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Abstract

Longitudinal changepoint data naturally arise in many applications. Examples include transition of core body
temperature following the hypothermia therapy and prostate-specific antigen levels following treatment. Note that
the trend change occurs due to a shock (e.g., treatment) to the system. Thus, an individual exhibiting a linear
trend could be an indication of insignificant effects of the shock. One of the goals of this type of study is to
investigate whether the shock is significantly associated in changing the trend of a trajectory. The bent-cable
model characterizes the shock-through data using three phases: (a) an incoming phase characterizing the trend
before the shock comes into effect, (b) a transition due to the shock, and (c) an outgoing phase due to the after-
shock effects. In this article, we develop bent-cable methodology accounting for trajectories exhibiting either a
linear trend or a trend change characterized by gradual or abrupt transition.

Keywords: abrupt transition, Bayesian inference, bent-cable model, changepoint data, gradual transition, linear
trend, longitudinal data, Markov Chain Monte Carlo

1. Introduction

Longitudinal changepoint trajectories with three phases – an incoming phase followed by a transition and an
outgoing phase – are common in many applications including medical, biological and environmental sciences.
Examples include the atmospheric concentrations of chlorofluorocarbons (CFCs) monitored from different stations
all over the globe following the Montrèal Protocol’s ban on CFC products (Khan et al., 2009; 2012), transition of
core body temperature following the hypothermia therapy to prevent brain damage of patients who have survived
a cardiac arrest (Khan et al., 2013; Reynolds & Chiu, 2010), and prostate-specific antigen levels of the prostate
cancer patients following treatment (Bellera et al., 2008). This type of data may be referred to as shock-through
data, as the trend change occurs due to a shock (e.g., treatment) to the system. Note that an individual exhibiting a
linear trend could be an indication of insignificant effects of the shock. Thus, among other related questions, one
of the goals of this type of study is to investigate whether the shock has significant effects in effectively changing
the trend of a trajectory. Therefore, proper characterization of the trajectories is of paramount importance to the
researchers.

To illustrate the changepoint problem discussed above, we reintroduce here the example presented by Khan et al.
(2013) to understand the effects of the hypothermia therapy on core body temperature (Tc). Hypothermia is a
fatal condition which can occur when Tc falls below 35oC. By reducing a patient’s Tc, systematic metabolism,
and therefore tissue oxygen demand, can be lowered. This is believed to attenuate the effects of ischemia and the
subsequent reperfusion at the cellular level (Gordon, 2001; Rincon & Mayer, 2006). Therefore, hypothermia is fre-
quently used by the clinicians as a therapeutic tool for cardiac arrest, stroke and brain injury. In contrast, since Tc is
typically associated with a critical threshold associated with a breakdown in the compensatory homeostatic mech-
anisms following severe hemorrhage (Rincon & Mayer, 2006; Connett et al., 1986), quantification of the transition
of Tc to early hypothermia is of great clinical interest. With this objective in mind, an experiment was conducted
on 38 rats to collect information about the state of hypothermia and resuscitation strategy (Reynolds & Chiu, 2010;
Reynolds et al., 2007). The rats were hemorrhaged from the carotid catheter with a constraint of a mean arterial
pressure threshold of 40 mm Hg. The experiment was continued until the target shed blood volume (60% of the
total blood volume) was achieved. In this process, Tc was logged by automated remote data collection every 15
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seconds for the duration of the trial. Figure 1 shows three Tc profiles. We see that some rats may exhibit a seem-
ingly linear trend (e.g., Figure 1a). In addition to roughly linear incoming and outgoing phases at either end of a
profile, we also see that some rats may exhibit an abrupt transition in Tc (e.g., Figure 1b), while others, a gradual
transition (e.g., Figure 1c). That is, we have samples potentially coming from three different populations, say, L
(linear), A (abrupt) and G (gradual), respectively, according to the type of transition for the underlying Tc trend.

 

T
c 

Time (each one unit increment is 15 seconds) Time (each one unit increment is 15 seconds) Time (each one unit increment is 15 seconds) 

Figure 1. Core body temperature of three rat profiles out of 38, recorded during hemorrhage in a study to collect
information about the state of hypothermia and resuscitation strategy.

The so-called broken-stick is a popular piece-wise linear model, and is a natural candidate to describe a continuous
trend with an abrupt change (Hall et al., 2003; Lange et al., 1992; Kiuchi et al., 1995; Slate & Turnbull, 2000).
Broken-stick models, however, may not be realistic in many applications where the longitudinal trajectories exhibit
gradual changes (e.g., atmospheric concentration of CFCs (Khan et al., 2012)), or simply linear trends. So, it is
desirable to relax the assumption of abruptness beforehand, and to formulate a model that is flexible enough to
handle either type of changes, gradual or abrupt, as well as linear trends over time.

The challenge in longitudinal changepoint methodology lies not only in deriving a model that allows useful infor-
mation about the population of interest, but also in developing method for statistical inference in the absence of
standard regularity conditions (Chiu et al., 2006). In addition, existence of different types of transition (e.g., grad-
ual and abrupt) across the individuals makes it an even more challenging problem to characterize the individual
profiles. This is because it necessitates a flexible formulation of the model and inference technique to identify the
type of transition exhibiting by a particular profile and to estimate the parameters associated with it.

Developed by Chiu et al. (2006) and Chiu & Lockhart (2010), bent-cable is an appealing changepoint model to
characterize shock-through data with greatly interpretable regression coefficients that provide commonly sought
information about a changepoint problem. It models a trajectory using three phases: a linear incoming phase
characterizing the trend before the shock comes into effect, followed by a transition (gradual or abrupt) due to the
shock, and a linear outgoing phase due to the after-shock effects (see Section 2 for details). Because of its ap-
pealing features in terms of flexibility, parsimoniousness and great interpretability, Khan et al. (2013) extended the
bent-cable regression for longitudinal data by taking into account gradual and abrupt transitions as components of a
mixture model; the outcome is the flexible mixture bent-cable methodology for samples that potentially come from
two populations defined by the two types of transition: gradual and abrupt. They developed Bayesian inference
implemented via Markov chain Monte Carlo (MCMC) techniques (Smith & Roberts, 1993). In analyzing the rat
data, Khan et al. (2013) recognized that a few rats may exhibit neither an obviously gradual nor abrupt transition,
but rather a linear decreasing trend. They reported that the rats exhibiting linear decreasing trends throughout were
estimated to have arisen from Population A. Even if a few profiles exhibit linear decreasing trend in Tc, improper
characterization of Population L by A could be misleading to the clinicians in taking appropriate resuscitation
strategy. Therefore, In addition to the identification and characterization of the populations A and G, characteriza-
tion of the profiles which exhibit simply linear trends would be valuable to the clinicians. Another assumption of
Khan et al. (2013)’s longitudinal bent-cable methodology is that the populations share common intercept and slope
parameters to describe the linear incoming and outgoing phases. Because of this assumption, the methodology is
not expected to properly characterize the populations, especially in describing the linear phases. In fact, our pre-
liminary simulation study reveals that serious estimation bias can occur under the assumption of sharing common
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linear parameters when, in reality, those differ across the populations.

In this article, we show that the simple linear regression model is a special case of the bent-cable model. We
then develop our longitudinal bent-cable methodology to simultaneously account for trajectories exhibiting either
a linear trend or a trend change characterized by gradual or abrupt transition. In particular, we take into account

(a) samples potentially coming from three different populations: Populations G, A and L;

(b) population-specific linear parameters to allow proper inference at the population levels; and

(c) hierarchical Wishart priors to model the between-individual covariance structure.

Extensions (a)-(c) to the Khan et al. (2013)’s model constitute our flexible mixture bent-cable model. Note that
Khan et al. (2013) assumed Wishart priors to model the between-individual covariance structure. As pointed out by
Daniels & Kass (1999), our simulation study (Section 4) reveals that Wishart priors can be sensitive to the choices
of the hyperparameters, while implementing (c) with sensible choices of the hyperparameters provides robustness
in estimating the between-individual covariance structure.

The rest of the paper is organized as follows. We describe the formulation of our longitudinal bent-cable model
in Section 2. Technical details of the MCMC algorithm are described in Section 3. In Section 4, we present
extensive simulation studies to demonstrate that (i) the proposed methodology performs well to characterize the
three populations, (ii) the method based on population-specific linear parameters performs quite well even when the
populations share common intercept and slope parameters in reality, and (iii) the Wishart priors can be sensitive
to the choices of the hyperparameters, whereas the hierarchical Wishart priors provide robust estimates of the
covariance matrics under sensible choices of the hyperparameters. We then illustrate our methodology with an
application to the aforementioned rat data (Section 5). We conclude this article with a discussion in Section 6.

2. The Flexible Mixture Bent-Cable Model

Suppose we have m individuals. For the jth individual ( j = 1, 2, . . . ,m), let there be n j measurements, and let t jk

denote the kth measurement occasion, k = 1, 2, . . . , n j. Without loss of generality, we assume that all individuals
enter the study at time t j1 = 0. We model the corresponding response at time t jk, denoted by y jk, by the relationship

y jk = f (t jk, θ j) + ϵ jk (1)

where θ j is the vector of regression coefficients for the jth individual, f (·) is a function of t jk and θ j which charac-
terizes the trend in the response over time, and ϵ jk is the random error component. The formulation of the model is
completed using the bent-cable function (Chiu et al., 2006; Chiu & Lockhart, 2010), defined by

f (t jk, θ j) = β0 j + β1 jt jk + β2 jq(t jk,α j) (2)

where β j = (β0 j, β1 j, β2 j)′, α j = (γ j, τ j)′ and θ j = (β′j,α
′
j)
′. Here, β j is the vector of the linear parameters with β0 j

being the y-intercept in the incoming phase, and β1 j and β1 j + β2 j, the slopes in the incoming and outgoing phases,
respectively. The function q(.) characterizes the transition via two parameters τ j and γ j, and can be expressed as

q(t jk,α j) =


(t jk−τ j+γ j)2

4γ j
1{|t jk − τ j| < γ j} + (t jk − τ j)1{t jk − τ j ≥ γ j} for Population G

(t jk − τ j)1{t jk − τ j ≥ 0} for Population A

t jk for Population L

(3)

where 1(·) is an indicator function. Note that both τ j and γ j are positive for gradual transition, representing the
center and the half-width of the bend, respectively; γ j = 0 reduces the bent-cable function to a piece-wise linear
model for which q(t jk,α j) = (t jk − τ j)1{t jk − τ j ≥ 0}; and τ j = γ j = 0 reduces the bent-cable function to a simple
linear regression model for which q(t jk,α j) = t jk and f (t jk, θ j) = β0 j+(β1 j+β2 j)t jk (see Figure 2). Chiu & Lockhart
(2010) also defined the critical time point (CTP) at which the slope of the bent-cable function changes signs: the
CTP is given by τ j −γ j − 2β1 jγ j/β2 j for gradual transition (Figure 2a), and τ j for abrupt transition (Figure 2c). For
gradual transition, the CTP does not represent anything meaningful when the slope of the bent-cable function does
not change signs, and therefore is not marked in Figure 2b. For abrupt transition, τ j is the time at which the slope
changes signs (Figure 2c) or the slope changes magnitudes but not signs (Figure 2d).
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Figure 2. The bent-cable function. (a) A gradual transition for which τ, γ > 0; the two linear segments (incoming
and outgoing) are joined by a quadratic bend, ranging from τ − γ to τ + γ; the slope changes signs at the critical
time point (CTP), and is marked by the dotted line. (b) A gradual transition for which the slope of the bent cable
does not change signs. (c) An abrupt transition with τ > 0 and γ = 0 yields a piecewise linear trend; the transition
takes place at time τ, which is the CTP for an abrupt transition. (d) An abrupt transition for which the slope of the
bent cable does not change signs. (e) A linear decreasing trend for which τ j = γ j = 0; the slope of the equation is

given by β1 j + β2 j.

Bayesian modeling of longitudinal data involves three levels of hierarchy (Davidian & Giltinan, 1995; Wakefield et al.,
1994): (a) Level 1 that characterizes the longitudinal trajectories using the regression equations (1)-(3), (b) Level 2
that characterizes the between-individual variability via the models assigned to θ j’s, and (c) Level 3 that quantifies
prior information about the random quantities of Levels 1 and 2. Note that the random error components, ϵ jk’s in (1)
account for within-individual variability in the measurements around the regression f (t jk, θ j). We assume at Level
1 that ϵ jk ∼ N(0, σ2

j ). Under this model, the correlation of the repeated measurements from the same individual is
induced by the individual-specific random coefficients θ j’s, and is called the conditionally independent specifica-
tion of the within-individual variation (Laird & Ware, 1982). At Level 2, we assume that an individual potentially
comes from one of three populations: G, A and L. Let each individual has probability pi to have come from Popu-
lation i, where i = 1, 2, 3 refer to G, A , and L, respectively. Under this setting, the individuals form a sample from
a mixture model. We can express the mixture model under a hierarchical structure, using the unobserved data

zi j =

 1, if the jth individual belongs to the ith component of the mixture

0, otherwise

where P(zi j = 1) = pi. Note that the artificial random variables zi j’s are introduced to facilitate implementing the
Gibbs sampling for Bayesian inference (Robert , 1996).

Based on our choices of distributions for the relevant quantities at Levels 1-3, we write the hierarchical model as
follows:

[y j|θ j, σ
2
j ] = Nn j (f(t j, θ j), σ2

jI j) ∀ j = 1, 2, . . . ,m, (4)
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[α j|z j, ξ, η,Ψ, σ
2
η] = [LN2(α j|ξ,Ψ)]z1 j [1(γ j = 0)LN(τ j|η, σ2

η)]
z2 j [δ(α j)]z3 j[

β j|z j,µ1,µ2,µ3,Σ
]
=

3∏
i=1

[
N3(β j|µi,Σ)

]zi j[
z j|p1, p2, p3

]
= Multinomial(z j|1, p1, p2, p3)


, (5)

µi ∼ N3(hi,Hi) for i = 1, 2, 3, ξ ∼ N2(hξ,Hξ), η ∼ N(a0, a1),

Σ−1 ∼ W3
(
ν1, (ν1A1)−1), (A1)ll ∼ U(b0l, b1l) for l = 1, 2, 3,

Ψ−1 ∼ W2
(
ν2, (ν1A2)−1), (A2)ll ∼ U(c0l, c1l) for l = 1, 2,

σ−2
j ∼ G( d0

2 ,
d1
2 ), σ−2

η ∼ G( e0
2 ,

e1
2 ), (p1, p2, p3) ∼ Dirichlet(ω1, ω2, ω3)


, (6)

where y j = (y j1, y j2, . . . , y jn j )
′, t j = (t j1, t j2, . . . , t jn j )

′, f(t j, θ j) = ( f (t j1, θ j), f (t j2, θ j), . . . , f (t jn j , θ j))′ and z j =

(z1 j, z2 j, z3 j)′; µi = (µi0, µi1, µi2)′ and Σ are, respectively, the ith population mean and the common covariance
matrix (shared by all three populations) of β j; ξ = (ξ1, ξ2)′ and Ψ are the mean and covariance of log (α j) (for
Population 1); η and σ2

η are the mean and variance of log (τ j) (for population 2); Nr, LNr, Wr, G and U stand for
r-variate normal, r-variate lognormal, r-dimensional Wishart, gamma and uniform distributions, respectively; and
δ stands for the Dirac delta measure (Previato, 2002), defined as

δ(α j) =

 1, if γ j = τ j = 0

0, otherwise
.

In Equation (6), the vectors h are Gaussian means and matrices H are Gaussian covariances; d0
2 and d1

2 are, respec-
tively, the shape and the rate parameters of the gamma distribution G( d0

2 ,
d1
2 ); and ν and A−1 are, respectively, the

degrees of freedom and the mean of the Wishart distribution Wp(ν, (νA)−1). Note that we prefer the Wishart dis-
tribution in the formulation of our model, because it is the conjugate prior of the inverse of a Gaussian covariance
matrix. We must have ν ≥ r for a proper Wishart distribution, and setting ν = r is common in Bayesian inference
which makes the Wishart prior nearly flat (Wakefield et al., 1994). However, Daniels & Kass (1999) pointed out
that the specification of A can be quite influential; since A−1 is the mean of the Wishart distribution, A should be a
close approximation of the covariance matrix. Our simulation study also reveals that the estimation of the covari-
ance matrix is highly sensitive to the choices of A. In order to overcome this problem, we propose a hierarchical
Wishart prior in (6), where A is a diagonal matrix with each of the diagonal elements modeled using a uniform
distribution.

In our formulation of the model, Levels 1 and 2 are (4) and (5), and Level 3 is (6) with all the hyperparameters
at Level 3 assumed known. Note that µ1 and µ2 characterize the linear parameters for Populations 1 and 2,
respectively. For example, µ11 and µ11 + µ12 are, respectively, the slopes of the incoming and outgoing phases for
Population 1. Our choices of distributions also lead to the fact that (β0 j, β1 j + β2 j)′ for Population 3 has a normal
distribution with mean (µ30, µ31 + µ32)′; therefore, we use µ30 and µ31 + µ32 to characterize the linear trend for
Population 3. Since our assumption for the α j’s involves lognormal distributions, we can use Level 2 medians,
namely exp {ξ1} and exp {ξ2} for Population 1 and exp {η} for Population 2, to describe the transition locations
(Khan et al., 2013).

3. Bayesian Inference

Bayesian inference is made based on the posterior distribution of a parameter; the posterior mean or median can
be considered a point estimate of the parameter, whereas the posterior standard deviation measures the uncertainty
of the parameter a posteriori. The Bayesian analogue of a frequentist confidence interval is usually referred to as a
credible interval. A 100(1 − 2a)% credible interval is (r1, r2), where r1 and r2 are the ath and (1 − a)th quantiles of
the posterior density, respectively.

Statistical inference is carried out by MCMC, where we sample from the posterior distribution by the Metropolis
within Gibbs algorithm (Smith & Roberts, 1993). We denote all the model parameters collectively by Θ, with
Θ(0) being an arbitrary starting point. We generate an instance from the full conditional distributions of each of
the components of the model parameters conditional on the current values of the remaining components. This
completes a transition from Θ(0) to Θ(1). Iterating through this cycle of generating data from the full conditional
distributions gives a Markov chain {Θ(s), s = 1, 2, . . . , T } (Davidian & Giltinan, 1995). Monte Carlo integration
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(Lemieux, 2009) is then applied to the Markov chain for Bayesian inference. For example, the marginal posterior
means of the intercept and the slope parameters for Population 3 can be approximated by

µ̂30 =

T∑
s=S

µ(s)
30

T − S + 1
and ̂µ31 + µ32 =

T∑
s=S

µ(s)
31 + µ

(s)
32

T − S + 1
,

where the initial S − 1 iterations are considered as burn-in samples.

The implementation of the Metropolis within Gibbs algorithm for our flexible mixture bent-cable model is de-
scribed as follows. Let β = (β′1,β

′
2, . . . ,β

′
m)′, α = (α′1,α

′
2, . . . ,α

′
m)′, σ = (σ1, σ2, . . . , σm)′, µ = (µ′1,µ

′
2,µ
′
3)′ and

z = (z′1, z
′
2, . . . , z

′
m)′. Suppose that {Θ(0), z(0)} is an arbitrary starting point, and {Θ(s), z(s)} is its update at iteration s.

Given {Θ(0), z(0)}, our choice of order to update the components leads to the following sequence of drawing samples
from the full conditional distributions π(·|·) (the full conditional distributions are presented in Appendix).

1) For j = 1,

(a)
(
α(s+1)

j , z(s+1)
j
) ∼ π(α j, z j|Θ(s), z(s)

j , y j
)
, where π

(
α j, z j| ·

)
can be expressed up to a proportionality constant;

(b) β(s+1)
j ∼ π(β j|α(s+1)

j , z(s+1)
j , σ(s)

j ,Σ
(s),µ(s), y j), where π(β j|·) is normal;

(c) σ−2(s+1)
j ∼ π(σ−2

j |β
(l+1)
j ,α(l+1)

j , z(l+1)
j , yi

)
, where π

(
σ−2

j | ·
)

is gamma.

2) Repeat step 1 for j = 2, 3, . . . ,m, which lead to β(s+1), α(s+1), z(s+1) and σ(s+1);

3) (A1)(s+1)
ll ∼ π((A1)ll|Σ(s)), where π

(
(A1)ll| ·

)
is gamma truncated to (b0l, b1l).

4) (A2)(s+1)
ll ∼ π((A2)ll|Ψ(s)), where π

(
(A2)ll| ·

)
is gamma truncated to (c0l, c1l).

5) Σ−1(s+1) ∼ π(Σ−1|β(s+1), z(s+1),A(s+1)
1 ,µ(s)), where π

(
Σ−1| · ) is Wishart.

6) Ψ−1(s+1) ∼ π(Ψ−1|α(s+1), z(s+1),A(s+1)
2 , ξ(s)), where π

(
Ψ−1| · ) is Wishart.

7) σ−2(s+1)
η ∼ π(σ−2

η |α(s+1), z(s+1), η(s)), where π
(
σ−2
η | ·
)

is gamma.

8) µ(s+1)
i ∼ π(µi|β(s+1), z(s+1),Σ(s+1)) for i = 1, 2, 3, where π

(
µi| ·
)

is normal.

9) ξ(s+1) ∼ π(ξ|α(s+1), z(s+1),Ψ(s+1)), where π
(
ξ| · ) is normal.

9) η(s+1) ∼ π(η|α(s+1), z(s+1), σ(s+1)
η

)
, where π

(
η| · ) is normal.

10) (p1, p2, p3) ∼ π(p1, p2, p3|z(s+1)), where π(p1, p2, p3|·) is Dirichlet.

The above cycle completes a transition from {Θ(s), z(s)} to {Θ(s+1), z(s+1)}. Iterating through this cycle of generating
data from the full conditional distributions leads to a Markov chain. Note that the full conditional distributions
for all the components except (α j, z j) can be expressed in closed-form expressions, and therefore we employ a
Metropolis step to draw sample for (α j, z j). We have written our own code in C to generate MCMC samples,
which we subsequently analyze using the coda package (Plummer et al., 2012) in R (R Development Core Team,
2014). The interface between C with R is achieved using Rtools (R Development Core Team, 2014).

4. Simulations

We present three scenarios to evaluate the performance of the proposed methodology in analyzing longitudinal
samples coming from three different populations: G, A and L.

• Scenario 1. We generate data using (1a) p1 = 0.40, p2 = 0.40 and p3 = 0.20, (1b) p1 = 0.40, p2 = 0.20
and p3 = 0.40, and (1c) p1 = 0.20, p2 = 0.40 and p3 = 0.40. Note that L is dominated by G and A in
scenario 1a, A is dominated by G and L in scenario 1b, and G is dominated by A and L in scenario 1c. We
then fit the proposed model to the simulated data to investigate the performance of our methodology when
one population is dominated by the other two populations.
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• Scenario 2. Recall that our proposed methodology takes into account population-specific linear parameters
to allow proper inference at the population level; we present scenario 2 to demonstrate that the proposed
methodology performs well even if the populations share common intercept and slope parameters, which is
one of the assumptions of Khan et al. (2013)’s methodology. As of scenario 1, we consider (2a) p1 = 0.40,
p2 = 0.40 and p3 = 0.20, (2b) p1 = 0.40, p2 = 0.20 and p3 = 0.40, and (2c) p1 = 0.20, p2 = 0.40 and
p3 = 0.40

• Scenario 3. We present scenario 3 to illustrate that the Wishart priors can be sensitive to the choices of the
scale matrices A (scenario 3a), whereas the hierarchical Wishart priors lead to robust estimates of the co-
variance matrices under sensible choices of the hyperparameters (scenario 3b). We only consider simulated
p1 = 0.40, p2 = 0.40 and p3 = 0.20 for both scenarios 3a and 3b.

Table 1. Simulation scenario 1a results with simulated p1 = 0.40, p2 = 0.40 and p3 = 0.20, and m = 40: average
of 500 posterior medians, and coverage of 95% credible intervals.

n = n j = 100 n = n j = 24
( j = 1, 2, . . . , 40) ( j = 1, 2, . . . , 40)

Population Parameter True value Mean Coverage Mean Coverage

G

µ10 244.00 243.872 0.944 243.920 0.954
µ11 0.50 0.501 0.968 0.502 0.964
µ12 −0.75 −0.752 0.972 −0.748 0.958
ξ1 1.50 1.499 0.990 1.500 0.970
ξ2 2.50 2.497 0.970 2.496 0.980
(Ψ)11 0.020 0.021 0.976 0.022 0.986
(Ψ)22 0.030 0.033 0.972 0.032 0.966
(Ψ)12 0.005 0.004 0.992 0.005 0.996

A

µ20 230.00 229.947 0.948 230.115 0.958
µ21 1.00 1.001 0.956 1.001 0.950
µ22 −1.25 −1.248 0.978 −1.251 0.972
η 2.00 2.000 0.952 1.999 0.952
σ2
η 0.050 0.054 0.948 0.052 0.958

L µ30 250.00 250.028 0.970 250.103 0.950
µ31 + µ32 −0.25 −0.248 0.966 −0.254 0.958
(Σ)11 125.000 126.067 0.960 128.319 0.966
(Σ)22 0.030 0.031 0.970 0.031 0.964

Common (Σ)33 0.030 0.030 0.980 0.031 0.974
parameters (Σ)12 −1.000 −1.012 0.974 −1.045 0.960

(Σ)13 0.500 0.483 0.962 0.518 0.962
(Σ)23 −0.010 −0.010 0.984 −0.011 0.970

Mixing p1 0.40 0.392 0.938 0.396 0.948
proportion p2 0.40 0.400 0.952 0.393 0.946

p3 0.20 0.208 0.956 0.211 0.948

We investigate the performance of our methodology with fairly vague, minimally informative priors. For multivari-
ate normal, the hyperparameters – mean vector and covariance matrix – are commonly chosen to be a zero vector
and a diagonal matrix, say, H, respectively, such that H−1 ≈ O, where O is a matrix with all its elements zero. We
follow this convention which leads to a flat prior (Davidian & Giltinan, 1995). Similarly, we consider flat prior for
the univariate normal distribution: a0 = 0 and a1 = 105. For the hierarchical Wishart priors in scenarios 1 and 2,
we choose (A1)11 ∼ U(100, 150), (A1)22 ∼ U(0, 10), (A1)33 ∼ U(0, 10), (A2)11 ∼ U(0, 10) and (A2)22 ∼ U(0, 10).
For a gamma prior, small values of the hyperprior parameters lead to a flat prior; we consider d0 = e0 = 0.01
and d1 = e1 = 0.01 in all simulation scenarios. Finally, for the mixture probabilities (p1, p2, p3), we choose the
dirichlet prior Dirichlet(ω1, ω2, ω3) with ω1 = ω2 = ω3 = 1.

In all the scenarios, we take m = 40 and define time by t jk = k − 1 for k = 1, 2, . . . , n j and j = 1, 2, . . . ,m.
Simulations for each scenario are performed using both a large number of repeated measurements (n = n j = 100)
and a moderate number of repeated measurements (n = n j = 24). Model parameter values are chosen to allow
reasonable generalization and are given in Tables 1-4. Note that σ2

j ’s ( j = 1, 2, . . . , 40) were randomly drawn from
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the U(0, 0.01) distribution. For each simulation, 500 data sets were generated, and 100, 000 MCMC iterations
after burn-in were used to approximate posterior distributions per set. Posterior summaries were averaged over the
500 sets for each parameter, and the coverage probability of 95% credible intervals (proportion of such credible
intervals out of 500 that capture the truth) was calculated.

4.1 Results for Scenario 1

Numerical results for scenario 1a are presented in Table 1, with the top three panels depict the results for the
parameters relevant to only Populations G, A and L, respectively, the second last panel presents the results for
the covariance matrix Σ which is shared by all the three populations, and the last panel shows results for the
mixing proportions (p1, p2, p3). We see that our methodology performs well with respect to all the parameters for
both large and moderate number of repeated measurements (i.e., n = n j = 100 and n = n j = 24): averages of
posterior medians are all close to the true parameter values, and coverage probabilities are all reasonably close to
the nominal 0.95. In particular, coverage probabilities range from 0.938 to 0.992 for n = 100 and from 0.946 to
0.996 for n = 24. We observed similar results for scenarios 1b and 1c (numerical results for scenarios 1b and 1c
are not presented in this article).

Table 2. Simulation scenario 2a results with simulated p1 = 0.40, p2 = 0.40 and p3 = 0.20, and m = 40: average
of 500 posterior medians, and coverage of 95% credible intervals.

n = n j = 100 n = n j = 24
( j = 1, 2, . . . , 40) ( j = 1, 2, . . . , 40)

Population Parameter True value Mean Coverage Mean Coverage

G

µ10 244.00 244.020 0.958 244.062 0.938
µ11 0.50 0.499 0.978 0.499 0.964
µ12 −0.75 −0.746 0.940 −0.747 0.970
ξ1 1.50 1.497 0.970 1.497 0.982
ξ2 2.50 2.499 0.974 2.498 0.978
(Ψ)11 0.020 0.022 0.970 0.020 0.978
(Ψ)22 0.030 0.032 0.976 0.032 0.962
(Ψ)12 0.005 0.004 0.982 0.004 0.996

A

µ20 244.00 244.085 0.958 244.098 0.956
µ21 0.50 0.499 0.980 0.499 0.976
µ22 −0.75 −0.750 0.962 −0.751 0.974
η 2.00 2.002 0.956 2.002 0.964
σ2
η 0.050 0.053 0.948 0.053 0.954

L µ30 244.00 243.875 0.944 243.929 0.952
µ31 + µ32 −0.25 −0.251 0.982 −0.256 0.976
(Σ)11 125.000 125.409 0.978 125.528 0.958
(Σ)22 0.030 0.030 0.972 0.031 0.956

Common (Σ)33 0.030 0.031 0.972 0.031 0.966
parameters (Σ)12 −1.000 −1.003 0.960 −1.029 0.952

(Σ)13 0.500 0.515 0.952 0.519 0.978
(Σ)23 −0.010 −0.011 0.982 −0.011 0.978

Mixing p1 0.40 0.392 0.952 0.401 0.960
proportion p2 0.40 0.395 0.958 0.389 0.948

p3 0.20 0.213 0.954 0.210 0.956

4.2 Results for Scenario 2

As mentioned in Section 1, the assumption of the Khan et al. (2013)’s methodology that the populations share
common intercept and slope parameters is restrictive, because the bent-cable methodology under this assumption
cannot properly characterize the populations, especially in describing the linear phases. Our preliminary simulation
study supports this fact: serious estimation bias can occur under this assumption when, in reality, those differ across
the populations. Simulation scenario 2 is introduced to evaluate the performance of our methodology under the
assumption that the linear parameters do not differ across the populations, that is, we analyze the simulated data
using our methodology which are generated assuming that the populations share common intercept and slope
parameters. Numerical results for scenario 2a are summarized in Table 2. We see that our methodology performs
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well with respect to all the parameters for scenario 2a: averages of posterior medians are all close to the true
parameter values, and coverage probabilities are all reasonably close to the nominal 0.95, ranging from 0.940 to
0.982 for n = n j = 100 and 0.938 to 0.996 for n = n j = 24. We observed similar results for scenarios 2b and 2c
(numerical results for scenarios 2b and 2c are not presented in this article).

Table 3. Simulation scenario 3a (Wishart priors) results with simulated p1 = 0.40, p2 = 0.40 and p3 = 0.20, and
n j = 24 for all j and m = 40: average of 500 posterior medians, and coverage of 95% credible intervals.

Wishart prior

Prior11 Prior12 Prior13
A1=diag(125,0.05,0.05) A1=diag(100,0.15,0.15) A1=diag(100,0.25,0.25)
A2=diag(0.05,0.05) A2=diag(0.15,0.15) A2=diag(0.25,0.25)

Population Parameter True value Mean Coverage Mean Coverage Mean Coverage

G

µ10 244.00 243.951 0.964 244.005 0.956 243.898 0.954
µ11 0.50 0.505 0.974 0.499 0.986 0.499 0.998
µ12 −0.75 −0.754 0.966 −0.755 0.988 −0.752 0.994
ξ1 1.50 1.499 0.982 1.501 0.999 1.502 0.999
ξ2 2.50 2.496 0.976 2.500 0.986 2.501 0.994
(Ψ)11 0.020 0.024 0.996 0.040 0.752 0.055 0.052
(Ψ)22 0.030 0.032 0.988 0.043 0.938 0.056 0.718
(Ψ)12 0.005 0.005 0.999 0.006 0.999 0.006 0.999

A

µ20 230.00 230.070 0.968 230.088 0.952 229.924 0.964
µ21 1.00 0.999 0.980 0.999 0.986 1.000 0.996
µ22 −1.25 −1.251 0.962 −1.251 0.984 −1.248 0.999
η 2.00 2.004 0.956 1.997 0.964 1.998 0.952
σ2
η 0.050 0.054 0.946 0.053 0.960 0.052 0.954

L µ30 250.00 250.113 0.944 249.840 0.944 249.983 0.946
µ31 + µ32 −0.25 −0.242 0.974 −0.248 0.990 −0.250 0.996
(Σ)11 125.000 125.968 0.980 123.212 0.962 123.435 0.962
(Σ)22 0.030 0.032 0.990 0.045 0.876 0.049 0.494

Common (Σ)33 0.030 0.032 0.970 0.043 0.892 0.049 0.532
parameters (Σ)12 −1.000 −1.001 0.968 −1.004 0.968 −1.001 0.986

(Σ)13 0.500 0.508 0.980 0.441 0.974 0.506 0.990
(Σ)23 −0.010 −0.011 0.990 −0.010 0.996 −0.013 0.999

Mixing p1 0.40 0.394 0.938 0.397 0.934 0.393 0.946
proportion p2 0.40 0.395 0.950 0.397 0.948 0.399 0.944

p3 0.20 0.211 0.944 0.206 0.966 0.208 0.962

4.3 Results for Scenario 3

First, we present simulation results when the covariance matrices are modeled using the Wishart distributions
(scenario 3a). To make the Wishart priors for Σ−1 and Ψ−1 nearly flat, we choose ν1 = 3 and ν2 = 2. The scale
matrices A1 and A2 are considered diagonals in each simulation. Note that the diagonal elements of true Σ and Ψ
are (125.00, 0.03, 0.03) and (0.02, 0.03), respectively. To investigate the sensitivity of the specification of Wishart
distributions in modeling the covariance matrices, we consider three sets of priors: the diagonal elements of A1
and A2 are all relatively close to those of the true Σ and Ψ, respectively, with the closest one specified as Prior11 :
{A1 = diag(125, 0.05, 0.05),A2 = diag(0.05, 0.05)}, the farthest one as Prior13 : {A1 = diag(100, 0.25, 0.25),A2 =

diag(0.25, 0.25)}, and an intermediate to these two specifications as Prior12 : {A1 = diag(100, 0.15, 0.15),A2 =

diag(0.15, 0.15)}. Numerical results under these three sets of priors for n = n j = 24 are summarized in Table 3.
We see that our methodology with Prior11 performs well with respect to all the parameters: averages of posterior
medians are all close to the true parameter values, and coverage probabilities are all reasonably close to the nominal
0.95. However, as the priors for A1 and A2 deviate slightly from those of Prior11 but still reasonably close to the
truth, under-coverage and large bias result for at least one of the diagonal elements (variance parameters) of Σ and
Ψ. For example, under Prior11 and Prior12, the coverage probabilities for (Ψ)11 are 0.996 and 0.752, respectively;
thus, the coverage under Prior11 is 77% closer (Note 1) to the nominal 0.95 when compared with Prior12. We see
the worst scenario under Prior13: the coverage probabilities for (Ψ)11, (Ψ)22, (Σ)22 and (Σ)33 are 0.052, 0.718, 0.494
and 0.532, respectively, each of which is substantially lower than the nominal 0.95. The above results support the
fact that the bent-cable methodology can be sensitive to the choices of the hyperparameters for the Wishart priors:
the model performs well when A1 and A2 are very close to the truth, whereas slight deviations from the truth
can result in drastically lower coverage probabilities for the variance parameters in Σ and Ψ. Scenario 3a with
n = n j = 100 also leads to the same conclusion (numerical results for n = n j = 100 are not presented in this
article).
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Now, we consider the case when the covariance matrices are modeled using the hierarchical Wishart priors (sce-
nario 3b). We consider three sets of priors as presented in Table 4, with Prior21 is relatively the most informative,
Prior23 is the least informative, and Prior22 is in between Prior22 and Prior23. Numerical results for n = n j = 24
are summarized in Table 4. Under all the three sets of priors, our methodology performs well with respect to all the
parameters: coverage probabilities range from 0.946 to 0.996 for both Prior21 and Prior22, and from 0.948 to 0.998
for Prior23. Averages of the posterior medians are all very close to the true parameter values as well. Scenario 3b
with n = n j = 100 also leads to similar results (numerical results for n = n j = 100 are not presented here).

Table 4. Simulation scenario 3b (hierarchical Wishart) results with simulated p1 = 0.40, p2 = 0.40 and p3 = 0.20,
and n j = 24 for all j and m = 40: average of 500 posterior medians, and coverage of 95% credible intervals.

Hierarchical Wishart prior

Prior21 Prior22 Prior23
(A1)11 ∼ U(100, 150) (A1)11 ∼ U(50, 150) (A1)11 ∼ U(50, 150)

(A1)22 ∼ U(0, 10) (A1)22 ∼ U(0, 20) (A1)22 ∼ U(0, 30)
(A1)33 ∼ U(0, 10) (A1)33 ∼ U(0, 20) (A1)33 ∼ U(0, 30)
(A2)11 ∼ U(0, 10) (A2)11 ∼ U(0, 20) (A2)11 ∼ U(0, 30)
(A2)22 ∼ U(0, 10) (A2)22 ∼ U(0, 20) (A2)22 ∼ U(0, 30)

Population Parameter True value Mean Coverage Mean Coverage Mean Coverage

G

µ10 244.00 243.920 0.954 243.983 0.946 244.176 0.948
µ11 0.50 0.502 0.964 0.502 0.956 0.497 0.962
µ12 −0.75 −0.748 0.958 −0.753 0.972 −0.749 0.966
ξ1 1.50 1.500 0.970 1.501 0.982 1.503 0.970
ξ2 2.50 2.496 0.980 2.501 0.970 2.501 0.972
(Ψ)11 0.020 0.022 0.986 0.022 0.972 0.021 0.980
(Ψ)22 0.030 0.032 0.966 0.033 0.982 0.032 0.982
(Ψ)12 0.005 0.005 0.996 0.004 0.996 0.005 0.998

A

µ20 230.00 230.115 0.958 229.821 0.952 229.992 0.968
µ21 1.00 1.001 0.950 1.002 0.968 1.000 0.972
µ22 −1.25 −1.251 0.972 −1.252 0.970 −1.249 0.964
η 2.00 1.999 0.952 2.003 0.954 2.000 0.968
σ2
η 0.050 0.052 0.958 0.052 0.962 0.056 0.968

L µ30 250.00 250.103 0.950 250.232 0.960 250.209 0.952
µ31 + µ32 −0.25 −0.254 0.958 −0.245 0.974 −0.247 0.972
(Σ)11 125.000 128.319 0.966 122.996 0.960 123.627 0.970
(Σ)22 0.030 0.031 0.964 0.030 0.958 0.030 0.968

Common (Σ)33 0.030 0.031 0.974 0.031 0.976 0.031 0.962
parameters (Σ)12 −1.000 −1.045 0.960 −0.987 0.956 −1.020 0.960

(Σ)13 0.500 0.518 0.962 0.488 0.974 0.495 0.972
(Σ)23 −0.010 −0.011 0.970 −0.011 0.974 −0.011 0.976

Mixing p1 0.40 0.396 0.948 0.396 0.954 0.395 0.950
proportion p2 0.40 0.393 0.946 0.396 0.946 0.398 0.954

p3 0.20 0.211 0.948 0.208 0.966 0.207 0.948

In summary, the proposed methodology based on the Wishart priors for the covariance matrices performs well as
long as A1 and A2 almost accurately approximate the covariance matrices Σ and Ψ, respectively, (e.g., Prior11 in
Table 3). Note that such accurate approximation can rarely be achieved in practical situations. Slight departures of
A1 and A2 from the truth may result in severe under-coverage for the variance parameters in Σ and Ψ. In contrast,
the proposed methodology based on the hierarchical Wishart priors performs well under sensible choices of the
priors for A1 and A2.

Numerical results for the σ2
j ’s are not presented in this article. For each simulation scenario considered in this

study, the average of the posterior medians for each σ2
j were very close to the truth, and the coverage probabilities

were all close to the nominal 0.95.

5. Example: Rat Data Analysis

In Section 1, we introduced an experiment on 38 rats to understand the effects of the hypothermia therapy on
core body temperature, Tc. This dataset was analyzed by Khan et al. (2013) using their longitudinal bent-cable
methodology which accounts for only gradual and abrupt transitions. In this section, we re-analyze this dataset
using our proposed methodology which simultaneously accounts for transitional (gradual and abrupt) as well as
linear trends over time. We also compare the fits of the proposed model with that of Khan et al. (2013)’s using the
deviance information criterion (DIC) (Spiegelhalter et al., 2002).

As in Khan et al. (2013), we define time by t jk, k = 0, 1, . . . , n j where t j1 = 0 refers to the starting point of the
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study for rat j ( j = 1, 2, . . . , 38), and each subsequent time increment is 15 seconds. Since any function h(Θ) of
the parameters has its own posterior distribution, we consider the posterior median of h(Θ) as its estimate. For
example, the CTP for Population G is h(Θ) = exp {ξ2} − exp {ξ1} − 2µ11 exp {ξ1}/µ12, and therefore the posterior
median of {exp {ξ(l)2 } − exp {ξ(l)1 } − 2µ(l)

11 exp {ξ(l)1 }/µ
(l)
12, l = S , S + 1, . . . ,T } is considered as its estimate. Similarly,

the MCMC sample median of f (t jk, θ j) is considered as the fitted value ŷ jk at time t jk for individual j. A fitted
population curve is produced based on the estimates of the theoretical medians for β j and α j from Level 2.

5.1 Results

The DIC for the proposed model and the Khan et al. (2013)’s model fit to the rat data are approximately −16, 739
and −14, 729, respectively, suggesting that our methodology provides substantial improvement in fit, with DIC
considerably less than that reported by Khan et al. (2013).

(a) Rat 34: gradual transition with the slope

of the bent cable function changes signs

13.308

0

(c) Rat 13: gradual transition with the slope of

the bent cable function does not change signs

(d) Rat 33: abrupt transition with the slope of the

bent cable function changes signs

(e) Rat 6: abrupt transition with the slope of the

bent cable function does not change signs (f) Rat 8: linear trend

13.308

(b) Rat 32: gradual transition (missing incoming phase)

with the slope of the bent cable function changes signs

Figure 3. Fits of six representative rat profiles out of 38. The dotted curves indicate the observed profiles.
Superimposed on the plots are the fitted curves/lines along with 95% pointwise credible intervals indicated by the
dashed curves. Rats 34, 32 and 13 are estimated to have arisen from Population G (gradual transition) for which
the transition periods are marked by the solid vertical lines, the centers of the bends by the dashed vertical lines,

and the CTP (for rat 34) by the dot-dashed vertical line. Rats 33 and 6 are estimated to have arisen from
Population A (abrupt transition) for which the changes in slopes occur at the dashed vertical lines. Rat 8 exhibits

simply a linear decreasing trend with estimated slope −0.008 (i.e., β̂1 + β2).

Figure 3 displays the fits of six representative rat profiles along with the posterior medians for the regression
coefficients. Rats 34, 32 and 13 are estimated to have arisen from Population G for which both γ̂ and τ̂ are positive.
Rat 34 exhibits a linear increasing trend in Tc, followed by a gradual transition and a linear decreasing trend
thereafter, whereas rat 13 exhibits linear decreasing trends at either end of the profile, with a continuous transition
between the two phases (i.e., the fitted slope of the bent cable changes only its magnitudes but not signs). In
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total, sixteen rats are characterized by gradual transition of which twelve exhibit sign changes in the fitted slope
of the bent cable function (i.e., an incoming phase with linear increasing trend and an outgoing phase with linear
decreasing trend are joined by a quadratic bend; see rat 34 in Figure 3), and only four show no sign change in
the fitted slope of the bent cable function (e.g., rat 13). Note that rat 32 exhibits a gradual drop in Tc from the
beginning of the study period. The missing incoming phase for this profile suggests that it does not obviously
follow the shape of the bent cable. Our methodology picks up this anomaly adequately – a gradual transition is in
progress for this rat from the beginning of the study period. Note that one of the appealing features of the multilevel
model is that pooling information from many individuals leads to shrinkage towards the population, so that mild
deviations of observed profiles from the bent cable structure do not hinder model fitting (Khan et al., 2013). This
feature leads the estimates of the parameters characterizing a missing phase as in rat 32 to shrink towards their
population counterparts. Rats 33 and 6 exhibit abrupt transition for which γ̂ = 0 and τ̂ > 0. In total, eighteen rats
are characterized by abrupt transition of which sixteen exhibit sign changes in the fitted slope of the bent cable
function (i.e., an incoming phase with linear increasing trend is joined by an outgoing phase with linear decreasing
trend; see rat 33 in Figure 3), and only two exhibit no sign change in the fitted slope of the bent cable function
(e.g., rat 6). Finally, only four rat profiles show linear decreasing trend throughout (e.g., rat 8). Note that about
40%, 50% and 10% of the rats belong to Populations G, A and L, respectively, based on the posterior medians of
p1, p2 and p3 ( p̂1 = 0.40, p̂2 = 0.50 and p̂3 = 0.10; see Table 5). In summary, the fits appear very reasonable as
the observed data agree closely with the respective fitted curves, and the estimated τ and γ demonstrate that our
methodology picks up the three types of trend adequately.

Table 5 summarizes the posterior characteristics of the population quantities, and Figure 4 displays the fitted curves
for Populations G, A and L overlaid with the rat profiles which exhibit gradual and abrupt transitions and linear
decreasing trend, respectively.

Characterization of Population G. Population G is characterized by three phases: (a) a linear incoming phase
with estimated slope 0.005 (posterior median for µ11 is 0.005 with 95% credible interval (0.001, 0.010)), (b) a tran-
sitional phase ranging from 29.732 to 113.503 (posterior medians for exp {ξ2} ± exp {ξ1} are 29.732 and 113.503),
and (c) a linear outgoing phase with estimated slope −0.019 (the posterior median for µ11 + µ12 is −0.019 with
95% credible interval (−0.026,−0.012)). Thus, on average, Tc for Population G rats significantly increases at the
rate of 0.005oC per 15 seconds in the incoming phase, followed by a gradual transition which begins at approxi-
mately 7.433 minutes ((29.732× 15)/60 = 7.433) from the time of hemorrhage and lasts for about 28.376 minutes
((113.503 × 15)/60 = 28.376), and a significant linear decrease at the rate of −0.019oC per 15 seconds in the
outgoing phase. The estimate of the CTP for Population G is 48.017, suggesting that the drop in Tc begins at
approximately 12 minutes after hemorrhage. Note that since a few rat profiles do not obviously follow the shape
of the bent cable because of missing incoming and/or outgoing phases, the estimation of the transition parameters
exp {ξ1}, exp {ξ2} and CTP for Population G involves considerable uncertainty. This phenomenon is reflected in the
credible intervals and standard deviations of the transition parameters: we see wider credible intervals for exp {ξ1},
exp {ξ2} and CTP, as well as for the posterior standard deviations of γ j and τ j.

Characterization of Population A. Population A is characterized by two phases: (a) a linear incoming phase with
estimated slope 0.004 (posterior median for µ21 is 0.004 with 95% credible interval (−0.0002, 0.0085)), and (b) a
linear outgoing phase with estimated slope −0.009 (posterior median for µ22 + µ23 is −0.009 with 95% credible
interval (−0.015,−0.004)). Note that the incoming slope is not statistically significant, as the 95% credible interval
for µ21 includes zero. Since the posterior median for the incoming intercept, µ20, is 37.375, Tc for Population A
rats remains more or less constant at around 37.375oC until approximately 14.11 minutes elapsed (the posterior
median for the Population A CTP is (56.430 × 15)/60 = 14.11 minutes) before a significant drop occurs at the
rate of −0.009oC per 15 seconds. Note that the relatively narrower credible intervals for the CTP of Population A
(i.e., exp {η}) and the standard deviation of τ j indicate less uncertainty in estimating the transition parameter for
Population A.

Characterization of Population L. The posterior median for µ31 + µ32 is −0.005, suggesting that the rate of
decrease in Tc for Population L rats is around −0.005oC per 15 seconds. However, the 95% credible interval
for µ31 + µ32 is (−0.015, 0.006), which includes zero. Thus, the rate of decrease in Tc for Population L is not
statistically significant. Since the the posterior median for the intercept parameter, µ30, is 37.147, Tc for Population
L rats remains approximately constant at around 37.147oC until the end of the study period.
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Table 5. Posterior summaries for the three populations of rats (the time scale is defined by nonnegative integers
with each time increment is 15 seconds).

Posterior 95% credible
Parameter median interval

Population G

Incoming intercept (µ10) 37.490 (37.200, 37.780)
Incoming slope (µ11) 0.005 (0.001, 0.010)
Outgoing slope (µ11 + µ12) −0.019 (−0.026,−0.012)
Half width of the bend (exp {ξ1}) 41.886 (16.542, 67.703)
Center of the bend (exp {ξ2}) 71.618 (40.463, 104.446)
CTP (exp {ξ2} − exp {ξ1} − 2µ11 exp {ξ1}/µ12) 48.017 (6.947, 86.870)
Transition period (exp {ξ2} ± exp {ξ1}) 29.732 to 113.503
S.D. of γ j ({exp {2ξ1 + (Ψ)11} × [exp {(Ψ)11} − 1]}1/2) 65.585 (15.730, 404.003)
S.D. of τ j ({exp {2ξ2 + (Ψ)22} × [exp {(Ψ)22} − 1]}1/2) 67.421 (24.451, 202.086)
Corr. between γ j and τ j −0.203 (−0.560, 0.183)
([exp {(Ψ)12} − 1]/

√
[exp {(Ψ)11} − 1] × [exp {(Ψ)22} − 1])

Population A

Incoming intercept (µ20) 37.375 (37.103, 37.649)
Incoming slope (µ21) 0.004 (0.000, 0.009)
Outgoing slope (µ21 + µ22) −0.009 (−0.015,−0.004)
Critical time point (exp {η}) 56.430 (41.824, 71.484)
S.D. of τ j ({exp {2η + σ2

η} × [exp {σ2
η} − 1]}1/2) 29.367 (13.646, 56.456)

Population L Intercept (µ30) 37.147 (36.622, 37.664)
slope (µ31 + µ32) −0.005 (−0.015, 0.006)
S.D. of β0 j

({(Σ)11}1/2
)

0.541 (0.417, 0.693)
S.D. of β1 j

({(Σ)22}1/2
)

0.008 (0.006, 0.011)
Common S.D. of β2 j

({(Σ)33}1/2
)

0.012 (0.008, 0.015)
parameters S.D. of β1 j + β2 j

({(Σ)22 + (Σ)33 + 2 × (Σ)23}1/2
)

0.011 (0.008, 0.015)
Corr. between β0 j and β1 j

(
(Σ)12/{(Σ)11 × (Σ)22}1/2

) −0.089 (−0.440, 0.261)
Corr. between β0 j and β2 j

(
(Σ)13/{(Σ)11 × (Σ)33}1/2

)
0.241 (−0.11, 0.564)

Corr. between β1 j and β2 j
(
(Σ)23/{(Σ)22 × (Σ)33}1/2

) −0.425 (−0.695,−0.101)
Mixing Probability of coming from Population G (p1) 0.40 (0.245, 0.586)

proportion Probability of coming from Population A (p2) 0.50 (0.279, 0.627)
Probability of coming from Population L (p3) 0.10 (0.037, 0.245)
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Figure 4. Population fitted curves (in bold) along with 95% pointwise credible intervals (gray curves). (a)
Population G fitted curve overlaid with the sixteen rat profiles which exhibit gradual transition. The estimated
transitions ( ̂exp {ξ2} ± exp {ξ1}) are marked by the solid vertical lines, the center of the bend (êxp {ξ2}) by the
dashed line and the CTP by the dot-dashed line. (b) Population A fitted curve overlaid with the eighteen rat

profiles which exhibit abrupt transition; the estimated transition (êxp {η}) is marked by the dashed vertical line. (c)
Population L fitted curve overlaid with the four rat profiles which exhibit decreasing trend.

Our analysis reveals very similar results for Σ as reported by Khan et al. (2013). Small variation in the slope
parameters (the posterior medians for the standard deviations of β1 j and β1 j+β2 j are 0.008 and 0.011, respectively)
suggests that all rats exhibit very similar rates of increase/decrease before/after the transition period. The posterior
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median for the standard deviation of the intercept parameter β0 j is 0.541, suggesting some variation in Tc’s at the
time of administering hemorrhage. Significant negative correlation between β1 j and β2 j ( ̂corr(β1 j, β2 j) = −0.425
with 95% credible interval (−0.695,−0.101)) indicates that the steeper the incoming slope going up, the bigger the
drop in slope for the outgoing phase.

We summarize here a few interesting findings of our analysis.

• If a rat exhibits a significant increase in Tc at the rate of approximately 0.005oC per 15 seconds in the
incoming phase, it is highly likely that it belongs to Population G. On the other hand, a rat exhibiting
approximately a constant trend in Tc in the incoming phase is more likely to have come from Population A
or L. These phenomena are supported by the facts that the incoming slope for Population G is statistically
significant, but the incoming slope for Population A and the slope for Population L are both statistically
insignificant.

• If a rat exhibits approximately a constant trend in Tc in the incoming phase, the Tc will either remain roughly
constant over time (Population L for which the rate of decrease is not significant) or will decrease at a
significant rate of approximately −0.009oC per 15 seconds after around 14.11 minutes from hemorrhage
(Population A for which the rate of decrease after around 14.11 minutes from hemorrhage is significant).

• If a rat exhibits a gradual but nonlinear drop in Tc after hemorrhage (i.e., missing incoming phase), it is more
likely that it belongs to Population G.

• The hypothermia therapy appears to have no significant effects in reducing Tc for about 10% of the rats
which belong to Population L.

6. Conclusion

In many longitudinal studies, an individual may exhibit simply a linear trend over time or may initially exhibit a
linear increasing/decreasing trend, followed by a transition period and then a linear decreasing/increasing trend. As
far as the transition period is concerned, some individuals may exhibit a gradual transition, whereas for others an
abrupt transition. Statistical techniques for this context revolve around broken-stick (piecewise linear) regression,
typically ignoring temporal autocorrelation. Reynolds & Chiu (2010) provided a brief critique of the restrictiveness
of an abrupt transition as imposed by the broken stick, and of the shortcomings of ignoring autocorrelation. They
subsequently attempted to improve the statistical inference by applying the bent-cable time series model (Chiu
& Lockhart, 2010). . This approach is a time-series extension of frequentist bent-cable regression of Chiu et al.
(2006). For both models, asymptotic theory was developed; the focus was to quantify the nature of the transition
between approximately linear phases by modelling the transition as a quadratic phase with unknown, non-negative
width. However, inference is only based on a single observational unit at a time. Moreover, the authors admitted
that the segmented nature of the model leads to poor asymptotic approximation in many practical settings involving
finite samples. This shortcoming partially caused Reynolds & Chiu (2010) to discard various observational units
from their analysis. Khan et al. (2013) extended the single-profile bent-cable model for longitudinal data which
allows the transition of each individual’s underlying temporal trend to be either abrupt or gradual, through inference
for whether the individual belongs to Population A or Population G. Thus, inference for transition type is data
driven rather than pre-assumed, the latter being required by many changepoint analysis methods. A Bayesian
framework was considered for statistical inference, so that the concern about unsatisfactory performance of bent-
cable asymptotics is irrelevant.

In this manuscript, we develop a substantial extension of the Khan et al. (2013)’s bent-cable methodology for
longitudinal data by taking into account samples potentially coming from three different populations: Populations
G, A and L. We have tailored our work for the scientific context of the rat model as described in Section 1 to
understand hypothermia therapy for human populations. Note that abruptness of change modeled by either a
piecewise linear model or a smooth function is unrealistic as discussed in Khan et al. (2013). Instead, it would be
more meaningful to distinguish the three types of trends as being samples from three different populations. The
populations may also differ with respect to the rates of linear changes in the incoming and outgoing phases. As
opposed to the Khan et al. (2013)’s bent-cable methodology, the extended bent-cable methodology presented in this
article by taking into account the population-specific intercept and slope parameters in addition to the three types
of transitions is expected to more appropriately characterize the populations under investigation. Moreover, the
proposed hierarchical Wishart prior is extremely important to achieve robust inference, even when little is reliably
known about the between-individual covariance structure. The performance of our methodology is evaluated
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using extensive simulation study: our simulation study reveals that the proposed methodology performs well to
allow proper inference at the population level by relaxing the assumption of universal abruptness, gradualness or
linearity. Note that there is also penalized spline regression (Ruppert et al., 2003) to flexibly model the shape of
the individual trends, though the flexible mixture bent-cable model is more appealing in the context described in
this paper due to its parsimoniousness and greatly interpretable regression coefficients.

Our methodology provides a general framework to analyze longitudinal data that exhibit either a transitional trend
(gradual or abrupt) between two approximately linear phases or simply a linear trend over time. No previous work
has been done under a general regression modelling framework to classify observational units in the same longitu-
dinal study as exhibiting either an abrupt or gradual transition or simply a linear trend. Such classification provides
not only inference that is more realistic, but also insights into the underlying behaviour within a population. Aside
from crucial information at the population level, another aspect of our longitudinal framework which researchers
would find valuable is the inference for the temporal trend exhibited by individual observational units. Although
our work is motivated by a case study in therapeutic hypothermia, our model can be applied to other longitudinal
data that exhibit similar statistical characteristics as the rat study.

Some caution is required in using our proposed methodology for the following reasons: (1) the proposed methodol-
ogy should be used if there is strong reason to believe that the sample potentially comes from the three populations
mentioned above; Khan et al. (2013)’s bent-cable methodology with extensions (b) and (c) mentioned in Section
1 is the more appropriate technique when the sample potentially comes from populations G and A only, and
Khan et al. (2009)’s bent-cable methodology with extension (c) of Section 1 is the appropriate technique when
all the trajectories exhibit gradual transition, and (2) the proposed methodology is intended for longitudinal time-
series data, and may not be efficient to identify the three types of trends for longitudinal data with a small number
of repeated measures.
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Appendix: Full Conditional Distributions

In this section, we present the full conditional distributions of the parameters. Let

X j =


1 t j1 q(t j1,α j)
1 t j2 q(t j2,α j)
...
...

...

1 t jn j q(t jn j ,α j)


.

Then, the full conditional distributions of the the model parameters can be expressed as follows.

• [β j|·] = N3

(
M j
[
σ−2

j X′jy j + Σ
−1(∑3

i=1 zi jµi
)]
,M j

)
, where M−1

j = σ
−2
j X′jX j + Σ

−1.

• π(α j, z j|·) ∝ exp
{ − 1

2σ2
j
(y j − X′jβ j)′(y j − X′jβ j)

}
×[p1 × LN2(α j|ξ,Ψ) × N3(β j|µ1,Σ)]z1 j

×[p2 × LN(τ j|η, σ2
η) × N3(β j|µ2,Σ)]z2 j

×[p3 × N3(β j|µ3,Σ)]z3 j .

• [σ−2
j |·] = G

( n j+d0

2 ,
(y j−X′jβ j)′(y j−X′jβ j)+d1

2

)
.

• [µi|·] = N3

(
Ui
[
Σ−1λi +H−1

i hi
]
,Ui

)
for i = 1, 2, 3, where U−1

i = miΣ
−1 +H−1

i , mi =
∑m

j=1 zi j and λi =
∑m

j=1 zi jβ j.

• [ξ|·] = N2

(
V
[
Ψ−1ζ +H−1

ξ hξ
]
,V
)
, where V−1 = m1Ψ

−1 +H−1
ξ , m1 =

∑m
j=1 z1 j and ζ =

∑m
j=1 z1 j logα j.

• [η|·] = N
(σ−2
η κ+a−1

1 a0

m2σ
−2
η +a−1

1
, 1

m2σ
−2
η +a−1

1

)
, where κ =

∑m
j=1 z2 j log τ j and m2 =

∑m
j=1 z2 j.

• [Σ−1|·] = W3

(
m + ν1,

[∑3
i=1
∑m

j=1 zi j(β j − µi)(β j − µi)
′ + ν1A1

]−1
)
.

• [Ψ−1|·] = W2

(
m1 + ν2,

[∑m
j=1 z1 j(logα j − ξ)(logα j − ξ)′ + ν2A2

]−1
)
.

• [σ−2
η |·] = G

(
m2+e0

2 ,
∑m

j=1 z2 j(log τ j−η)2+e1

2

)
.

• [(A1)ll|·] = G
(
ν1+2

2 ,
ν1(Σ−1)ll

2

)
1{b0l,b1l}, for l = 1, 2, 3.

• [(A2)ll|·] = G
(
ν2+2

2 ,
ν2(Ψ−1)ll

2

)
1{c0l,c1l}, for l = 1, 2.

• [p1, p2, p3|·] = Dirichlet(m1 + ω1,m2 + ω2,m3 + ω3).
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