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Abstract

In insurance loss reserving, a large portion of zeros are expected at the later development periods of an incremental
loss triangle. Negative losses occur frequently in the incremental loss triangle due to actuarial practices such
as subrogation and salvation. The nature of the distributions assumed by most stochastic models, such as the
lognormal and over-dispersed Poisson distributions, brings restrictions on the zeros and negatives appearing in
the loss triangle. In this paper, we propose a Bayesian mixture model for stochastic reserving under the situation
where there are both zeros and negatives in the incremental loss triangle. A multinomial regression model will
be applied to model the sign of the loss data, while the lognormal distribution is assumed for the loss magnitudes
of negatives and positives. Bayesian generalized linear models will be fitted for both the mixture and magnitude
models. The model will be implemented using the Markov chain Monte Carlo (MCMC) techniques in BUGS. Our
model provides a realistic tool for stochastic reserving in the cases of zeros and negatives.

Keywords: mixture models, Bayesian inference, Markov chain Monte Carlo

1. Introduction

Determining an appropriate amount of loss reserve is very important for the financial stability of an insurance
company. Although the traditional methods such as the chain ladder and Bornhuetter-Ferguson methods are simple
to implement, they do not thoroughly address the stochastic nature of the data. Recent researchers focus more on
the stochastic loss reserving methods, in which the variability and tail values of the distribution of the reserve are
studied.

For stochastic reserving (England and Verrall, 2002), specific distributions such as the lognormal (Kremer, 1982),
over-dispersed Poisson (Renshaw and Verrall, 1998; England, Verrall and Wuthrich, 2012), negative binomial
(Verrall, 2000) and gamma (de Alba and Nieto-Barajas, 2008) are assumed for the loss reserving data. For these
models, classical generalized linear model (Nelder and Wedderburn, 1972) structures can be fitted to the mean or
other parameters of the reserve distribution. The application of the generalized linear structures gives rise to the
stochastic models reproducing the chain ladder reserves. Comparisons of the chain ladder model and the stochastic
models reproducing the chain ladder reserves can be found in papers such as Kremer (1982), Verrall (2000) and
Mack and Venter (2000).

With its capability of incorporating external information (Verrall and England, 2005), Bayesian inference is used
frequently in stochastic reserving. In papers such as Scollnik (2002) and de Alba (2002, 2006), external information
is incorporated into the stochastic reserving model by specifying prior distributions for the parameters. Bayesian
models for the chain ladder and Bornhuetter-Ferguson methods were introduced in Scollnik (2004), Verrall (2004)
and England et al. (2012) respectively. Antonio and Plat (2013) proposed a Bayesian stochastic reserving model
under the individual claim level. Most of the above models can be implemented using the Markov Chain Monte
Carlo (MCMC) simulation method in the Bayesian software package BUGS (Spiegelhalter et al., 2004). Reviews
of the MCMC method, BUGS, and their application in actuarial science can be found in Scollnik (2001). See
Makov et al. (1996) for a more general discussion of Bayesian methods in actuarial science.
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In real data, a large portion of zeros are expected at the later development periods of an incremental loss triangle.
Negative losses occur frequently in the incremental loss triangle due to actuarial practices such as subrogation,
salvation, cancellation of a claim, initial over-estimation of the case reserve, consequences of judicial decisions,
and errors. A large number of zeros and negatives occur in the loss triangle, which may make some of the models
inappropriate or even undefined.

To cope with the problems caused by zero and negative values in stochastic loss reserving, some improved models
have been proposed in the recent literature. An improved Bayesian lognormal model was introduced by de Alba
(2002, 2006) to extend the lognormal model (Kremer, 1982) to situations where there are negative values in the
loss triangle. Kunkler (2004, 2006) proposed a Bayesian binomial model to handle the situation where there are
either zeros or negatives in the loss triangle. None of these models, however, handle the more realistic situation
when there are notable numbers of both zeros and negatives in the loss triangle.

In this paper, we will propose a Bayesian mixture model for handling the situation when there are both zeros and
negatives in the loss reserving data. A multinomial regression model will be applied to model the sign of the loss
data, while the lognormal distribution is assumed for the loss magnitudes of negatives and positives. Bayesian
generalized linear models will be constructed for both the mixture and magnitude models. A chain ladder type
model structure derived from the structure in Zehnwirth (1994) is used for the magnitude of the positive losses.
The model will be implemented using the Markov chain Monte Carlo (MCMC) techniques in BUGS. We will
perform a case study using the adjusted loss triangle from the ‘Historical Loss Development Study’ (1991) by the
Reinsurance Association of America.

The paper is organized as follows. Section 2 presents the mixture model in the context of Bayesian inference. In
Section 3, the model will be implemented in BUGS with a well-studied loss triangle data. Section 4 concludes the
paper.

2. A Bayesian Mixture Model

The earlier models such as de Alba (2002, 2006) and Kunkler (2004, 2006) are all aimed at solving the problem
of loss reserving when either zeros or negatives appear in the loss triangle, but not both together. No model has
been proposed for extending the stochastic reserving models to situations where there are both zeros and negatives
existing in the loss triangle. A Bayesian mixture model will be proposed in this section to extend the conventional
stochastic loss reserving model to a more general situation where there are a considerable number of both zero and
negative values in the loss triangle.

2.1 Model for the Mixture Data

2.1.1 Distribution of Mixture Data

Here, we will use notation consistent with that in Kunkler (2004, 2006). Let yi j denote the incremental losses in the
loss triangle. Based on the sign of the data, the incremental loss triangle can be split into three subsets containing
values of negatives, zeros, and positives, respectively. The three subsets are defined as S (−) = {yi j : yi j < 0},
S (0) = {yi j : yi j = 0} and S (+) = {yi j : yi j > 0}.
Denoting na as the number of accident periods included in the data, a mixture data triangle z = {zi j : i =
1, 2, . . . , na; j = 1, 2, . . . , na − i + 1} can be defined for modelling the sign of the incremental loss triangle where

zi j =


(1, 0, 0)T if yi j < 0
(0, 1, 0)T if yi j = 0
(0, 0, 1)T if yi j > 0

.

The sum of the mixture data for each development year stands for the number of yi j observations that are negative,
zero, or positive from our definition. This can be written as

z j =

z1 j

z2 j

z3 j

 =
na j∑
i=1

zi j =

Number of yi j observations< 0
Number of yi j observations= 0
Number of yi j observations> 0

 .
Denote P(yi j < 0) = λ1 j, P(yi j = 0) = λ2 j, then P(yi j > 0) = 1 − λ1 j − λ2 j as the mixture probabilities. Assuming
conditional independence for losses from different accident years, the sum of the mixture data in each development
year also follows a multinomial distribution with its probability distribution function given by
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p(z j|λ j) =
(

na j

z1 j z2 j z3 j

)
λ

z1 j

1 j λ
z2 j

2 j (1 − λ1 j − λ2 j)
na j−z1 j−z2 j ,

where

λ j =

λ1 j

λ2 j

λ3 j

 =
 λ1 j

λ2 j

1 − λ1 j − λ2 j

 and
(

na j

z1 j z2 j z3 j

)
=

na j !
z1 j! z2 j! z3 j!

.

2.1.2 Generalized Linear Models

In the actual loss triangle, there tends to be more zeros and negatives in the later stage of development years. So we
can assume that the proportion of zeros and negatives depends only on the development year as in Kunkler (2004,
2006). A Bayesian GLM for the multinomial probabilities on the development year j can be applied to model
this structure. Two commonly used link functions for the multinomial distribution are the logistic and probit links
(Dobson, 2002, Chapter 8, Page 135-148). Without loss of generality, only the logistic link is used for our analysis
(i.e., a cumulative logistic regression model is assumed).

With a different factor δld introduced for each development year in the cumulative logistic model, the piecewise
linear relationship (Kunkler, 2004, 2006) gives a flexible structure. This model structure can be written as

log
(
λl j

λ3 j

)
=

j−1∑
d=0

δld, l = 1, 2 .

With the above structure, some of the parameters can be set to zero or assigned equal values based on the size of
the dataset available. As loss triangles are usually summarized by accident and development years, the datasets
used for loss reserving are usually very small. For relatively small datasets, a simple linear regression on j − 1 can
be used as a special case of the above model. That is,

log
(
λl j

λ3 j

)
= δl0 + ( j − 1)δl1, l = 1, 2 . (1)

2.2 Model for the Magnitude Data

2.2.1 Modelling Magnitude Data

To ease the analysis for this section, simplified notations for the distributions of the magnitudes of the positive and
negative data can be introduced as

p(y−| θ1) = p(−yi j|zi j = −1, θ1)
p(y+| θ2) = p(yi j|zi j = 1, θ2) ,

where θ1 = (β1, σ
2
1) and θ2 = (β2, σ

2
2).

As discussed in Section 1, many distributions such as the lognormal (Kremer, 1982; de Alba, 2002, 2006; Kun-
kler, 2004, 2006), over-dispersed Poisson (Renshaw and Verrall, 1998; England et al., 2012), negative binomial
(Verrall, 2000) and gamma (de Alba and Nieto-Barajas, 2008) can be assumed for the loss magnitude data. For
demonstration purposes, lognormal sampling distributions are assumed for the loss magnitude data y− and y+ in
our analysis. That is,

log(y−)|θ1 ∼ N(X1β1, σ
2
1I1)

log(y+)|θ2 ∼ N(X2β2, σ
2
2I2) , (2)

where I1 and I2 are identity matrices of ny+ × ny+ , ny− =
∑na

i=1
∑na−i+1

j=1 I(yi j<0), ny+ =
∑na

i=1
∑na−i+1

j=1 I(yi j>0), β1 is a
kβ1 × 1 parameter vector, β2 is a kβ2 × 1 parameter vector, X1 is a design matrix of dimension ny− × kβ1 , and X2 is a
design matrix of dimension ny+ × kβ2 .
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2.2.2 Generalized Linear Models

Zehnwirth (1994) put forward a flexible regression structure which can be applied to the loss magnitude data of y−
and y+. The model can be written as

(Xβlβl)i j = αli +

j−1∑
d=1

γld +

i+ j−2∑
t=1

ηlt , l = 1, 2 .

The αli parameters are for modelling the effect of accident year, while the γld and ηlt parameters are chosen to catch
the effects of development year and calendar year respectively. Note that the observed data in the loss triangle pro-
vide no information concerning the ηlt parameters for future calendar years. Hence it is impossible to predict for
future losses without making adjustments to the model and/or including prior information.

Setting zeros for all the ηlt parameters gives a structure comparable to that of the chain ladder model. The model
under this structure reduces to

(Xβlβl)i j = αli +

j−1∑
d=1

γld, l = 1, 2 , (3)

where the transformed eγld parameters are analogous to the development ratios in the chain ladder model.

Kunkler (2004, 2006) also introduced a simplified version of this model for relatively small datasets, in which

(Xβlβl)i j = αl + ( j − 1)γl + (i + j − 2)ηl, l = 1, 2 .

There is an obvious limitation for this structure in that the trend may not be linear in either the development year
or calendar year for real data.

When negatives appear in the loss triangle and the size of the data set is relatively small, some smoothing structures
(see e.g., Zehnwirth, 1985) can be introduced in order to avoid possible over parameterization. One of the choices
may be the Hoerl curve (Zehnwirth, 1985) given by

(Xβlβl)i j = cl + ali + bli log( j) + rli j , (4)

which provides a development pattern similar to those of the claim triangles.

A special case of the model in Equation (4) is when bi = b and ri = r for all i, assuming a common runoff pattern
for all accident years. In this case, the model can be written as

(Xβlβl)i j = cl + ali + bl log( j) + rl j .

2.3 Bayesian Inference

2.3.1 Overall Model Structure

In the framework of Bayesian inference, the outstanding liabilities will be estimated based on the posterior predic-
tive distributions of the magnitude and mixture data for future incremental losses. In the analysis of this subsection,
the future incremental data triangle and future mixture data triangle will be denoted as

ỹ = {ỹi j : i = 2, . . . , na; j = na − i + 1, . . . , nd}
z̃ = {z̃i j : i = 2, . . . , na; j = na − i + 1, . . . , nd} ,

where nd denotes the number of development periods in the data.

Denoting ∆ =
(
δ10 δ20
δ11 δ21

)
as the parameters for cumulative logistic regression, the joint posterior distribution for θ

and ∆ can be written as

π(θ,∆|y, z) ∝ π(θ)π(∆) p(y, z|θ,∆) ,
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where the joint sampling distribution for y and z in the above formulas can be obtained p(yi j, zi j|θ,∆) = p(zi j|∆) p(yi j|zi j, θ).

By averaging over zi j, the marginal sampling distribution of yi j gives us a form with which we can focus on the
claim amount of our interest. Similar to Kunkler (2004, 2006), we obtain

p(yi j|θ,∆) =P(zi j = −1|∆) p(yi j|zi j = −1, θ1) + P(zi j = 0|∆) p(yi j|zi j = 0)
+ P(zi j = 1|∆) p(yi j|zi j = 1, θ2)
=λ1 j p(yi j|zi j = −1, θ1) + λ2 j p(yi j|zi j = 0) .
+ (1 − λ1 j − λ2 j) p(yi j|zi j = 1, θ2) .

In the above formula, we can verify that p(yi j|zi j = 0) = I(yi j=0).

To predict future losses, the joint posterior predictive distribution of ỹi j and z̃i j needs to be used with its formula
given by

p(ỹi j, z̃i j|y, z) = p(z̃i j|z) p(ỹi j|z̃i j, y) .

Treating the future mixture triangle z̃ as nuisance parameters, the marginal posterior predictive distribution of the
future incremental triangle ỹ can be obtained as

p(ỹi j|y, z) =λ1 j p(ỹi j|z̃i j = −1, y) + λ2 j p(ỹi j|z̃i j = 0, y)
+ (1 − λ1 j − λ2 j) p(ỹi j|z̃i j = 1, y) .

2.3.2 Posterior Analysis for Mixture Parameters

Under the GLM structure given in Subsection 2.1, the posterior distribution can be obtained for the cumulative
logistic regression parameters ∆. That is

π(∆|z) ∝ π(∆)
nd∏
j=1

p(z j|∆) ,

where π(∆) is the prior distribution for ∆, and p(z j|∆) is the multinomial sampling mixture distribution for z j given
by

p(z j|∆) ∝ λ1(∆)z1 jλ2(∆)z2 j (1 − λ1(∆) − λ2(∆))na j−z1 j−z2 j .

With the logistic link function, the λl parameters can be expressed in terms of ∆ as

λ1(∆) =
exp[δ10 + ( j − 1)δ11]

exp[δ10 + ( j − 1)δ11] + exp[δ20 + ( j − 1)δ21] + 1

λ2(∆) =
exp[δ20 + ( j − 1)δ21]

exp[δ10 + ( j − 1)δ11] + exp[δ20 + ( j − 1)δ21] + 1
.

This part of the model can be implemented using MCMC algorithms such as the Metropolis-Hastings algorithm.

2.3.3 Posterior Analysis for Sampling Distribution

Under the lognormal GLM model formulated in Equation (2), the joint posterior distribution for βl and σl (l = 1, 2)
can factored into

π(β1, σ
2
1|y−) = π(β1|σ2

1, y
−) π(σ2

1|y−)

π(β2, σ
2
2|y+) = π(β2|σ2

2, y
+) π(σ2

2|y+) .

Noninformative uniform prior on (βl, logσl) may be assumed in order to make the normal regression model easier
to implement. Then it is straightforward to verify that

β1|σ2
1, y
− ∼ N

(
β̂1,

(
XT

1 X1

)−1
σ2

1

)
β2|σ2

2, y
+ ∼ N

(
β̂2,

(
XT

2 X2

)−1
σ2

2

)
σ2

1|y− ∼ Inv-χ2(ny− − kβ1 , σ̂
2
1)

σ2
2|y+ ∼ Inv-χ2(ny+ − kβ2 , σ̂

2
2) ,
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where βl and σ2
l (l = 1, 2) can be estimated by

β̂1 =
(
XT

1 X1

)−1
XT

1 log(y−)

β̂2 =
(
XT

2 X2

)−1
XT

2 log(y+)

σ̂2
1 =

1
ny− − kβ1

(
log(y−) − X1β̂1

)T (
log(y−) − X1β̂1

)
σ̂2

2 =
1

ny+ − kβ2

(
log(y+) − X2β̂2

)T (
log(y+) − X2β̂2

)
.

With the above analytical forms of the posterior distributions and posterior predictive distributions for all the
unobserved variables (e.g., the regression coefficients and variance parameters), we will be able to implement our
multinomial mixture model, using MCMC simulation methods such as the Metropolis-Hasting’s algorithm. An
alternative approach is to use a Bayesian software package such as BUGS that implements these algorithms after
we specify the forms of the prior and sampling distributions. Due to its simple implementation, we will use BUGS
to implement our model in the next section.

3. Model Implementation

The use of the specialized Bayesian software BUGS makes it relatively easy to implement our multinomial mixture
model. Bayesian models including GLMs can be implemented in BUGS by specifying the sampling distributions,
prior distributions and the regression functions. Hence, the posterior analysis given in Section 2 for our multinomial
mixture model will not be needed for our model fitting in BUGS.

In this section, our multinomial mixture model will be fitted to the loss triangle adjusted from the original data
at ‘Historical Loss Development Study’ (1991). Particularly for the positive magnitude where we have plenty of
data, a GLM structure different from that in Kunkler (2004, 2006) will be constructed. The model is based on the
three parameter lognormal model, with the interpretation of parameters more comparable to those from the chain
ladder method. A calendar year trend parameter is introduced into this chain ladder type of structure.

The variances of the positive and negative magnitudes will be modelled using the same method as in the ols g()
function in MatLab (LeSage, 1999, page 176). The parameters for the mixture and magnitude models as well as
the reserves will be estimated and compared to those from Kunkler (2006).

3.1 The Data

Since claim data from insurance companies are mostly confidential, it is generally hard to obtain a real dataset for a
specific line of business that may contain zeros and negatives in the loss triangle. The open source datasets, on the
other hand, are usually aggregate data from multiple insurance companies or multiple lines of business, that will
generally not contain zeros or negatives due to the aggregation. For illustrative purposes, the original loss triangle
from the ‘Historical Loss Development Study’ (1991) by the Reinsurance Association of America listed in Table
1 is adjusted so that it contains both values of zeros and negatives. The negative losses in our adjusted loss triangle
are the same as those used by Kunkler (2006).

Table 1. Adjusted Incremental Loss Triangle with Zeros and Negatives.

Development year
Accident year 1 2 3 4 5 6 7 8 9 10

1 5012 3257 2638 -898 1734 2642 1828 599 -54 172
2 -106 4179 -1111 5270 3116 1817 -103 0 535
3 3410 5582 4881 2268 2594 3479 0 603
4 5655 5900 4211 5500 2159 2658 984
5 1092 8473 6271 6333 3786 -225
6 1513 4932 5257 1233 2917
7 -557 3463 6926 1368
8 1351 5596 6165
9 3133 2262
10 2063
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3.2 Model Construction

3.2.1 Modelling Mixture Data

In Section 2, we proposed using the multinomial distribution to model the mixture data, i.e.

zi j ∼ multinomial(λ j, 1) .

From the mixture data we can see that there tends to be more zeros and negatives during the later development
years. Since we have the same negatives as those in Kunkler (2006), for the negative probability λ1 j we will use
the same logit model structure given in Kunkler (2006). The model for the negative probability is given by

log
(
λ1 j

λ3 j

)
= δ10 + ( j − 5) δ11I( j>5), j = 1, 2, . . . , na . (5)

Since the zero values are only observed after the 6th development period, we assume the probability for zeros λ2 j

differs only after the 6th development period. So we may use the following model structure for zeros:

log
(
λ2 j

λ3 j

)
= δ20 + ( j − 6) δ21I( j>6), j = 1, 2, . . . , na . (6)

Similar to Kunkler (2006), we assume the same diffuse priors for the δ parameters. That is,

δli ∼ N(0, 100), l = 2, 3; i = 0, 1 .

3.2.2 Modelling Magnitude Data

We assume the magnitudes of both positives and negatives follow lognormal distributions with different means and
variances. That is,

|yi j| ∼ LN

µ−i j,
σ2

i j

ω−

 if yi j < 0 (7)

|yi j| ∼ LN

µ+i j,
σ2

i j

ω+

 if yi j > 0 . (8)

Here, we use notations slightly different to those in the previous section in order to allow for a more flexible vari-
ance structure, as well revealing more detailed information on the expected loss amount for a specific combination
of accident and development years.

Positive Magnitude

For the magnitude data of positives, we will model the mean of the lognormal distribution with the chain ladder
type structure in Equation (3) with the same calendar trend factor ι from Kunkler (2006). The model structure is
given by

µ+i j = α
+
i +

j−1∑
d=1

γ+d + (i + j − 2)ι . (9)

Diffuse priors of N(0, 1000) are assumed for all of the α, γ and ι parameters in the above model. Since the
loss triangle contains zeros, we are not able to use a common lognormal distribution for the loss triangle. The
magnitudes of the positives and negatives have to be modelled using two lognormal distributions. Two vectors are
used to store the values of i and j for the magnitude data.

Negative Magnitude

For the magnitude data of the negatives, a simplified model structure needs to be used to for relatively small
datasets. Since we assume the same negative losses as in Kunkler (2006), the model in Kunkler (2006) can be used
to model the mean of negative magnitude. The model structure for the negative magnitude is given by

µ−i j = α
−
1 +

[
I( j≤3)( j − 1) + I( j>3)2

]
γ−1 + I( j>3)( j − 3)γ−2 + (i + j − 2)ι . (10)
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Similar to the magnitude model for the positives, diffuse priors of N(0, 1000) are assumed for all of the α, γ and ι
parameters.

Modelling Variance

For the variance parameters σ2
i j in Equations (6) and (7), we will use a model specification similar to that in the

ols g() function in LeSage (1999, page 176). In our simulation, the prior density specification of σ2
i j is defined in

this way:

σ2
i j = sige × vi j

r
vi j
∼ i.i.d.

χ2(r)
r

sige ∼ U(0, 100) , (11)

where we used the fixed value of r = 100 so as to be consistent with Kunkler (2006). For the prior distribution of
sige, we used a diffuse uniform prior U(0, L), with L = 100.

We estimate the parameters ω+ and ω− in Equations (7) and (8) based on the same analysis given in Kunkler (2006,
pages 553-554). The estimates of ω+ and ω− are obtained by running the model using the variance construction in
Equation (11). The estimates are given by ω+ = 1/var(r+) and ω− = 1/var(r−), where r+ and r− are the residual
vectors for the positive and negative log magnitudes. That is,

r+ = log(y+) − ̂log(y+)

r− = log(y−) − ̂log(y−) ,

where ̂log(y+) and ̂log(y−) are the predicted values of log(y+) and log(y−) in the upper loss triangle for the existing
data. The values of ̂log(y+) and ̂log(y−) are calculated from Equations (9) and (10) using the posterior estimates of
the α, γ and ι parameters.

For the variance calculation, we use the n normalized sample variance. That is, for the data x = (x1, x2, . . . , xn) we
let

var(x) =
1
n

n∑
i=1

(x̄ − xi)2 ,

where x̄ is the sample mean given by x̄ = 1
n
∑n

i=1 xi.

Using the data, we obtained the estimated values of ω+ and ω− as ω̂+ = 6.3880 and ω̂− = 5.1547. These values
are used directly for our model implementation in BUGS.

3.3 Estimation and Prediction

3.3.1 Convergence of MCMC Simulation

Three chains with dispersed initial values are used for our simulation. With the uniform distribution U(0, 100)
assumed for the parameter sige, the simulation converges very quickly, i.e. before iteration 1,000. This can be
observed from the history plots of the 3 chains for each parameter or quantity of interest. The three chains mix
very quickly.

The refined potential scale reduction factors R̂c (Brooks and Gelman, 1998) are also monitored in order to diagnose
convergence. In the case of all the parameters and quantities of interest, the corresponding refined potential scale
reduction factor R̂c converged to approximately 1 within about 1,000 iterations. The values of the refined potential
scale reduction factors R̂c are less than 1.01 for all the quantities after 2,000 iterations.

We will use the simulated values from iterations 2,001 to 32,000 from all three chains for our posterior analysis
in the following. A total of 30,000 posterior samples will be used for our posterior analysis of parameters and
reserves.

3.3.2 Mixture Model

For the multinomial mixture model in Subsection 3.2.1, the parameters for the logit models in Equations (5) and
(6) are estimated by posterior simulation. The estimates of the parameters, their standard deviations and percentiles
are listed in Table 2.
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Table 2. Estimates for Multinomial Mixture Model

Parameter mean sd MC error 2.50% median 97.50%
δ10 -2.176 0.503 0.001 -3.249 -2.144 -1.279
δ11 0.261 0.324 0.001 -0.417 0.273 0.867
δ20 -4.201 1.175 0.004 -6.984 -4.038 -2.388
δ21 0.856 0.625 0.003 -0.430 0.865 2.074

From Table 2 we observe that the estimates of the δ1i parameters from the multinomial model have very close
absolute values with those of the δi parameters from the binomial model in Kunkler (2006) except for their signs.
The closeness of the absolute values are due to the fact that we have the same negative values as those in Kunkler
(2006). The difference in the sign is from the factor that the logit function we defined for the negatives is based on
the ratio of negative probability over the positive, while the one in Kunkler (2006) is defined based on the opposite
ratio.

The posterior mean for each future development year of each accident year in the lower part of the loss triangle is
listed in Table 3 and 4 respectively for negatives and zeros. From the posterior mean of the negative probability we
observe that the probability stays the same for the first 5 development years, and increases with development years
from then on. Similarly, we observe that in the first 6 development years, the probability of zero is very small, and
the probability increases significantly with every development year thereafter.

Table 3. Posterior Mean for Probability of Negatives, Multinomial Model

Accident Development year
year 1 2 3 4 5 6 7 8 9 10

1
2 0.236
3 0.236 0.243
4 0.208 0.235 0.243
5 0.169 0.209 0.237 0.244
6 0.130 0.168 0.208 0.238 0.243
7 0.107 0.133 0.169 0.209 0.239 0.245
8 0.109 0.108 0.133 0.169 0.208 0.238 0.244
9 0.109 0.110 0.108 0.134 0.168 0.209 0.238 0.243
10 0.110 0.109 0.106 0.110 0.135 0.171 0.208 0.236 0.245

Table 4. Posterior Mean for Probability of Zeros, Multinomial Model

Accident Development year
year 1 2 3 4 5 6 7 8 9 10

1
2 0.313
3 0.179 0.313
4 0.082 0.180 0.313
5 0.039 0.707 0.181 0.314
6 0.021 0.040 0.708 0.178 0.310
7 0.021 0.021 0.039 0.709 0.179 0.312
8 0.021 0.021 0.021 0.039 0.709 0.180 0.312
9 0.021 0.021 0.022 0.021 0.037 0.708 0.180 0.311
10 0.022 0.021 0.021 0.021 0.021 0.039 0.709 0.179 0.311

From Table 3 and 4, We observe that the probabilities of negatives and zeros increase with development years,
which is consistent to what we observe from the data in Table 1. It is also consistent to the real practice that
subrogations and salvations occur later in the development due to things such as time required for processing and
investigation, and there will be no or little payment after many claims have been closed.
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3.3.3 Magnitude Model

Positive Magnitude

For the lognormal positive magnitude model specified in Equations (9) and (10), we obtained the posterior pre-
dictive estimates of the α+i , γ+d and ι parameters. The estimates of the parameters, their standard deviations and
percentiles are listed in Table 5.

Table 5. Parameter Estimation of Positive Magnitude, Multinomial Model

Parameter mean sd MC error 2.50% median 97.50%
α+1 7.831 0.299 0.003 7.235 7.831 8.416
α+2 7.813 0.390 0.006 7.042 7.813 8.580
α+3 7.635 0.387 0.009 6.872 7.634 8.402
α+4 7.561 0.479 0.013 6.611 7.561 8.516
α+5 7.470 0.595 0.018 6.286 7.471 8.646
α+6 6.848 0.704 0.022 5.455 6.851 8.258
α+7 6.669 0.856 0.026 4.970 6.670 8.375
α+8 6.676 0.953 0.031 4.772 6.679 8.592
α+9 6.335 1.090 0.035 4.167 6.335 8.500
α+10 6.218 1.258 0.039 3.705 6.218 8.725
γ+1 0.434 0.307 0.006 -0.169 0.433 1.045
γ+2 -0.082 0.309 0.005 -0.694 -0.081 0.524
γ+3 -0.702 0.339 0.005 -1.372 -0.701 -0.032
γ+4 -0.319 0.346 0.006 -0.998 -0.319 0.363
γ+5 -0.201 0.379 0.005 -0.949 -0.201 0.551
γ+6 -0.807 0.501 0.006 -1.796 -0.808 0.184
γ+7 -0.910 0.581 0.007 -2.066 -0.909 0.238
γ+8 -0.356 0.757 0.008 -1.852 -0.353 1.132
γ+9 -1.149 0.857 0.007 -2.827 -1.152 0.556

We observe from Table 5 that the both accident year effects (i.e., α+ parameters) decreases with the accident year,
and the development year effects (i.e., γ+ parameters) also decreases as with the payoff of more claims there expect
to be lower payments in the later years. The estimates and MC error are comparable to those from Kunkler (2004,
2006) as we are using very similar data and model structures, despite the difference in dealing with zeros and
negatives all at once.

Negative Magnitude

Similar to the previous subsection, the posterior predictive means for the α− and γ−i parameters in Equation (6) and
(10) can be estimated using the simulated samples from BUGS. The estimates of the parameters, their standard
deviations and percentiles are listed in Table 6. We observe that the estimates for the parameters are very close to
those from Kunkler (2006), as we use the same model and same negative data for our simulation.

Table 6. Parameter Estimation of Negative Magnitude, Multinomial Model

Parameter mean sd MC error 2.50% median 97.50%
α− 4.948 0.614 0.016 3.726 4.948 6.154
γ−1 0.819 0.311 0.003 0.207 0.817 1.438
γ−2 -0.698 0.175 0.004 -1.046 -0.698 -0.352

From the above table, we observe that the estimates and MC errors for the accident year and development year
parameters for our negative model are very close to those from Kunkler (2006), as we have the same negatives
values in the loss triangle and we are using the same model structure. Since the negative values we added are
arbitrarily chosen, the estimates would not possess a meaningful interpretation for real practice.

Common Parameters and Ultimate Losses
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We also estimated the common parameters of the positive and negative magnitudes models, i.e. the calendar trend
factor ι and the τ parameters for the inverse variances (i.e., precisions). The posterior mean, standard deviation
and percentiles of the calendar parameters are listed in Table 7. Note that the parameter for the cumulative logistic
regression model does not have a meaningful interpretation.

Table 7. Parameter Estimation of Calendar Trend Factor, Multinomial Model

Parameter mean sd MC error 2.50% median 97.50%
ι 0.157 0.126 0.004 -0.095 0.156 0.407

The posterior means of the precision parameters are listed in Table 8.

Table 8. Posterior Mean for Precision Parameters, Multinomial Model

Acc Development year
year 1 2 3 4 5 6 7 8 9 10

1 0.572 0.580 0.574 0.578 0.580 0.582 0.577 0.581 0.578 0.578
2 0.576 0.581 0.581 0.577 0.582 0.578 0.581 0.578 0.578 0.579
3 0.581 0.582 0.582 0.580 0.582 0.580 0.579 0.580 0.578 0.579
4 0.575 0.583 0.579 0.577 0.580 0.582 0.577 0.578 0.579 0.579
5 0.556 0.579 0.583 0.576 0.582 0.577 0.578 0.578 0.579 0.579
6 0.581 0.580 0.581 0.573 0.579 0.579 0.579 0.579 0.579 0.578
7 0.577 0.582 0.575 0.576 0.578 0.579 0.578 0.578 0.579 0.579
8 0.574 0.580 0.581 0.579 0.579 0.579 0.578 0.578 0.579 0.578
9 0.576 0.576 0.579 0.578 0.578 0.578 0.579 0.579 0.579 0.579
10 0.578 0.579 0.579 0.579 0.578 0.578 0.579 0.578 0.578 0.578

3.3.4 Reserves

The posterior mean reserve for each accident year and development year in the lower part of the loss triangle is
estimated. The triangle reserve estimates are listed in Table 9.

Table 9. Mean Reserve by Accident & Development Years, Multinomial Model

Accident Development year
year 1 2 3 4 5 6 7 8 9 10

1
2 117
3 428 111
4 608 457 119
5 1585 650 490 127
6 1933 963 387 293 70
7 1990 1916 957 380 287 64
8 2637 2324 2248 1110 440 336 73
9 3637 2098 1913 1846 916 342 261 50
10 4238 3988 2353 2110 2079 1006 371 286 48

The estimated reserve amounts from our model are lower than those from Kunkler (2004, 2006), as we have added
both zeros and negatives in our loss triangle.

The posterior means, standard deviations and percentiles for the total reserve (i.e. over all accident years) and
reserves by accident year are listed in Table 10.
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Table 10. Mean, STD and Percentiles of Reserve Estimates, Multinomial Model

Acc year mean sd MC error 2.50% 5.00% median 95.00% 97.50%
1 0 0 0 0 0 0 0 0
2 117 254 1.0 -75 -52 0 547 754
3 539 848 3.7 -158 -109 332 1878 2498
4 1184 1269 4.9 -265 -160 954 3310 4154
5 2852 2452 10 -309 -10 2410 7086 8656
6 3647 2713 12 -301 268 3225 8350 10130
7 5594 4111 19 -229 705 4944 12710 15290
8 9168 6471 37 -799 1183 8334 20190 24020
9 11060 10590 79 -5618 -1009 10160 26940 32640
10 16480 19860 149 -8143 -1432 13610 45710 57330

Total 50640 26900 261 9887 19400 48420 91340 105500

From the table, we observe that the reserves (i.e., the mean) for our multinomial mixture model are smaller than
those for the binomial model in Kunkler (2006). It is what we would expect to see, as we have two extra zeros
included in the loss triangle we used, while all the other loss data are the same. However, the high quantiles from
our model such as the 95% and 97.5% percentiles are higher (i.e., higher variance in the estimation), due to the
uncertainty introduced by the extra parameters.

4. Concluding Remarks

Papers such as de Alba (2002, 2006) and Kunkler (2004, 2006) have put forward two types of models to deal with
either zeros or negatives in the loss triangle. No model has been introduced for a situation with notable numbers
of both zeros and negative. Inspired by the models of Kunkler (2004, 2006) and other previous work, we proposed
a Bayesian multinomial mixture model for a more general situation when there are both zeros and negatives in the
loss triangle.

The Bayesian multinomial mixture model we proposed in Section 2 seems to work very well in dealing with zeros
and negatives in stochastic loss reserving. From the simulation results in Section 3, we observe that the estimates
of parameters and reserves look reasonable according to the data we are using. With the multinomial mixture
model for modelling the sign of the data, the model is able to deal with situations where there are large portions
of zeros and negatives. The number of zeros or negatives that can be handled is never restricted. The generalized
linear modelling structure gives the flexibility of innovation as well as replicating various existing models, such as
the chain ladder model. With a Bayesian implementation, external information can be incorporated by specifying
specific prior distributions for the parameters or quantities of interest.

The Bayesian mixture model implemented in Section 3 is only an example of the Bayesian mixture models that
can be used for dealing with zeros and negatives in the loss triangle. For different loss triangle data, different
generalized linear models can be fitted for both the mixture and magnitude models. Other link functions such
as the probit and log-log link functions can be used, while a nonlinear regression equation can be fitted for the
multinomial mixture model. Instead of the lognormal model, other models such as the over-dispersed Poisson
model can be chosen for the magnitude models of the negatives and positives.

Another possible application of the Bayesian mixture model in loss reserving is the situation where the losses
are from several notably different distributions (e.g., large losses vs. small losses, losses from different territory,
gender). To better reflect the actual distributions of the different groups, a Bayesian binomial or multinomial
mixture can be applied to model the probabilities of losses from different groups, while different distributions or
models can be fitted for losses from each group.
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