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Abstract

A multiple linear regression model which includes 0/1 variables to indicate membership in a group is a convenient
way to model parallel regression surfaces. Building upon this, an extended model which includes predictor vari-
ables that are the product of the indicator and other variables will coincide with separate regressions for each group
using only the other predictors. The algebraic basis for this concurrence is demonstrated. Least squares estimation
is presumed. Examples with two groups and with four groups are presented.
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1. Introduction

Most courses on linear regression include a discussion of using indicator, or dummy, variables to allow for parallel
regression surfaces for different levels of a factor variable. Typical examples may be found in section 4.2.3 of Fox
and Weisberg [2011, pp. 157-169]; section 2.3.1 of Harrell [2001, pp. 14-16]; Chapter 11 of Neter et al. [1996].
As a special case, the linear regression model with a single continuous predictor variable combined with a single
binary indicator variable portrays a model comprising parallel lines. Weisberg [2005, § 6.2.2] and Christensen et
al. [2011, § 7.4] both present a more general treatment within the linear model family.

When a third variable consisting of the product of the indicator with the continuous predictor is included, nonpar-
allel regression surfaces are portrayed. It is not widely appreciated that in this case, the least squares coeffcient
estimates are identical to those obtained by fitting each of the two groups separately. This note explicates that
result.

2. Method

Consider the simple linear regression (SLR) model

Y = Xsβs + ϵ (1)

where both Y and ϵ are n-element vectors; the errors are iid with mean zero; Xs = (X0, X1); and βs =
(
βs0, βs1

)′.
Here, Xs comprises the unit vector X0 and an auxiliary variate vector X1, evidently both of length n.

For this model the least squares estimator of βs is

β̂s =
(
X′sXs

)−1X′sY (2)

Suppose that the n observations are split between two groups, with n1 from Group I while the remaining n2 = n−n1
hail from Group II. Further suppose that we set up an indicator variable to distinguish group membership:

Ii =

1, if the ith observation is a member of Group I;
0, else.

Further suppose the data are arrayed such that X2 = (I1, I2, . . . , In)′ and X3 = (I1x11, I2x12, . . . , Inx1n)′.
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Consider the multiple linear regression (MLR) model

Y = Xmβm + ϵ (3)
Xm =

(
X0, X1, X2, X3

)
βm =

(
βm0, βm1, βm2, βm3

)′
.

The least squares estimator of βm is
β̂m =

(
X′mXm

)−1X′mY (4)

It is commonly known that a regression with only X0, X1 and X2 will portray parallel lines. The vertical distance
between the fitted lines is given by β̂m2.

For the MLR model given by (3), it is less well known that the least squares estimates of the coefficients are
identical to those that obtain when SLR models for each group are fitted separately. The analytical basis for this
assertion is demonstrated in the following section.

3. Nonparallel Regressions

Without loss of generality, assume that the data are arranged so that the first n1 rows are the Group I observations.
Therefore

X2 =
(
1 ′n1
, 0 ′n2

)′ (5)

where 1n1 are the first n1 elements of X0, and 0n2 is an n2-element null vector. Likewise, let

X3 =
(
x11 , x12 , . . . , x1n1 , 0

′
n2

)′ (6)

Evidently, Xs is a submatrix of Xm. Less evident is the relationship between X′sXs and X′mXm:

X′mXm =

(
X′sXs X′sXI

X′I Xs X′I XI

)

=

(
X′sXs X′I XI

X′I XI X′I XI

)
(7)

where

XI =
(
X2 , X3

)
=

(
1 ′n1

, 0 ′n2(
x11 , . . . , x1n1

)′
, 0 ′n2

)′
Define XII = Xs − XI . From results on the inverse of a partitioned matrix, e.g. [Searle, 1966, p. 210], we know that
when

M =
(

A B
C D

)
then

M−1 =

( (
A − BD−1C

)−1 −(A − BD−1C
)−1BD−1

−D−1C
(
A − BD−1C

)−1 D−1 − [−D−1C
(
A − BD−1C

)−1BD−1]) .
In the present context, the partitioned matrix of interest is X′mXm as presented in (7) with

A = X′sXs

B = C = D = X′I XI .

By substitution, we get (
A − BD−1C

)−1
=

(
A − B

)−1
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so that

(
X′mXm

)−1
=

( (
A − B

)−1 −(A − B
)−1

−(A − B
)−1 B−1 +

(
A − B

)−1

)
,

where (
A − B

)−1
=

(
X′sXs − X′I XI

)−1

=
(
X′II XII

)−1

and

B−1 +
(
A − B

)−1
=

(
X′I XI

)−1
+

(
X′II XII

)−1
.

Therefore,

(
X′mXm

)−1
=

( (
X′II XII

)−1 −(X′II XII
)−1

−(X′II XII
)−1 (

X′I XI
)−1
+

(
X′II XII

)−1

)
.

Also,

X′mY =
(
X0, X1, X2, X3

)′Y
=

(
X′sY
X′IY

)
.

Therefore,

β̂m =
(
X′mXm

)−1X′mY

=

( (
X′II XII

)−1(X′s − X′I
)
Y

−(X′II XII
)−1X′sY +

[(
X′I XI

)−1
+

(
X′II XII

)−1]X′IY
)

=

( (
X′II XII

)−1X′IIY
−(X′II XII

)−1X′IIY +
(
X′I XI

)−1X′IY

)

=

(
β̂II

β̂I − β̂II

)
(8)

where β̂I and β̂II are the coefficient estimators for the SLR fitted separately to the data from Group I and Group II,
respectively.

In other words, β̂m0 and β̂m1 in (4) coincide with the intercept and slope estimates of βs that one would obtain from
the Group II data alone, whereas β̂m2 and β̂m3 are the difference between the estimates derived from the Group I
data alone and those obtained from using Group II data alone.

The fitted values corresponding to an observation in Group I, say observation i = 1, is

Ŷ1 = β̂m0 + β̂m1x11 + β̂m2x21 + β̂m3x31

= β̂m0 + β̂m1x11 + β̂m2 + β̂m3x11 ( because x31 ≡ x11)

= β̂II0 + β̂II1x11 +
(̂
βI0 − β̂II0

)
+

(̂
βI1 − β̂II1

)
x11

= β̂I0 + β̂I1x11.
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Likewise, the fitted value corresponding to an observation in Group II, say observation i = n, is

Ŷ1 = β̂m0 + β̂m1x1n + β̂m2x2n + β̂m3x3n

= β̂m0 + β̂m1x11 ( because x2n = x3n = 0)

= β̂II0 + β̂II1x1n.

In the next section we exemplify these results using data presented by Robinson [2000] on k = 2 groups of rats
subjected to a diet treatment. Identical results hold when there are more than two groups, as shown by our second
example where group membership in one of k = 4 species groups is indicated.

4. Example 1

We present results from fitting separate, parallel, and nonparallel regressions to weight data on two groups of rats,
one of which was subjected to a dietary treatment. The treated group included n1 = 14 rats, while the control group
included n2 = 12 rats. The response variable of interest, Y , is the final weight of the rats, with implicit interest in
whether the diet treatment successfully lowered final weight. Data were initially presented by Robinson [2000].

All models were fitted with packages and functions available in the R computing environment [R Core Team,
2012], particularly the gls function of the nlme package [Pinheiro et al., 2009].

Figure 1a displays a joint fit of these data using a simple linear regression with initial weight as the lone predictor.
Even a cursory examination of this display reveals the inadequacy of the fitted model to capture the effectiveness
of the treatment to lower final weight: an examination of the scatterplot itself strongly suggests that the treatment
successfully lowered final weight on average. The joint SLR has failed to capture the noticeable effect of treatment,
as might be expected a priori.

Figure 1b displays the separate SLR fits of these data. Clearly the effect of treatment is more adequately depicted.
Yet it comes at the expense of reduced samples size, n1 or n2 for each group, rather than n for both together.

When the effect of initial weight on final weight is expected to be invariant to treatment, then a model for parallel
regressions may be preferred. In the present context, such a model is given by

Y = β0 + β1X1 + β2X2 + ϵ (9)

where Y is final weight, X1 is initial weight, and X2 is the vector of indicator values, with X2i = 1 indicating that
the ith rat is from the treated group (Group I). The fitted regressions are shown in Figure 1c. An advantage to
fitting parallel regressions is that the full size of the sample is preserved for the fitting of the model. Another is
that it allows for a common estimate of residual error for both groups, which may not only be apt but an important
consideration for modeling.

Lastly we fitted model (3) to allow for differing intercepts and slopes yet avoiding the need to subset the data into
separate groups for purposes of fitting the model. The graphical display of the fitted model is identical to that
shown in Figure 1b.

Parameter estimates and the AIC summary measure of the adequacy of the fit of these competing models are
displayed in Table 1. (The default REML method of estimation in the gls() function of the nlme package in R
was used throughout). As demonstrated in the previous section, β̂0 and β̂1 for the jointly fitted, nonparallel model
are identical to β̂0 and β̂1 for the control group (Group II) fitted separately. Moreover, β̂2 = −57.2 coincides with
β̂0 = 14.9 for the treated group fitted separately less β̂0 = 72.1 for the control group fitted separately. Likewise,
β̂3 = 0.173 coincides with β̂1 = 0.700 for the treated group fitted separately less β̂1 = 0.527 for the control group
fitted separately.

I often refer to β̂2 as an “offset” to the intercept for the omitted group’s regression, i.e., the “omitted group”
(Christensen et al. [2011] uses the term reference category) denotes that group which was not assigned an indicator
unit value. Similarly, β̂3 can be regarded as an offset to the slope of the omitted group’s regression. In the context
of the present example, the offsets are a measure of treatment effect.

Despite the appeal of a common estimate of residual error for both groups, the data may suggest that it is not
apt. The magnitude of difference in σ̂ between control and treated groups belies the presumption of a common
error variance. Therefore we refitted both the parallel and non-parallel models to permit an estimate of the error
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Figure 1. Depiction of the effect of diet treatment on rats; data from Robinson [2000]. a) joint SLR on all n = 26
observations; b) separate SLRs for treatment group (solid) and control group (dashed); c) parallel regressions for
the two groups.

Table 1. Summary measures of model adequacy and parameter estimates for models fitted to the rat diet treatment
data

Model AIC σ̂ β̂0 β̂1 β̂2 β̂3

Joint 193 9.1 45.5 0.605
Treated (Group I) only 95 6.2 14.9 0.700
Control (Group II) only 88 8.3 72.1 0.527
Parallel1 179 7.3 47.4 0.620 -10.9
Parallel2 180 40.8 0.644 -10.9
Non-parallel1 182 7.2 72.1 0.527 -57.2 0.173
Non-parallel2 183 72.1 0.527 -57.2 0.173
1 Common error variance for both groups.
2 Separate error variance for each group.
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Figure 2. Simple linear regression (SLR) of foliar biomass on the predictor (basal area × height) of the tree bole. In
all four panels, the solid line shows the joint SLR on all n = 1013 observations of foliar biomass; in each separate
panel, the superimposed dashed line shows the individual SLR for the species. The estimated coefficients for the
individual SLRs are superimposed, also

variance separately for each group. 1 As may be surmised from the results displayed in Table 1, the latter model
provides results, not merely coefficient estimates, that are identical in all respects to fitting models separately to
both groups’ data.

5. Example 5

The data for this example comprise 1013 measurements of foliar biomass among three coniferous and one de-
ciduous species of forest trees. Foliar biomass of trees is modeled well by a simple linear regression using the
cylindrical volume (the product of cross-sectional, aka basal, area and the height) of the tree’s bole as the predictor,
X1. Figure 2 displays these data separately by species. The joint SLR fitted to all 1013 observations appears as the
solid line in each panel, whereas the individual fit for each species alone appears as the superimposed dashed line.
Summary statistics of these five fitted models appear in the uppermost five rows in Table 2.

We set up X2, X3, and X4 as indicator variables for the three coniferous species (balsam fir, black spruce, and white
spruce), respectively, and fitted parallel SLRs jointly, with the results as shown in Figure 3, and tabulated in Table 2.
Judging by the lower AIC value for the parallel regressions model, it is superior to the joint SLR model fitted to

1In R we used the gls() function with weights as specified by the varIdent() variance function.
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Figure 3. In each panel, the superimposed dashed line shows the individual but parallel SLR for the species. The
estimated coefficients for the parallel SLRs are superimposed, also

all four species. Yet the much smaller error variance for the white birch model argued against the credibility of a
common error variance in the model for parallel regression. When refitting the parallel regressions model to allow
for distinct error variances for each species, the AIC showed a marked improvement — 6610 versus 6702.

By setting up X5, X6, and X7 as the product of X1 and each of the three indicator variables, we fitted a non-
parallel regressions model, both with common and separate error variances. The coefficient estimates for both
were identical. These results appear in the lowest two lines of Table 2. Because white birch constituted the omitted
group in the indicator variable coding scheme, β̂0 and β̂1 are identical to the coefficient estimates for white birch
fitted alone. In contrast, β̂0 + β̂2 yields a value of 2.73, which is the intercept estimate for the balsam fir regression
fitted separately. Likewise, β̂1 + β̂5 evaluates to 30.9, which coincides with the estimated slope of the balsam fir
regression. In a similar fashion the coefficient estimates for white and black spruce may be recovered from the
estimates for the non-parallel regressions model.

In Figure 2 and 3, there is a strong suggestion of increasing error variance with increasing tree size. For all the
models summarized in Table 2 we re-fitted with analogous models that specified that V[ϵ] = σ2D2δ, where D is
the measured diameter of the tree bole. REML estimates of both σ and δ were obtained2, which are shown in
Table 3. In this specification, δ is the parameter that models the heteroscedasticity, whereas σ has units of measure

2We used the gls() function with weights as specified by the varPower() variance function to estimate δ.
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Table 2. Summary measures of model adequacy and parameter estimates for models fitted to the foliar biomass
data

Model AIC σ̂ β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7

Joint 6839 7.1 2.84 28.3
White birch 1510 3.9 1.16 19.1
Balsam fir (I) 1903 7.1 2.73 30.9
Black spruce (II) 1970 6.5 3.42 29.1
White spruce (III) 1138 8.0 4.64 38.5
Parallel1 6702 6.6 -1.00 28.5 4.40 4.56 7.65
Parallel2 6610 -0.18 24.9 4.59 4.53 7.55
Non-parallel1 6634 6.4 1.16 19.1 1.57 2.26 3.48 11.8 10.0 19.4
Non-parallel2 6521 1.16 19.1 1.57 2.26 3.48 11.8 10.0 19.4
1 Common error variance for all species
2 Separate error variance for each species

Table 3. Summary measures of model adequacy and parameter estimates for heterogeneous error variance models
fitted to foliar biomass data.

Model AIC δ̂ σ̂ β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7

Joint 5988 1.22 0.22 1.37 32.1
White birch 1190 1.53 0.05 0.49 21.6
Balsam fir (I) 1685 1.42 0.13 1.12 35.0
Black spruce(II) 1764 1.16 0.25 2.08 32.8
White spruce (III) 987 1.20 0.28 1.97 47.3
Parallel1 5876 1.29 0.18 0.35 32.3 0.92 1.68 1.76
Parallel2 5717 0.38 30.2 0.86 1.80 1.87
Non-parallel1 5781 1.26 0.19 0.58 20.6 0.66 1.45 1.32 13.6 12.4 27.1
Non-parallel2 5626 0.49 21.6 0.63 1.58 1.47 13.4 11.3 25.7
1 Common δ and σ parameters for all species
2 Separate δ and σ parameters for each species

kg/m3 and acts as a scaling factor for the error variance. As is partly evident from the last line of results displayed
in Table 3, not only the coefficient estimates but all other results (e.g. AIC, δ, σ) from fitting the non-parallel
regression again coincide with fitting the models separately.

6. Discussion

The equivalence of the non-parallel regression models which incorporate indicator variables to the set of separate
regression models for each group is evident in the results displayed long ago in Gujarati [1970]. Inasmuch as the
emphasis in that article was on testing sets of coefficients, the equivalence went unremarked and unnoticed. The
present note was prompted by a realization that this equivalence is not generally appreciated by instructors or their
students.

The equivalence is retained even when modeling variance heterogeneity with a parametric function, as we did with
the biomass data. This is an issue that is quite apart from the matter of whether the error variance is parameterized
commonly for all groups, or separately for each, or a subset of each, group. Indeed, for the equivalence to hold,
both variance parameters must be modeled separately by group.
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