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Abstract

This article proposes and explores a robust approach to identifying differential circulating miRNAs in the plasma
of patients with breast cancer. The proposed approach, developed in the framework of the M-estimation, is used to
provide protection against potential outliers in miRNA expression data. As the study involves multiple comparisons
with a large number of circulating miRNAs, robust multiple tests are adopted at a given level of false discovery
rate (FDR). Also, due to the uncertainties in the underlying distributions of the miRNA expression data sets, the
p-values of the multiple tests are approximated using a permutation method. The empirical properties of the
proposed robust tests are studied in simulations. An application is provided using miRNA expression data from a
breast cancer study.
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1. Introduction

MicroRNAs (miRNAs) are short non-coding segments of RNA that are thought to regulate gene expression through
sequence-specific base-pairing with target mRNAs (Lee and Ambros, 2001). The miRNA platform is different
from the traditional mRNA gene expression array platform in that the mRNA arrays measure gene expression
from specific genes while the miRNA array measures expression of specific miRNAs which represent signaling
from many genes. Most miRNAs are not specific to any single gene, but rather a group of genes. Thousands of
miRNAs have been identified in many different organisms to date using genetics, molecular cloning and predictions
from bioinformatics (Ambros, 2003). The molecular classification of human tumors based on mRNA microarray
profiling is an area of intense genetic research (e.g., Blenkiron et al., 2007; Iorio and Croce, 2009; van Schooneveld
et al., 2012; Volinia and Croce, 2013). A number of classifiers have been developed for human breast tumors in
recent years, including the use of miRNA expression data as prognostic tools.

In cancer studies, miRNAs have been found to be deregulated in tissue specific patterns which uniquely classify
each type of tumor studied to date (Calin and Croce, 2006). A group of miRNAs are known to be deregulated in
breast cancer (Calin and Croce, 2006; Iorio et al., 2005), with specific miRNAs correlated to breast cancer subtype,
prognosis, and treatment resistance (Qian et al., 2009). Further, functional studies have shown the mechanisms
through which these miRNAs are closely involved in tumor biology of the breast (Kong et al., 2010). In the
circulation, miRNAs have been detected at unexpectedly high levels and found to be the most stable nucleic acid
in peripheral blood. This important discovery has prompted researchers to investigate circulating miRNAs as a
novel biomarker for minimally invasive early cancer detection (Iorio and Croce, 2009).

This research was motivated by a recent breast cancer study of patients with breast cancer and healthy mammogra-
phy - screened controls at the University Hospitals Case Medical Center (UHCMC) (Leidner et al., 2013). Details
of the study design are given Section 5. Breast cancer is one of the leading causes of cancer deaths among women.
High false positive rates from mammography often lead to unnecessary biopsies each year, which in turn increases
health care costs as well as anxieties associated with screening processes. Expression profiling of circulating
miRNAs in blood of breast cancer patients is currently being investigated for the development of a test for breast
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cancer screening. Such tools would be useful for developing blood-based alternative tests for cancer screening
and/or diagnosis. In this case-control study, a genome-wide miRNA dataset collected during 2009–2010 contained
expression levels of miRNAs in the circulation of 20 breast cancer patients and 20 healthy controls using an
Illumina miRNA microarray with the expression of 1145 miRNAs. The goal of the study was to identify a unique
set of deregulated (differentially expressed) miRNAs that would be associated with having breast cancer.

Statistical analysis of the aforementioned miRNA expression data involves multiple testing with a large number
of miRNAs. The problem is to develop valid statistical tests, which can control false discovery rates (Benjamini
and Hochberg, 1995; Storey, 2002), and are also potentially more powerful than other naive tests performed under
strong distributional assumptions. The use of false discovery rates has received increased popularity in recent years
due to multiple hypothesis testing in high-dimensional genomics data analysis (Storey and Tibshirani, 2003). For
example, in the the miRNA experiment, microarrays measure the expression levels of thousands of genes from a
single biological sample. Microarrays can be applied to samples collected from two biological conditions, such as
patient versus healthy control. A goal of the study is to identify miRNAs that are differentially expressed between
two biological conditions, which involves performing a hypothesis test on each miRNA. False discovery rates are
widely used to deal with false positives that wrongly identify differentially expressed miRNAs.

Multiple hypothesis tests based on the classical least squares estimators of location parameters are generally sen-
sitive to potential outliers in the data. The goal of this paper is to develop a robust approach which can bound the
influence of outliers in the data when estimating the model parameters. In particular, the miRNA data exhibit a
special feature of outliers in the expression levels. The standard approach to analyzing the data based on the least
squares estimators has been found to be influenced by the outliers. In this note, we investigate a robust approach
to analyzing the data. This robust approach is developed in the framework of the Huber’s M-estimation (Huber,
1964, 1981) of location and scale parameters.

Finally, to approximate the p-values of the tests associated with the multiple comparisons, the permutation method
is commonly used (e.g., Fitzmaurice, Lipsitz, and Ibrahim, 2007). Permutation tests are useful when there is
insufficient information about the distribution of the outcome variable, or if the distribution of the test statistic
cannot be easily computed. We adopt the permutation method to approximate the p-values of the robust multiple
tests as considered here.

The paper is organized as follows. Section 2 introduces the model and notation for the robust estimation. Section
3 describes the computation of permutation p-values and false discovery rates used in multiple testing. Section 4
studies empirical properties of the proposed tests based on simulations. Section 5 presents an application of the
proposed method using the miRNA expression data introduced earlier. Section 6 concludes the paper with some
discussion.

2. Robust Estimation

Let yis represent the expression level on the miRNA s obtained from subject i (s = 1, . . . , S ; i = 1, . . . ,N) and xi

represent a binary covariate that is defined to be 1 if the subject is diagnosed with cancer, and 0, if not. To study
the effect of this group indicator on the expression level, consider a simple linear model in the form

yis = β0s + β1sxi + ϵis, s = 1, . . . , S , (1)

where the random error term ϵis is assumed to have mean 0 and variance σ2
s . To determine whether miRNA s

is differentially expressed in the patient and control groups, we can set the null hypothesis as H0 : β1s = 0.
Under standard assumptions including normality, one can consider an ordinary t-test, t = β̂∗1s/s.e.(β̂∗1s), based on
the least squares estimator β̂∗1s and its standard error, s.e.(β̂∗1s), where an asymptotic p-value of the test can be
used to estimate the false discovery rate. But as indicated earlier, the ordinary least squares estimator is generally
sensitive to potential outliers in the the data. To bound the influence of such outliers, here we adopt a robust
M-estimation technique based on Huber’s “Proposal 2” (Huber, 1981) for simultaneous estimation of location and
scale parameters.

To describe the robust method, model (1) can be reexpressed (suppressing suffix s for the miRNA) in the form

yi = xt
iβ + ϵi, (2)

where xi = (1, xi)t and β = (β0, β1)t. The M-estimator β̂ of β may be obtained by solving the equations
N∑

i=1

ψc

yi − xt
iβ̂

σ̂

 xi = 0, (3)
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where ψc is the Huber’s psi function, ψc(r) = max{−c,min(r, c)}, with a tuning constant c. A common choice of c
is 1.345, which ensures a certain level efficiency of the M-estimator for the “true” underlying distribution.

The scale estimator σ̂ of σ is obtained by solving the equation under Proposal 2:

N∑
i=1

ψ2
c

yi − xt
iβ̂

σ̂

 − k

 = 0, (4)

where k is a tuning constant chosen as k = E
(
ψ2

c

)
, which ensures an unbiased estimating equation for σ̂. Equations

(3) and (4) are solved simultaneously using an iterative method for the M-estimators β̂ and σ̂.

The variance of the robust estimator β̂ may be approximated by a sandwich-type variance-covariance matrix,

V =M−1QM−1, (5)

where

M =
N∑

i=1

ψ′c

yi − xt
iβ̂

σ̂

 xixt
i,

and

Q =
N∑

i=1

ψ2
c

yi − xt
iβ̂

σ̂

 xixt
i,

with ψ′c(r) being the derivative of ψc(r) with respect to r.

Note that as an alternative to the scale estimator σ̂ under Proposal 2, we may also consider a computationally
simpler robust estimator, σ̃ = mediani|yi − xt

iβ̃|/0.6745, where β̃ is obtained by solving (3) with β̂ and σ̂ being
replaced by β̃ and σ̃, respectively. Between the two scale estimators, σ̃, also referred to as the adjusted median
absolute deviation (MAD), is generally less efficient than σ̂, although σ̃ is considered to be more robust with a
higher breakdown point. We study both scale estimators and investigate their relative performance in multiple
testing.

3. Multiple Testing

3.1 False Discovery Rate

As for the miRNA experiment, we are to conduct multiple hypothesis tests simultaneously for many miRNAs.
In particular, we are to test the null hypotheses, H0 : β1s = 0, simultaneously for all miRNAs, s = 1, . . . , S . A
common problem with such multiple testing is that the chances of obtaining a positive result can be high even if all
the null hypotheses are true. A popular approach to the multiple testing problem is to control the false discovery
rate (FDR) (Benjamani and Hochberg, 1995). The FDR is defined by the expected proportion of false positives
among all rejected hypotheses. Let V denote the number of false positive results (type I errors) and R denote the
total number of rejected hypotheses. Then the FDR is defined by

FDR = E
[ V
R ∨ 1

]
, (6)

where R ∨ 1 = max(R, 1).

Let ps denote the p-value of the hypothesis test, H0 : β1s = 0, for miRNA s (s = 1, . . . , S ). Also, let FDR(u)
denote the FDR when rejecting the null hypotheses with ps ≤ u for u ∈ [0, 1]. Then in terms of empirical values
of V and R, the FDR can be defined as

FDR(u) = E
[

V(u)
R(u) ∨ 1

]
, (7)

where V(u) is the number of null hypotheses with ps ≤ u (type I errors) and R(u) is the total number of hypotheses
with ps ≤ u, s = 1, . . . , S .

An estimator of FDR(u), proposed by Storey (2002), is defined by

F̂DRδ(u) =
π̂0(δ)u

{R(u) ∨ 1}/S , (8)
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where π̂0(δ) is an estimator of the proportion of true null hypotheses, π0 ≡ S 0/S , with S 0 being the number of true
null hypothesis. The estimator π̂0(δ) is defined by

π̂0(δ) =
W(δ)

(1 − δ)S , (9)

where W(δ) = S −R(δ) and δ ∈ (0, 1). A common choice of δ is 0.5. Details about the computation of the empirical
FDRs are given later.

3.2 Permutation Test

Permutation tests are commonly used in genomics. These are useful when there is insufficient information about
the distribution of the outcome variable, or if the distribution of the test statistic cannot be easily computed. In the
case of the miRNA expression data, to compute the p-value of the hypothesis test, H0 : β1s = 0 (s = 1, . . . , S ), it
is sensible to relax the normality assumption, as this may not be a valid assumption for all the miRNA data sets
considered in the study. Therefore, instead of finding the p-values of the tests analytically under the normality as-
sumption, we approximate the p-values by using the permutation method which does not require any distributional
assumption. The algorithm for finding approximate permutation p-values is described below.

1. Consider the expression data from miRNA s. Set s = 1.

2. Compute the observed value of the test statistic, Ts = β̂1s/s.e.(β̂1s), where β̂1s is an M-estimator of β1s, and
s.e.(β̂1s) is an estimate of the standard error of β̂1s obtained from the sandwich-type variance-covariance
matrix (5).

3. Permute the miRNA expression data randomly and assign them to the patient-control groups, so that it
destroys any association between the two biological conditions and the miRNA expression, as defined by
the null hypothesis. Compute the test statistic based on the permutation sample. Produce a series of test
statistics, (T 1

s , . . . , T
R
s ), for R permutation samples by repeating this step a large number of times, R.

4. Obtain an approximate p-value, ps, of the test as the proportion of permutation samples with T r
s ≥ Ts.

5. Repeat Steps 1–4 to obtain the next p-value for s = 2, and so on for s = 3, . . . , S .

Using Steps 1–5 above, we obtain a series of p-values, p1, . . . , pS , for the S miRNAs considered. This set of
p-values is then used to obtain empirical false discovery rates as defined in the previous section.

4. Simulation Study

We ran a simulation study to explore the performance of the proposed robust tests for selecting the miRNAs that
are differentially expressed in two biological conditions, patient versus control. We considered comparing 1500
miRNAs based on expression data from 20 patients and 20 controls. The data were generated using the simple
linear model, yis = β0s + β1sxi + ϵis (s = 1, . . . , S ), with E(ϵis) = 0, Var(ϵis) = σ2

s , and with xi being the group
indicator. The intercept parameters β0s were chosen uniformly from the set of values {5, 6, 7, 8, 9}. Also, for the
slope parameters β1s, 10% values were chosen uniformly from the set of non-zero values {4, 4.5, 5, 5.5, 6} (i.e., 150
miRNAs were considered differentially expressed) and the remaining 90% β1s’s were chosen as 0 (not differentially
expressed) under the null hypothesis. The random errors ϵis were generated from normal distributions with mean
0 and variances σ2

s being chosen uniformly from the values {1, 2, 3, 4, 5}. In addition, to generate outliers in the
expression data, 10% of the original ϵis’s were randomly replaced by values generated from a normal distribution
with mean 0, but with a much larger variance (10 + σs)2.
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Figure 1. Empirical FDRs and test statistics for expression data with no outliers. Multiple tests are performed at
the FDR level 0.05. Top panels (a) – Proposal 2; middle (b) – MAD; bottom (c) – LS.

To estimate the intercept parameters β0s, slope parameters β1s, and scale parameters σs, we considered the follow-
ing three methods:

i) M-estimation with σ estimated by Huber’s Proposal 2,
ii) M-estimation with σ estimated by MAD, and
iii) Least squares (LS) estimation.

Note that under the assumption of normality of the response variable y, the LS estimators of the regression param-
eters β0s and β1s are also the maximum likelihood estimators.

After finding the estimates of the model parameters and associated p-values of the multiple tests by each of the
above three methods, we calculate the corresponding empirical FDRs to identify miRNAs that are differentially
expressed in the two biological conditions. Figures 1 and 2 exhibit the FDR(u) against u, and the absolute values of

159



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015

the test statistics against all 1500 miRNAs obtained under the three methods. The null hypotheses that are rejected
at the empirical FDR level 0.05 correspond to the values of the test statistics above the horizontal line. Figure 1
shows the plots for data with no outliers, and Figure 2 repeats them for data with outliers.

It is clear from Figure 1 that when data are not contaminated with outliers, all three methods perform equally
well, as almost all of the differentially expressed miRNAs (true alternatives) are identified correctly by the three
methods. In particular, Proposal 2 identified 160 miRNAs that are differentially expressed, MAD identified 162
miRNAs, and LS method identified 156 miRNAs. On the other hand, when data are contaminated with outliers, the
two robust methods appear to perform much better than the ordinary LS method. Proposal 2 and MAD identified
161 and 160 differentially expressed miRNAs, respectively, whereas the LS method identified only 130 of the
miRNAs that are differentially expressed, as shown in Figure 2. Clearly, unlike the robust methods, the LS method
fails to correctly identify many of the miRNAs that are differentially expressed.
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Figure 2. Empirical FDRs and test statistics for expression data with outliers. Multiple tests are performed at the
FDR level 0.05. Top panels (a) – Proposal 2; middle (b) – MAD; bottom (c) – LS.
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5. Application: miRNA Expression Data

Here we present an analysis of the miRNA expression data from the breast cancer study introduced earlier in Sec-
tion 1. The published raw data can be found in the National Center for Biotechnology Information (NCBI)’s Gene
Expression Omnibus (GEO) with the accession number GSE41526. Details of the study design, clinical specimen
collection, sample handling, RNA isolation, and miRNA expression profiling can be found in Leidner et al. (2013).
The experiment involved a case-control study design where blood samples were collected from 20 newly diagnosed
breast cancer patients and 20 controls recruited from individuals undergoing screening mammography at UHCMC
during 2009–2010. To minimize any technical errors and experimental bias due to labs, technicians, and elapsed
times, all blood samples were processed on the same day in the same lab. Plasma samples were de-identified and
lab personnel were blinded to subset status to avoid any potential bias and/or batch effects. The Illumina Human
v2 Microarray (MI-101-1124, Illumina) was utilized to profile circulating levels of 1145 miRNAs.

5.1 Data Normalization

We first consider normalizing the expression datasets to remove any machine artifacts. Normalization is routinely
performed in microarray analysis, as observed expression levels include variation during the preparation of sam-
ples, manufacture of the arrays, and the processing of the arrays (see Hartemink et al., 2001 and Parmigiani et al.,
2003 for more details).
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Figure 3. Intensities of two arrays plotted against each other before and after normalization.

To demonstrate the normalization procedure, Figure 3 presents intensities of two arrays, 23 and 37, plotted against
each other before and after normalization. As we assume that the majority of miRNAs will not be differentially
expressed, we would like the observations to scatter around the diagonal line, y = x. The scatter plot of the raw data
(before normalization) deviates from the diagonal line, indicating the need for normalization. After normalization,
the scatter plot (x-axis is the baseline array and y-axis is the normalized value of the array to be normalized) centers
around the diagonal line. The array to be normalized is adjusted to have a similar overall brightness as the baseline
array. The baseline array is chosen such that its median is closest to the overall median for all arrays.

For the normalization under the robust approach, we fit a linear model of the form z = α0 + α1z0 + e for each
pair of arrays, (z, z0), by the M-estimation, where z0 is the baseline array and z is an array to be normalized. The
normalized values of array z are then obtained as z∗ = (z − α̂0)/α̂1. Figure 4 presents the normalized expression
profiles on the log2-transformed scale for 50 miRNAs as heat map, which is obtained such that the yellow (lighter)
colour represents high expression levels and the orange (darker) colour represents low expression levels. Some
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of the miRNAs appear to be highly expressed, although it is not clear which of them are differentially expressed
between two biological conditions, case versus control. We adopt the proposed robust methodology to determine
which of the 1145 miRNAs under study are differentially expressed between the two biological conditions.
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Figure 4. Expression profiles of 50 miRNAs as heat map.
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5.2 Robust Estimation of Model Parameters

We considered estimating the model parameters by the proposed robust method, as there were indication of outliers
in the expression levels and the ordinary least squares estimators were found to be influenced by the outliers.
Specifically, for a given miRNA s, we fit a linear model of the form yis = β0s+β1sxi+ϵis, for s = 1, . . . , 1145, where
yis is the log 2-transformed value of the normalized expression level for subject i on miRNA s, and the indicator
variable xi is defined to be 0 if subject i is in the healthy control group, and 1, if in the patient group. Figure 5
presents two standardized residual plots obtained from the non-robust LS and robust M-estimation methods for
a given miRNA. Both plots indicate four large outliers, which were found to influence the ordinary least squares
estimators.

5.3 Hypothesis Tests

In the next step, we use the proposed robust approach to identifying the miRNAs that are differentially expressed
in the two medical conditions. Specifically, we test the null hypotheses, H0 : β1s = 0, for s = 1, . . . , S , at a
given FDR level. Since it may not be valid to assume that the expression levels follow a normal distribution for
all miRNAs, instead of finding the asymptotic p-values, we consider approximating the p-values of the tests by
using the permutation method based on 10,000 permutation samples, as described earlier. Also, for comparing the
results with the asymptotic tests, we obtain p-values by naively assuming that the test statistic Ts = β̂1s/s.e.(β̂1s)
follows a standard normal distribution. Figure 6 presents two sets of p-values, asymptotic versus permutation,
plotted against each other for all the three methods considered. Clearly, the least squares method shows large
discrepancies between the asymptotic and permutation p-values.

The two left panels of Figure 7 exhibit empirical FDRs at δ = 0.5 calculated based on the asymptotic and per-
mutation p-values. The absolute values of the test statistics and cutoff values at the FDR level 0.05 are shown
(horizontal lines) under the asymptotic and permutation p-value methods in the two right panels of Figure 7. The
cutoff points appear to be somewhat different under the two p-value methods.

Results from the hypothesis tests based on the permutation p-values are presented in Tables 1–3. Among the 1145
miRNAs under study, 49 are found to be differentially expressed by Proposal 2, 47 by MAD and 35 by the LS
method. The miRNA “HS-303b” appears to be the most significant by both robust methods. On the other hand, the
LS method fails to identify this as a differentially expressed miRNA between the two biological conditions. The
LS method is heavily influenced by the outliers in the expression data, and consequently many of the miRNAs are
not considered significant by this classical method.
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Figure 6. Plots of permutation p-values versus asymptotic p-values under three methods.
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Figure 7. Empirical FDRs and test statistics under three methods. miRNAs with values of the test statistics above
the horizontal line are considered significant at the FDR level 0.05. Top panels (a) – Proposal 2; middle (b) –

MAD; bottom (c) – LS.
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Table 1. p-values of 49 differentially expressed miRNAs determined by “Proposal 2” at 0.05 FDR level.

miRNA p-value

HS-303b 0.0000
hsa-miR-199a-3p, hsa-miR-199b-3p 0.0000
HS-43.1 0.0001
hsa-miR-1184 0.0001
hsa-miR-379 0.0001
hsa-miR-525-3p 0.0001
HS-23 0.0002
hsa-miR-1183 0.0002
hsa-miR-151-5p 0.0002
hsa-miR-380 0.0002
HS-149 0.0003
hsa-miR-1182 0.0003
hsa-miR-376a 0.0003
hsa-miR-376c 0.0003
solexa-2952-306 0.0003
hsa-miR-612 0.0004
HS-105 0.0005
hsa-miR-1295 0.0006
HS-123 0.0008
HS-257 0.0008
hsa-miR-1181 0.0008
HS-304b 0.0009
hsa-miR-924 0.0011
hsa-miR-1281 0.0012
hsa-miR-585 0.0012
hsa-miR-200a* 0.0013
hsa-miR-202*:9.1 0.0014
hsa-miR-34c-5p 0.0014
hsa-miR-30c-2* 0.0018
hsa-miR-376b 0.0018
HS-193 0.0019
hsa-miR-1179 0.0020
hsa-miR-708* 0.0021
HS-283a 0.0022
hsa-miR-617 0.0022
hsa-miR-28-3p 0.0023
solexa-539-2056 0.0024
HS-45.1 0.0025
solexa-9081-91 0.0025
hsa-miR-30a* 0.0027
hsa-miR-33b 0.0029
hsa-miR-518f 0.0030
hsa-miR-518e*, hsa-miR-519a*,... 0.0032
hsa-miR-1197 0.0033
solexa-8926-93 0.0034
HS-192.1 0.0036
hsa-miR-130b 0.0036
hsa-miR-377 0.0036
hsa-miR-619 0.0036
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Table 2. p-values of 47 differentially expressed miRNAs determined by “MAD” at 0.05 FDR level.

miRNA p-value

HS-303b 0.0000
HS-304b 0.0000
HS-43.1 0.0000
hsa-miR-199a-3p, hsa-miR-199b-3p 0.0000
hsa-miR-376c 0.0000
HS-105 0.0001
hsa-miR-617 0.0001
hsa-miR-619 0.0001
hsa-miR-1197 0.0002
hsa-miR-379 0.0002
hsa-miR-924 0.0002
hsa-miR-1182 0.0003
hsa-miR-151-5p 0.0003
hsa-miR-376a 0.0003
hsa-miR-380 0.0003
hsa-miR-525-3p 0.0004
HS-149 0.0005
hsa-miR-1295 0.0005
hsa-miR-1322 0.0005
hsa-miR-612 0.0005
hsa-miR-202*:9.1 0.0008
hsa-miR-518e*, hsa-miR-519a*, ... 0.0008
hsa-miR-1183 0.0009
solexa-2952-306 0.0009
hsa-miR-1184 0.0010
hsa-miR-200a* 0.0010
hsa-miR-30c-2* 0.0010
hsa-miR-30b* 0.0011
solexa-9081-91 0.0014
HS-46 0.0015
hsa-miR-376b 0.0015
hsa-miR-28-3p 0.0020
hsa-miR-1281 0.0021
hsa-miR-1181 0.0022
hsa-miR-708* 0.0022
hsa-miR-645 0.0023
hsa-miR-1179 0.0025
HS-23 0.0026
hsa-miR-453 0.0026
HS-192.1 0.0027
HS-193 0.0027
hsa-miR-585 0.0027
hsa-miR-19b-2* 0.0028
HS-283a 0.0032
hsa-miR-199a*:9.1 0.0032
hsa-miR-130b 0.0034
hsa-miR-181a* 0.0034
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Table 3. p-values of 35 differentially expressed miRNAs determined by “LS” at 0.05 FDR level.

miRNA p-value
hsa-miR-185 0.0000
hsa-miR-151-5p 0.0001
hsa-miR-376a 0.0001
hsa-miR-486-3p 0.0001
hsa-miR-585 0.0001
hsa-miR-1184 0.0002
hsa-miR-376c 0.0003
solexa-603-1846 0.0003
hsa-miR-130b 0.0004
hsa-miR-379 0.0004
hsa-miR-33b 0.0008
hsa-miR-194* 0.0010
hsa-miR-199a-3p, hsa-miR-199b-3p 0.0010
hsa-miR-30a* 0.0011
HS-113 0.0012
hsa-miR-143 0.0012
solexa-539-2056 0.0012
solexa-8926-93 0.0013
HS-139 0.0015
hsa-miR-583 0.0015
hsa-let-7c 0.0017
hsa-miR-629 0.0018
HS-193 0.0019
hsa-miR-1224-5p 0.0021
hsa-miR-549 0.0022
HS-97 0.0023
solexa-2952-306 0.0023
solexa-9081-91 0.0024
hsa-miR-1257 0.0027
hsa-miR-130a 0.0029
hsa-miR-139-3p 0.0029
hsa-miR-654-5p 0.0031
solexa-3022-299 0.0031
solexa-9655-85 0.0031
HS-257 0.0033
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Figure 8. Number of significant miRNAs that overlap by three methods.
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Figure 8 shows the number of significant miRNAs that overlap by the robust (Proposal 2 and MAD) and non-robust
(LS) methods. Here the ordinary LS method appears to provide largely a different set of differentially expressed
miRNAs, and is believed to be heavily influenced by the outliers in the expression levels. Among 35 miRNAs that
are differentially expressed by the LS method, a large number of 19 miRNAs are not found to be significant (not
differentially expressed) by any of the two robust methods.

6. Discussion

The purpose of this paper was to present a robust alternative to the classical least squares approach to identifying
differentially expressed miRNAs between two biological conditions for breast cancer. The proposed approach
developed in the framework of the M-estimation appears to be useful for bounding the influence of potential
outliers in the expression levels when simultaneously conducting the multiple tests. The results from the simulation
study were encouraging in that unlike the ordinary least squares approach, the proposed robust approach was able
to correctly identify the differentially expressed miRNAs in the presence of outliers in expression levels. The
application based on the miRNA expression data also demonstrates that the ordinary least squares method can be
heavily influenced by outliers, and the proposed robust method is useful for bounding the influence of such outliers.

To approximate the p-values of the multiple tests, we consider using the permutation method, as the normality
assumption may not be valid for all miRNA expression datasets. The proposed test is considered robust in that
unlike the asymptotic test, it can provide valid p-values of the tests even for non-normal data. Under normality,
the proposed robust permutation test would still provide competitive results.

We aimed at selecting differentially expressed miRNAs in the breast cancer study at a certain level of reliability.
Conventional methods based on miRNA-specific p-values are often discouraged due to the multiplicity of the com-
parisons being performed. Several proposals suggest adjusted p-values to account for multiple comparisons (e.g.,
Dudoit et al., 2012). A second approach employs an empirical Bayes methodology and computes the posterior
probability of differential expression between two biological conditions (Newton et al., 2001). However, perhaps
the most popular approach is to report the false discovery rate (FDR) (Benjamani and Hochberg, 1995) for a group
of biomarkers or for a given cutoff value of a test statistic of interest. When estimating the FDRs as considered in
this paper, we suggest computing the test statistics and corresponding p-values based on the robust estimates of
the model parameters.

We have considered only a single binary covariate in the regression model (1) to represent two biological condi-
tions, as used for the multiple comparisons. This may be readily extended to the case of multiple covariates to
account for any effects of demographic variables on the response of interest. In this case, the regression and scale
parameters can still be estimated robustly using the M-estimation procedure.
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