimates2[2], 4)
As[4,3]<-" "
As[4,4]<-" "
As[4,5]<-" "
As[4,6]<-" "
dimnames(As)<-list(c( " ", " Poold.Data: ", " Data 1: "
, " Data 2: ") , c("mu.hat","sigma.hate","loglikelihood.H0"
,"loglikelihood.HA", "Chisquare0", "P Value"))
print(As,quote=F)

invisible()
}

ZincALL<-matrix(c(10,9,5,18,10,12,10,11,11,19,8,3,10,10,10,10,10,10,10,10,10
,10,10,10,10,10,10,20,20,10,20,20,20,10,10,20,620,40,50,33
,10,20,10,20,10,30,20,10,20,20,20,10,20,23,17,10,10,10,20
,29,20,10,10,10,10,7,10,1,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0
,0,1,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,1),67,2)

ZincBas<-matrix(c(20,10,60,20,12,8,10,14,10,17,3,11,5,12,4,3,6,3,15,3,4,20,20
,70,60,40,30,40,17,10,20,20,5,10,50,30,25,10,10,40,20,10,20
,20,30,20,30,50,90,20,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
,0),50,2)

Abou.Two.Lognormal.Estimates(ZincALL, ZincBas, 20, T)

> Abou.Two.Lognormal.Estimates(ZincALL, ZincBas, 20, T)

mu.hat sigma.hate loglikelihood.H0 loglikelihood.HA Chisquare0 P Value
------ ---------- ---------------- ---------------- ---------- -------

Poold.Data: 2.5241 0.91 -147.9623 -146.5961 2.7324 0.0983
Data 1: 2.4048 0.8868
Data 2: 2.6825 0.9181
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