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Abstract

Recent results make the multivariate linear regression model much easier to use. This model has m ≥ 2 response
variables. Results by Kakizawa (2009) and Su and Cook (2012) can be used to explain the large sample theory
of the least squares estimator and of the widely used Wilks’ Λ, Pillai’s trace, and Hotelling Lawley trace test
statistics. Kakizawa (2009) shows that these statistics have the same limiting distribution. This paper reviews
these results and gives two theorems to show that the Hotelling Lawley test generalizes the usual partial F test for
m = 1 response variable to m ≥ 1 response variables. Plots for visualizing the model are also given, and can be
used to check goodness and lack of fit, to check for outliers and influential cases, and to check whether the error
distribution is multivariate normal or from some other elliptically contoured distribution.
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1. Introduction

The multivariate linear regression model is yi = BT xi + ϵ i for i = 1, ..., n. This paper suggests some plots and
reviews some recent results by Kakizawa (2009) and Su and Cook (2012) that make this model easier to use.

The model has m ≥ 2 response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp. The ith case is (xT
i , y

T
i ) =

(xi1, xi2, ..., xip,Yi1, ..., Yim), where the constant xi1 = 1. The model is written in matrix form as Z = XB + E where
the matrices are defined below. The model has E(ϵk) = 0 and Cov(ϵk) = Σϵ = (σi j) for k = 1, ..., n. Then the
p × m coefficient matrix B =

[
β1 β2 . . . βm

]
and the m × m covariance matrix Σϵ are to be estimated, and

E(Z) = XB while E(Yi j) = xT
i β j. Multiple linear regression corresponds to m = 1 response variable, and is written

in matrix form as Y = Xβ+ e. Subscripts are needed for the m multiple linear regression models Y j = Xβ j + e j for
j = 1, ...,m where E(e j) = 0. For the multivariate linear regression model, Cov(ei, e j) = σi j In for i, j = 1, ...,m
where In is the n × n identity matrix.

The n × m matrix of response variables and n × m matrix of errors are

Z =
[

Y1 Y2 . . . Ym

]
=


yT

1
...

yT
n

 and E =
[

e1 e2 . . . em

]
=


ϵT

1
...
ϵT

n

 ,
while the n × p design matrix of predictor variables is X.

Least squares is the classical method for fitting the multivariate linear model. The least squares estimators
are B̂ = (XT X)−1XT Z =

[
β̂1 β̂2 . . . β̂m

]
. The matrix of predicted values or fitted values Ẑ = XB̂ =[

Ŷ1 Ŷ2 . . . Ŷm

]
. The matrix of residuals Ê = Z − Ẑ = Z − XB̂ =

[
r1 r2 . . . rm

]
. These quantities

can be found from the m multiple linear regressions of Y j on the predictors: β̂ j = (XT X)−1XT Y j, Ŷ j = Xβ̂ j and
r j = Y j − Ŷ j for j = 1, ...,m. Hence ϵ̂i, j = Yi, j − Ŷi, j where Ŷ j = (Ŷ1, j, ..., Ŷn, j)T . Finally,

Σ̂ϵ =
(Z − Ẑ)T (Z − Ẑ)

n − p
=

(Z − XB̂)T (Z − XB̂)
n − p

=
ÊT Ê
n − p

=
1

n − p

n∑
i=1

ϵ̂ iϵ̂
T
i .
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The ϵ i are assumed to be iid. Some important joint distributions for ϵ are completely specified by an m × 1
population location vector µ and an m×m symmetric positive definite population dispersion matrix Σ.An important
model is the elliptically contoured ECm(µ,Σ, g) distribution with probability density function

f (z) = km|Σ|−1/2g[(z − µ)TΣ−1(z − µ)]

where km > 0 is some constant and g is some known function. The multivariate normal (MVN) Nm(µ,Σ) distribu-
tion is a special case.

Plots for checking the model are given in Section 2.1. Kakizawa (2009) examines testing for the multivariate linear
regression model, showing that the Wilks, Pillai, and Hotelling Lawley test statistics perform well asymptotically
for a large class of zero mean error distributions. Section 2.2 reviews these results and shows that the Hotelling
Lawley test statistic is closely related to the partial F statistic for multiple linear regression. Section 3 gives an
example and some simulations.

2. Method

2.1 Plots for the Multivariate Linear Regression Model

This subsection suggests using residual plots, response plots, and the DD plot to examine the multivariate linear
regression model. These plots will be described below since the response plot and DD plots are not as well known
as the residual plot. The residual plots are often used to check for lack of fit of the model. The response plots are
used to check linearity and to detect influential cases and outliers. The response and residual plots are used exactly
as in the m = 1 case corresponding to multiple linear regression. See Olive and Hawkins (2005) and Cook and
Weisberg (1999a, p. 432; 1999b).

Some notation is needed to describe the DD plot. Assume that x1, ..., xn are iid from a multivariate distribution.
The classical estimator (x,S) of multivariate location and dispersion is the sample mean and sample covariance
matrix where

x =
1
n

n∑
i=1

xi and S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)T. (1)

Let the p × 1 column vector T be a multivariate location estimator, and let the p × p symmetric positive definite
matrix C be a dispersion estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T,C) = (xi − T )T C−1(xi − T ) (2)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of center T is Di(T, Ip). The
notation MD will be used to denote the classical Mahalanobis distances MDi = Di(x,S), and RD will denote
distances RDi = Di(T,C) using the robust RMVN estimator (T,C) described in Zhang, Olive, and Ye (2012).
The classical estimator (x, S) is a consistent estimator of the population mean and covariance matrix (µx,Σx),
and the RMVN estimator (T,C) is a consistent estimator of (µx, cΣx) for a large class of elliptically contoured
distributions where c > 0 depends on the distribution and c = 1 for the multivariate normal distribution.

The Rousseeuw and Van Driessen (1999) DD plot is a plot of classical Mahalanobis distances MD versus robust
Mahalanobis distances RD, and is used to check the error distribution and to detect outliers. The DD plot suggests
that the error distribution is elliptically contoured if the plotted points cluster tightly about a line through the origin
as n→ ∞. The plot suggests that the error distribution is multivariate normal if the line is the identity line RD=MD
with unit slope and zero intercept. If n is large and the plotted points do not cluster tightly about a line through the
origin, then the error distribution may not be elliptically contoured. Make a DD plot of the continuous predictor
variables to check for x-outliers. These applications of the DD plot for iid multivariate data are discussed in Olive
(2002, 2013).

Make the m response and residual plots for the multivariate linear model. A response plot for the jth response
variable is a plot of the fitted values Ŷi j versus the response Yi j where i = 1, ..., n. The identity line is added to
the plot as a visual aid. A residual plot corresponding to the jth response variable is a plot of Ŷi j versus ri j. In a
response plot, the vertical deviations from the identity line are the residuals ri j = Yi j − Ŷi j. Suppose the model is
good, the error distribution is not highly skewed, and n ≥ 10p. Then the plotted points should cluster about the
identity line in each of the m response plots and about the r = 0 line in the m residual plots. If outliers are present
or if the plots are not linear, then the current model or data needs to be transformed or corrected. See Example 1.
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2.2 Testing Hypotheses

This subsection reviews useful results from Kakizawa (2009) and Su and Cook (2012). These results will show
that the Hotelling Lawley test statistic is an extension of the partial F test statistic.

Consider testing a linear hypothesis H0 : LB = 0 versus H1 : LB , 0 where L is a full rank r × p matrix. Let
H = B̂T LT [L(XT X)−1LT ]−1LB̂. Let the error or residual sum of squares and cross products matrix be

We = ÊT Ê = (Z − Ẑ)T (Z − Ẑ) = ZT Z − ZT XB̂ = ZT [In − X(XT X)−1XT ]Z.

Then We/(n − p) = Σ̂ϵ . Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H. Then there are four

commonly used test statistics.

The Roy’s maximum root statistic is λmax(L) = λ1.

The Wilks’ Λ statistic is Λ(L) = |(H +We)−1We| = |W−1
e H + I|−1 =

m∏
i=1

(1 + λi)−1.

The Pillai’s trace statistic is V(L) = tr[(H +We)−1H] =
m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H] =

m∑
i=1

λi.

Before proving Theorem 1 and showing that (n − p)U(L)
D→ χ2

rm under mild conditions if H0 is true, we first
introduce some necessary notations. Following Henderson and Searle (1979), let matrix A = [a1 a2 . . . ap].
Then the vec operator stacks the columns of A on top of one another, and A ⊗ B is the Kronecker product of A
and B. An important fact is that if A and B are nonsingular square matrices, then [A ⊗ B]−1 = A−1 ⊗ B−1.

Theorem 1 The Hotelling-Lawley trace statistic

U(L) =
1

n − p
[vec(LB̂)]T [Σ̂

−1
ϵ ⊗ (L(XT X)−1LT )−1][vec(LB̂)]. (3)

Proof. Using the Searle (1982, p. 333) identity tr(AGT DGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], it follows that
(n − p)U(L) = tr[Σ̂

−1
ϵ B̂T LT [L(XT X)−1LT ]−1LB̂] = [vec(LB̂)]T [Σ̂

−1
ϵ ⊗ (L(XT X)−1LT )−1][vec(LB̂)] = T where

A = Σ̂−1
ϵ ,G = LB̂, D = [L(XT X)−1LT ]−1, and C = I. Hence (3) holds. �

Kakizawa (2009) gives a result that can be shown to be equivalent to (3) using a commutation matrix Kmn where
Kmnvec(A) = vec(AT ), K−1

mn = Knm, Kpm(A ⊗ B)Knq = B ⊗ A and vec(ABC) = (CT ⊗ A)vec(B). The above
proof avoids commutation matrix algebra, and equation (3) will be used to show that the Hotelling Lawley test
generalizes the usual partial F test for m = 1 response variable to m ≥ 1 response variables.

The following assumption is important.

Assumption D1: Let hi be the ith diagonal element of X(XT X)−1XT . Assume max1≤i≤n hi → 0 as n → ∞, assume

that the zero mean iid error vectors have finite fourth moments, and assume that
1
n

XT X
P→W−1.

Su and Cook (2012) give a central limit type theorem for the multivariate linear regression model: if assumption

D1 holds, then Σ̂ϵ is a
√

n consistent estimator of Σϵ , and
√

n vec(B̂ − B)
D→ Npm(0,Σϵ ⊗W).

Their theorem also shows that for multiple linear regression (m = 1), σ̂2 = MS E is a
√

n consistent estimator of
σ2. Note that it is not assumed that the error vectors have an elliptically contoured distribution.

Theorem 2 If assumption D1 holds and if H0 is true, then (n − p)U(L)
D→ χ2

rm.

Proof. By Su and Cook (2012),
√

n vec(B̂ − B)
D→ Npm(0,Σϵ ⊗W). Then under H0,

√
n vec(LB̂)

D→ Nrm(0,Σϵ ⊗
LWLT ), and n [vec(LB̂)]T [Σ−1

ϵ ⊗ (LWLT )−1][vec(LB̂)]
D→ χ2

rm. This result also holds if W and Σϵ are replaced by
Ŵ = n(XT X)−1 and Σ̂ϵ . Hence under H0 and using the proof of Theorem 1, T = (n− p)U(L) = [vec(LB̂)]T [Σ̂

−1
ϵ ⊗

(L(XT X)−1LT )−1][vec(LB̂)]
D→ χ2

rm. �
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Kakizawa (2009) shows, under stronger assumptions than Theorem 2 (such as eighth moments instead of fourth
moments) that for a large class of iid error distributions, the following test statistics have the same χ2

rm limiting
distribution when H0 is true, and the same noncentral χ2

rm(ω2) limiting distribution with noncentrality parameter
ω2 when H0 is false under a local alternative. Hence the three tests are robust to the assumption of normality. The
limiting null distribution is well known when the zero mean errors are iid from a multivariate normal distribution.

See Khattree and Naik (1999, p. 68): (n − p)U(L)
D→ χ2

rm, (n − p)V(L)
D→ χ2

rm, and −[n − p − 0.5(m − r +

3)] log(Λ(L))
D→ χ2

rm. Also see Fujikoshi, Ulyanov, and Shimizu (2010, ch. 7). Results from Kshirsagar (1972, p.
301) suggest that the third chi-square approximation is very good if n ≥ 3(m + p)2 for multivariate normal errors.

Theorems 1 and 2 are useful for relating multivariate tests with the partial F test for multiple linear regression that
tests whether a reduced model that omits some of the predictors can be used instead of the full model that uses all
p predictors. The partial F test statistic is

FR =

[
S S E(R) − S S E(F)

d fR − d fF

]
/MS E(F)

where the residual sums of squares S S E(F) and S S E(R) and degrees of freedom d fF and d fR are for the full and
reduced model while the mean square error MS E(F) is for the full model. Let the null hypothesis for the partial
F test be H0 : Lβ = 0 where L sets the coefficients of the predictors in the full model but not in the reduced model
to 0. Seber and Lee (2003, p. 100) shows that

FR =
[Lβ̂]T (L(XT X)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note that for multiple linear regression with
m = 1, FR = (n − p)U(L)/r since Σ̂

−1
ϵ = 1/σ̂2. Hence the scaled Hotelling Lawley test statistic is the partial F test

statistic extended to m > 1 predictor variables by Theorem 1.

By Theorem 2, for example, rFR
D→ χ2

r for a large class of nonnormal error distribution. If Zn ∼ Fk,dn , then

Zn
D→ χ2

k/k as dn → ∞. Hence using the Fr,n−p approximation gives a large sample test with correct asymptotic
level, and the partial F test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics gives large sample tests with correct
asymptotic level by Kakizawa (2009) and similar power for large n. The large sample test will have correct
asymptotic level as long as the denominator degrees of freedom dn → ∞ as n → ∞, and dn = n − pm reduces to
the partial F test if m = 1 and U(L) is used. Then the three test statistics are

−[n − p − 0.5(m − r + 3)]
rm

log(Λ(L)),
n − p

rm
V(L), and

n − p
rm

U(L).

By Berndt and Savin (1977) and Anderson (1984, pp. 333, 371),

V(L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power and Pillai’s test will have the least power.

Following Khattree and Naik (1999, pp. 67-68), there are several approximations used by the SAS software. For
the Roy’s largest root test, if h = max(r,m), use

n − p − h + r
h

λmax(L) ≈ F(h, n − p − h + r).

The simulations in Section 3 suggest that this approximation is good for r = 1 but poor for r > 1. Anderson (1984,
p. 333) states that Roy’s largest root test has the greatest power if r = 1 but is an inferior test for r > 1. Let
g = n− p− (m− r+1)/2, u = (rm−2)/4 and t =

√
r2m2 − 4/

√
m2 + r2 − 5 for m2+ r2−5 > 0 and t = 1, otherwise.

Assume H0 is true. Thus U
P→ 0,V

P→ 0, and Λ
P→ 1 as n→ ∞. Then

gt − 2u
rm

1 − Λ1/t

Λ1/t ≈ F(rm, gt − 2u) or (n − p)t
1 − Λ1/t

Λ1/t ≈ χ2
rm.
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For large n and t > 0, − log(Λ) = −t log(Λ1/t) = −t log(1 + Λ1/t − 1) ≈ t(1 − Λ1/t) ≈ t(1 − Λ1/t)/Λ1/t. If it can

not be shown that (n − p)[− log(Λ) − t(1 − Λ1/t)/Λ1/t]
P→ 0 as n→ ∞, then it is possible that the approximate χ2

rm
distribution may be the limiting distribution for only a small class of iid error distributions. When the ϵ i are iid
Nm(0,Σϵ ), there are some exact results. For r = 1,

n − p − m + 1
m

1 − Λ
Λ
∼ F(m, n − p − m + 1).

For r = 2,
2(n − p − m + 1)

2m
1 − Λ1/2

Λ1/2 ∼ F(2m, 2(n − p − m + 1)).

For m = 2,
2(n − p)

2r
1 − Λ1/2

Λ1/2 ∼ F(2r, 2(n − p)).

Let s = min(r,m), m1 = (|r−m|−1)/2 and m2 = (n−p−m−1)/2. Note that s(|r−m|+s) = min(r,m) max(r,m) = rm.
Then

n − p
rm

V
1 − V/s

=
n − p

s(|r − m| + s)
V

1 − V/s
≈ 2m2 + s + 1

2m1 + s + 1
V

s − V
≈

F(s(2m1 + s + 1), s(2m2 + s + 1)) ≈ F(s(|r − m| + s), s(n − p)) = F(rm, s(n − p)).

This approximation is asymptotically correct by Slutsky’s theorem since

1 − V/s
P→ 1. Finally,

n − p
rm

U =
n − p

s(|r − m| + s)
U ≈ 2(sm2 + 1)

s2(2m1 + s + 1)
U ≈ F(s(2m1 + s + 1), 2(sm2 + 1))

≈ F(s(|r − m| + s), s(n − p)) = F(rm, s(n − p)).

This approximation is asymptotically correct for a wide range of iid error distributions.

Multivariate analogs of tests for multiple linear regression can be derived with appropriate choice of L. Assume a
constant x1 = 1 is in the model. The analog of the ANOVA F test for multiple linear regression is the MANOVA
F test that uses L = [0 Ip−1] to test whether the nontrivial predictors are needed in the model.

The F j test of hypotheses uses L j = [0, ..., 0, 1, 0, ..., 0], where the 1 is in the jth position, to test whether the jth
predictor is needed in the model given that the other p − 1 predictors are in the model. This test is an analog of the
t test for multiple linear regression. The statistic F j =

1
d j

B̂T
j Σ̂
−1
ϵ B̂ j where B̂T

j is the jth row of B̂ and d j = (XT X)−1
j j ,

the jth diagonal entry of (XT X)−1.

The MANOVA partial F test is used to test whether a reduced model is good where the reduced model deletes r
of the variables from the full model. For this test, the ith row of L has a 1 in the position corresponding to the
ith variable to be deleted. Omitting the jth variable corresponds to the F j test while omitting variables x2, ..., xp

corresponds to the MANOVA F test. Using L = [0 Ik] tests whether the last k predictors are needed in the
multivariate linear regression model given that the remaining predictors are in the model.

3. Results

Example 1 Cook and Weisberg (1999a, p. 351, 433, 447) gives a data set on 82 mussels sampled off the coast
of New Zealand. Let Y1 = log(S ) and Y2 = log(M) where S is the shell mass and M is the muscle mass. The
predictors are X2 = L, X3 = log(W) and X4 = H: the shell length, log(width) and height. Figures 1 and 2 give
the response and residual plots for Y1 and Y2. The response plots show strong linear relationships. For Y1, case 79
sticks out while for Y2, cases 8, 25 and 48 are not fit well. Highlighted cases had Cook’s distance > min(0.5, 2p/n).
See Cook (1977). Figure 3 shows the DD plot of the residual vectors. The plotted points are highly correlated but
do not cover the identity line, suggesting an elliptically contoured error distribution that is not multivariate normal.
The lines MD = 2.60, RD = 2.80 and RD = 2.448 in the DD plot correspond to the 95th percentiles of the MDi,

RDi, and
√
χ2

2,0.95. Cases 8, 48 and 79 have especially large distances.

The response, residual, and DD plots are effective for finding influential cases, for checking linearity, and for
checking whether the error distribution is multivariate normal or some other elliptically contoured distribution.
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Figure 1. Plots for Y1 = log(S ).
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Figure 2. Plots for Y2 = log(M).
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Figure 3. DD Plot of the Residual Vectors for the Mussels Data.
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Figure 5. DD Plot When Y2 = M.

Suppose the same model is used except Y2 = M. Then the response and residual plots for Y1 remain the same,
but the plots shown in Figure 4 show curvature about the identity and r = 0 lines. Hence the linearity condition is
violated. Figure 5 shows that the plotted points in the DD plot have correlation well less than one, suggesting that
the error distribution is no longer elliptically contoured. Note that the plots can be used to quickly assess whether
power transformations have resulted in a linear model.

The R function mltreg produces output for testing and makes the response and residual plots, and the function
ddplot4 makes the DD plot. The R commands for making the plots and output are shown below, assuming the
data is stored in mussels. The output is very similar to the output for multiple linear regression. Bhat shows B̂,
Ftable shows the F j statistics and pvalues, while MANOVA shows the MANOVA F statistic and pvalue. The four
Hotelling Lawley F j statistics were greater than 5.77 with pvalues less than 0.005, and the MANOVA F statistic
was 337.8 with pvalue ≈ 0.

y <- log(mussels)[,4:5]

x <- mussels[,1:3]

x[,2] <- log(x[,2])

out <- mltreg(x,y) #right click Stop 4 times

ddplot4(out$res) #right click Stop

y[,2] <- mussels[,5]

tem <- mltreg(x,y) #right click Stop 4 times

ddplot4(tem$res) #right click Stop

out

$Bhat [,1] [,2]

[1,] -2.322420435 -2.736457260

[2,] 0.004779329 0.002423747

[3,] 1.125434525 0.850428304

[4,] 0.013694060 0.016220043

$partial

partialF Pval

[1,] 19.12908 7.724099e-11

$Ftable

Fj pvals

[1,] 12.297891 2.448022e-05

[2,] 5.776937 4.663431e-03

[3,] 13.607901 9.276534e-06
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[4,] 12.287095 2.467939e-05

$MANOVA

MANOVAF pval

[1,] 337.7885 0

A small simulation was used to study the Wilks’ Λ test, the Pillai’s trace test, the Hotelling Lawley trace test,
and the Roy’s largest root test for the F j tests and the MANOVA F test for multivariate linear regression. The
first row of B was always 1T and the last row of B was always 0T . When the null hypothesis for the MANOVA
F test is true, all but the first row corresponding to the constant are equal to 0T . When p ≥ 3 and the null
hypothesis for the MANOVA F test is false, then the second to last row of B is (1, 0, ..., 0), the third to last row
is (1, 1, 0, ..., 0) et cetera as long as the first row is not changed from 1T . First m × 1 error vectors wi were
generated such that the m errors are iid with variance σ2. Let the m × m matrix A = (ai j) with aii = 1 and
ai j = ψ where 0 ≤ ψ < 1 for i , j. Then ϵ i = Awi so that Σϵ = σ2 AAT = (σi j) where the diagonal entries
σii = σ2[1 + (m − 1)ψ2] and the off diagonal entries σi j = σ2[2ψ + (m − 2)ψ2] where ψ = 0.10. Hence the
correlations are (2ψ + (m − 2)ψ2)/(1 + (m − 1)ψ2). As ψ gets close to 1, the error vectors cluster about the line in
the direction of (1, ..., 1)T . Used wi ∼ Nm(0, I),wi ∼ (1 − τ)Nm(0, I) + τNm(0, 25I) with 0 < τ < 1 and τ = 0.25 in
the simulation, wi ∼ multivariate td with d = 7 degrees of freedom, or wi ∼ lognormal - E(lognormal): where the
m components of wi were iid with distribution ez − E(ez) where z ∼ N(0, 1). Only the lognormal distribution is not
elliptically contoured.

Table 1. Test Coverages: MANOVA F H0 is True.

w dist n test F1 F2 Fp−1 Fp FM

MVN 300 W 1 0.043 0.042 0.041 0.018
MVN 300 P 1 0.040 0.038 0.038 0.007
MVN 300 HL 1 0.059 0.058 0.057 0.045
MVN 300 R 1 0.051 0.049 0.048 0.993
MVN 600 W 1 0.048 0.043 0.043 0.034
MVN 600 P 1 0.046 0.042 0.041 0.026
MVN 600 HL 1 0.055 0.052 0.050 0.052
MVN 600 R 1 0.052 0.048 0.047 0.994
MIX 300 W 1 0.042 0.043 0.044 0.017
MIX 300 P 1 0.039 0.040 0.042 0.008
MIX 300 HL 1 0.057 0.059 0.058 0.039
MIX 300 R 1 0.050 0.050 0.051 0.993

MVT(7) 300 W 1 0.048 0.036 0.045 0.020
MVT(7) 300 P 1 0.046 0.032 0.042 0.011
MVT(7) 300 HL 1 0.064 0.049 0.058 0.045
MVT(7) 300 R 1 0.055 0.043 0.051 0.993

LN 300 W 1 0.043 0.047 0.040 0.020
LN 300 P 1 0.039 0.045 0.037 0.009
LN 300 HL 1 0.057 0.061 0.058 0.041
LN 300 R 1 0.049 0.055 0.050 0.994
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Table 2. Test Coverages: MANOVA F H0 is False.

n m = p test F1 F2 Fp−1 Fp FM

30 5 W 0.012 0.222 0.058 0.000 0.006
30 5 P 0.000 0.000 0.000 0.000 0.000
30 5 HL 0.382 0.694 0.322 0.007 0.579
30 5 R 0.799 0.871 0.549 0.047 0.997
50 5 W 0.984 0.955 0.644 0.017 0.963
50 5 P 0.971 0.940 0.598 0.012 0.871
50 5 HL 0.997 0.979 0.756 0.053 0.991
50 5 R 0.996 0.978 0.744 0.049 1

105 10 W 0.650 0.970 0.191 0.000 0.633
105 10 P 0.109 0.812 0.050 0.000 0.000
105 10 HL 0.964 0.997 0.428 0.000 1
105 10 R 1 1 0.892 0.052 1
150 10 W 1 1 0.948 0.032 1
150 10 P 1 1 0.941 0.025 1
150 10 HL 1 1 0.966 0.060 1
150 10 R 1 1 0.965 0.057 1
450 20 W 1 1 0.999 0.020 1
450 20 P 1 1 0.999 0.016 1
450 20 HL 1 1 0.999 0.035 1
450 20 R 1 1 0.999 0.056 1

The simulation used 5000 runs, and H0 was rejected if the F statistic was greater than Fd1,d2 (0.95) where P(Fd1,d2 <
Fd1,d2 (0.95)) = 0.95 with d1 = rm and d2 = n − mp for the test statistics

−[n − p − 0.5(m − r + 3)]
rm

log(Λ(L)),
n − p

rm
V(L), and

n − p
rm

U(L),

while d1 = h = max(r,m) and d2 = n − p − h + r for the test statistic

n − p − h + r
h

λmax(L).

Denote these statistics by W, P, HL and R. Let the coverage be the proportion of times that H0 is rejected.
Want coverage near 0.05 when H0 is true and coverage close to 1 for good power when H0 is false. With 5000
runs, coverage outside of (0.04,0.06) suggests that the true coverage is not 0.05. Coverages are tabled for the
F1, F2, Fp−1, and Fp test and for the MANOVA F test denoted by FM . The null hypothesis H0 was always true for
the Fp test and always false for the F1 test. When the MANOVA F test was true, H0 was true for the F j tests with
j , 1. When the MANOVA F test was false, H0 was false for the F j tests with j , p, but the Fp−1 test should be
hardest to reject for j , p by construction of B and the error vectors.

When the null hypothesis H0 was true, simulated values started to get close to nominal levels for n ≥ 0.8(m + p)2,
and were fairly good for n ≥ 1.5(m+ p)2. The exception was Roy’s test which rejects H0 far too often if r > 1. See
Table 1 where want values for the F1 test to be close to 1 since H0 is false for the F1 test and want values close
to 0.05, otherwise. Roy’s test was very good for the F j tests but very poor for the MANOVA F test. Results are
shown for m = p = 10. As expected from Berndt and Savin (1977), Pillai’s test rejected H0 less often than Wilks’
test which rejected H0 less often than the Hotelling Lawley test.

In Table 2, H0 is only true for the Fp test where p = m, and want values in the Fp column near 0.05. Want values
near 1 for high power otherwise. If H0 is false, often H0 will be rejected for small n. For example, if n ≥ 10p, then
the m residual plots should start to look good, and the MANOVA F test should be rejected. For the simulated data,
had fair power for n not much larger than mp. Results are shown for the lognormal distribution.

4. Discussion

Multivariate linear regression is nearly as easy to use as multiple linear regression if m is small. The plots speed
up the model building process for multivariate linear models since the success of power transformations achieving
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linearity can be quickly assessed and influential cases can often be quickly detected. The plots can also be used for
competing methods such as the envelopes estimators of Su and Cook (2012). Variable selection for multivariate
linear regression is discussed in Fujikoshi, Ulyanov, and Shimizu (2010). Often observations (x2, ..., xp,Y1, ..., Ym)
are collected on the same person or thing and hence are correlated. If transformations can be found such that the m
response plots and residual plots look good, and n is large enough, then multivariate linear regression can be used
to efficiently analyze the data. Examining m multiple linear regressions is an incorrect method for analyzing the
data. From simulations, response and residual plots start to be informative for n ≥ 10p. Cramér (1946, pp. 414-
415) shows that when the ei are iid N(0, σ2) and none of the p − 1 nontrivial predictors are needed in the multiple
linear regression model, then E(R2) = (p − 1)/(n − 1) where R2 is the coefficient of multiple determination.

For testing the multivariate linear regression model, we recommend n ≥ max((m + p)2,mp + 30) provided that the
m response and residual plots look good. When m = 1 the model degrees of freedom = n − p. It is not clear what
the model degrees of freedom is for m > 1. We used n − mp which is likely too small (conservative), but using
k(n − p) for small integer k > 1 is likely too large. Based on a much larger simulation study Pelawa Watagoda
(2013, pp. 111-112), using the four types of error distributions and m = p, the tests had approximately correct level
if n > 0.83(m+ p)2 for the Hotelling Lawley test, if n > 2.80(m+ p)2 for the Wilks’ test (agreeing with Kshirsagar
(1972): n ≥ 3(m + p)2 for multivariate normal data), and if n > 4.2(m + p)2 for Pillai’s test.

The tests are also large sample tests for a robust estimator that is asymptotically equivalent to least squares on a
large class of elliptically contoured distributions. See Rupasinghe Arachchige Don (2013). For the robust esti-
mator the elliptically contoured assumption is important since the robust estimator and least squares give different
estimators of the constant when the assumption is violated.

The R software was used in the simulation. See R Development Core Team (2011). Programs are in the collection
of R functions lregpack.txt available from (http://lagrange.math.siu.edu/Olive/lregpack.txt). The mussels data set
can be obtained from (http://lagrange.math.siu.edu/Olive/lregdata.txt). The function mregsim was used to simu-
late the tests of hypotheses. The function mltreg makes the residual and response plots, and computes the F j,
MANOVA F, and MANOVA partial F test pvalues. The function mregddsim simulates DD plots of residuals for
the multivariate linear regression model. The function MLRsim simulates response and residual plots for various
error distributions. The function ddplot4 makes the DD plot of the residuals. See Example 1.
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