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Abstract

The relation between CKLS model and CIR model will be investigated in this paper. It will be shown that under a
suitable transformation, any CKLS model of order 1

2 < γ < 1 or γ > 1 corresponds to a CIR model under a new
probability space. Moreover, the explicit solution and the precise distribution of the CKLS model at any time t are
obtained under the new probability space. The moment estimation of CKLS model will be given finally.
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1. Introduction

Suppose that (Ω,F , P; (Ft)t≥0) is a right continuous filtered probability space satisfying the usual conditions. In
1992, Chan, Karolyi, Longstaff and Sanders (Chan, Karolyi, Longstaff & Sanders, 1992) suggested modelling the
behavior of the instantaneous interest rate by the following stochastic differential equation

drt = (a − brt)dt + σrγt dBt, (1)

where the initial interest rate r0 > 0, a > 0, b ∈ R, σ > 0 and γ ≥ 1
2 . Bt denotes an 1-dimensional standard

Ft-Brownian motion.

This so called CKLS model is a very important model in both theory and application, it contains many important
models in finance. These models can be obtained from (1) by simply placing the appropriate restrictions on the
four parameters a, b, σ and γ. For example, if γ = 0, it becomes to a Vasicek model; γ = 1, a = 0 a geometric
Brownian motion; γ = 1

2 a CIR model, etc..

There are many literatures concerned about the solutions as well as other properties of CKLS model. For example,
Choi and Wirjanto (Choi & Wirjanto 2007) presented an analytic approximation formula for pricing zero-coupon
bonds under CKLS models, Tangman, Thakoor, Dookhitram and Bhuruth (Tangman, Thakoor, Dookhitram &
Bhuruth, 2011) considered fast approximations of bond option prices under CKLS models, while Tang and Chen
(Tang & Chen, 2009) studied the parameter estimation and bias correction for diffusion processes which contain
CKLS models as special cases, Khor, Pooi and Ng (Khor, Pooi & Ng, 2013) studied the bond (European) option
pricing under the CKLS model.

It is well known that there is a unique non negative solution of the equation (1). By Mao (Mao, 2007) Chapter 9,
we also know that the solution rt > 0 for all t ≥ 0 almost surely.

The motivation of this work is the following:

In Lamberton and Lapeyre (Lamberton & Lapeyre, 1996), Proposition 6.2.5, the authors presented the Laplace
transform of rt and

∫ t
0 rsds in the case of CIR model (that is, γ = 1

2 ), and finally they obtained the pricing formula
of zero-coupon bond and the bond option. So a natural question raises: if we can transform CKLS model into a
CIR model, then we can use the known results of CIR model to the CKLS model.
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In the following, we assume that rt is the unique positive solution of SDE (1).

Our main result is the following theorem.

Theorem 1 Let γ > 1, or γ ∈ ( 1
2 , 1) and γ

σ
≥ 1, b > 0. Define f (x) = C2

4(1−γ)2 x2(1−γ). Then there exist a new filtered
probability space (Ω,F ,Q; (Ft)t≥0) and a Q Brownian motion B̄t such that Yt = f (rt) satisfies the following CIR
model:

dYt = (
σ2C2

4
+ 2b(1 − γ)Yt)dt + σC

√
YtdB̄t. (2)

Remark 1 When γ ∈ ( 1
2 , 1) and γ

σ
≥ 1, b > 0, equation (2) is not the usual mean reverting square root process any

more since the coefficient of Yt is 2b(1 − γ) > 0.

In general, we can not solve equation (1) explicitly except for some special cases (e.g., γ = 1), but by a suitable
measure transform, we can get the explicit solution of our CKLS model under the new probability space.

Theorem 2 Assume that γ > 1, or γ ∈ ( 1
2 , 1) and γ

σ
≥ 1, b > 0. Under the probability measure Q (which is the

same as in Theorem 1), the explicit solution of equation (1) is

rt =
∣∣∣∣r1−γ

0 e−(γ−1)bt + σ|γ − 1|
∫ t

0
e−b(γ−1)(t−s)dB̄s

∣∣∣∣ 1
1−γ
.

We can also get the distribution of rt.

Theorem 3 Assume that γ > 1, or γ ∈ ( 1
2 , 1) and γ

σ
≥ 1, b > 0. Under the probability measure Q, the precise

density function of the solution rt of equation (1) is

gt(x) = gδ,ζ( f (x)/L)| f ′(x)|/L, ∀x > 0,

where f is the same as in Theorem 1, gδ,ζ is the density of the non-central chi-square law with δ degrees of freedom
and parameter ζ,

δ = C2, L =
σ2C2

8b(γ − 1)
(1 − e2b(1−γ)t), ζ =

8Y0b(γ − 1)
σ2C2(e2b(γ−1)t − 1)

.

Finally, let us consider the moment estimation of rt. We have

Theorem 4 Assume that 1 < γ ≤ 3
2 , or 1

2 ≤ γ < 1 and (2γ + 1)σ2 ≤ 2a. Then

E
∫ t

0
r−2γ

s ds ∨ E
∫ t

0
r2(γ−1)

s ds < ∞, ∀t > 0,

where a ∨ b := max(a, b).

The rest of the paper is organized as follows. Firstly, we study the relation between CKLS model and CIR model
in Section 2, we derive the transform under which an arbitrary CKLS model can be transformed to a CIR model
formally. In Section 3 we will prove that the condition of Girsanov transform is satisfied (that is, Rt defined in
Section 2 is a true martingale under Q). After this, we prove Theorem 2 and Theorem 3 in Section 4. Finally we
give the moment estimation of CKLS model, which is our Theorem 4.

2. The Relation between CKLS Model and CIR Model

Suppose f : R+ → R+ is a differentiable function such that

xγ f ′(x) = C
√

f (x), C > 0.

Then we have

f (x) =
C2

4(1 − γ)2 (x1−γ +C′)2,

where C′ is an arbitrary contant. Take C′ = 0 for simplicity. Then

f (x) =
C2

4(1 − γ)2 x2(1−γ).
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We also have

f ′(x) =
C2

2(1 − γ) x1−2γ, f ′′(x) =
C2(1 − 2γ)

2(1 − γ) x−2γ.

It’s clear that f (x) is strictly monotone on (0,∞), so we have

f −1(x) =
∣∣∣∣2(γ − 1)

C

∣∣∣∣ 1
1−γ x

1
2(1−γ) .

By Itô’s formula, we have

d f (rt) = [ f ′(rt)(a − brt) +
σ2

2
f ′′(rt)r

2γ
t ]dt + σ f ′(rt)r

γ
t dBt

= [
aC2

2(1 − γ) r1−2γ
t +

bC2

2(1 − γ) r2−2γ
t +

σ2

2
C2(1 − 2γ)

2(1 − γ) ]dt + σC
√

f (rt)dBt.

Denote Yt = f (rt). Then rt = f −1(Yt) =
∣∣∣∣ 2(γ−1)

C

∣∣∣∣ 1
1−γ Y

1
2(1−γ)

t . Therefore,

dYt = [
σ2C2(1 − 2γ)

4(1 − γ) +
bC2

2(1 − γ) (
2(γ − 1)

C

√
Yt)2 +

aC2

2(1 − γ) r1−2γ
t ]dt + σC

√
YtdBt. (3)

Define

q(rt) : = (
a
σ

r−γt −
γσ

2
rγ−1

t )sgn(γ − 1), (4)

B̄t := Bt −
∫ t

0
q(rs)ds

and

Rt := exp{
∫ t

0
q(rs)dBs −

1
2

∫ t

0
q(rs)2ds}.

It’s clear that Rt is an Ft local martingale with respect to probability measure P. If {Rt} is a real martingale with
respect to P, then by Girsanov transform, there exists a probability measure Q on Ω such that dQ

dP |Ft = Rt and B̄t is
an Ft Brownian motion with respect to Q. Then Yt satisfies the following CIR model

dYt = (
σ2C2

4
+ 2b(1 − γ)Yt)dt + σC

√
YtdB̄t.

So the key point is to prove that {Rt} is a true martingale, which will be fulfiled in the next Section.

3. Rt is a True Martingale with Respect to Probability P

To prove that Rt is a true martingale, let us consider the following auxiliary equation

dr̃t = (a − br̃t + q(r̃t)σr̃γt )dt + σr̃γt dB′t , r̃0 = r0, (5)

where B′t is Brownian motion, q are defined as in Section 2. Since we have known that, with probability one, the
solution of equation (1) will never leave the state space (0,∞), by Mijatović and Urusov (Mijatović & Urusov,
2012) Corollary 2.2, we only need to prove that the solution of equation (5) will also never leave the state space
(0,∞).

3.1 In Case γ > 1

If γ > 1, then equation (5) could be transformed to

dr̃t = (2a − br̃t −
γσ2

2
r̃2γ−1

t )dt + σr̃γt dB′t . (6)
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For this equation, since µ(x) = 2a − bx − γσ
2

2 x2γ−1 satisfies

(x − y)(µ(x) − µ(y)) ≤ 0 ≤ K(x − y)2,∀x, y

and xγ is local Lipschitz continuous, by Gyöngy and Krylov (Gyöngy & Krylov, 1996) Corollary 2.7, there exists
a unique solution solution of equation (5). We now prove that the solution r̃t > 0,∀t ≥ 0 almost surely. Define

τk := inf{t > 0, r̃t < (
1
k
, k)}, k ≥ k0

where k0 is large enough such that r0 ∈ ( 1
k0
, k0).

We only need to prove
τ∞ := lim

k→∞
τk = ∞.

If not, we can choose T > 0, 0 < ε < 1 such that P(τ∞ ≤ T ) ≥ ε. Then there exists k1 ≥ k0 such that

P(τk ≤ T ) ≥ ε ∀k ≥ k1.

Define
V(x) =

√
x − 1 − 1

2
log x, x > 0.

Then if r̃t > 0, Itô’s formula yields that

dV(r̃t) =
1
2

(r̃−
1
2

t − r̃−1
t )(2a − br̃t −

γσ2

2
r̃2γ−1

t )dt

+
σ2

4
(−1

2
r̃−

3
2

t + r̃−2
t )r̃2γ

t dt +
σ

2
(r̃−

1
2

t − r̃−1
t )r̃γt dB′t

= F(r̃t)dt +
σ

2
(r̃−

1
2

t − r̃−1
t )r̃γt dB′t ,

where

F(x) =
1
2

(x−
1
2 − x−1)(2a − bx − γσ

2

2
x2γ−1) +

σ2

4
(−1

2
x−

3
2 + x−2)x2γ.

Since the coefficients of the highest and lowest order of F(x) are both negative (the coefficients are −σ
2(2γ+1)

8 ,−a,
respectively), then F(x) is bounded, say by K, on x ∈ (0,∞). Thus,

dV(r̃t) ≤ Kdt +
σ

2
(r̃−

1
2

t − r̃−1
t )r̃γt dB′t

as long as r̃t ∈ (0,∞). So we have
E(V(r̃T∧τk )) ≤ V(r0) + KT.

Set Ωk = {τk ≤ T }, then P(Ωk) ≥ ε for k ≥ k1. Since

r̃(τk, ω) = k or
1
k
,

then

V(r̃(τk, ω)) ≥ (
√

k − 1 − 1
2

log k) ∧ (
1
2

log k +

√
1
k
− 1).

Therefore,
V(r0) + KT ≥ E(V(r̃T∧τk )) ≥ E(1Ωk V(r̃(τk, ω)))

≥ ε[(√k − 1 − 1
2

log k) ∧ (
1
2

log k +

√
1
k
− 1)

]
.

Letting k → ∞ leads to a contradiction
∞ > V(r0) + KT ≥ ∞.
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So τ∞ = ∞. That is, with probability 1, rt > 0 for all t ≥ 0. Therefore, Rt is a true martingale with respect to P.

3.2 In Case 1
2 ≤ γ < 1

In this case, equation (5) becomes to

dr̃t = (
γσ

2
r̃2γ−1

t − br̃t)dt + σr̃γt dB′t. (7)

Note that the method we used in Subsection 3.1 to prove the positivity of the solution can not be used in the present
case. Since

σxγ > 0, ∀x > 0 and
1
σ2x2γ ,

γσ
2 x2γ−1 − bx

σ2x2γ ∈ L1
loc(0,∞),

where L1
loc(0,∞) denotes the class of locally integrable functions, i.e. the functions (0,∞)→ R that are integrable

on compact subsets of (0,∞). By (Engelbert & Schmidt, 1985), (Engelbert & Schmidt, 1991) or (Karatzas &
Shreve, 1991) Chapter 5, Theorem 5.15, there exists a unique in law weak solution that possibly exits its state
space (0,∞).

We now prove that the solution r̃t > 0,∀t ≥ 0 almost surely by using Feller’s test for explosions.

Define the scale function

p(x) =
∫ x

1
exp

{
− 2

∫ y

1

γσ
2 z2γ−1 − bz

σ2z2γ dz
}
dy. (8)

Compute

p(x) = exp{− b
σ2(1 − γ) }

∫ x

1
y−

γ
σ exp

{ b
σ2(1 − γ)y2(1−γ)

}
dy. (9)

In the case when γ
σ
≥ 1 and b > 0, it is ease to see that

lim
x↓0

p(x) = −∞ and lim
x↑∞

p(x) = ∞.

By (Karatzas & Shreve, 1991) Proposition 5.22,

P(τ∞ = ∞) = 1,

where τ∞ is defined as Subsection 3.1. That is, the solution of equation will never leave the state space (0,∞).
Therefore, Rt is a true martingale. The proof of Theorem 1 is then complete.

4. Explicit Solution and Precise Distribution of rt under Probability Q

Proof of Theorem 2 By Theorem 1, we know that Yt = f (rt) satisfies the CIR model. By Itô’s formula

d
√

Yt =
1

2
√

Yt
[(
σ2C2

4
+ 2b(1 − γ)Yt)dt + σC

√
YtdB̄t] −

1

8Y
3
2

t

σ2C2Ytdt

= b(1 − γ)
√

Ytdt +
σC
2

dB̄t.

So
√

Yt is an Ornstein-Uhlenbeck process, whose solution is√
Yt =

√
Y0eb(1−γ)t +

σC
2

∫ t

0
eb(1−γ)(t−s)dB̄s.

Here
√

x should be understood as a real number a such that a2 = x, otherwise we will get a contradiction since the
left hand side of the equation is non negative while the right hand side will be negative with positive probability.

Thus

rt =
∣∣∣∣2(γ − 1)

C

∣∣∣∣ 1
1−γ Y

1
2(1−γ)

t =
∣∣∣∣r1−γ

0 e−(γ−1)bt + σ|γ − 1|
∫ t

0
e−b(γ−1)(t−s)dB̄s

∣∣∣∣ 1
1−γ
.

We complete the proof.
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Proof of Theorem 3 Define L = σ2C2

8b(γ−1) (1 − e2b(1−γ)t). By (Lamberton & Lapeyre, 1996) Proposition 6.2.5 with
µ = 0, we know that Yt/L satisfies the non-central chi-square law with δ degrees of freedom and parameter ζ,
where

δ = C2, ζ =
8Y0b(γ − 1)

σ2C2(e2b(γ−1)t − 1)
.

Thus the density of Yt/L is given by

gδ,ζ(x) =
e−ζ/2

2ζδ/4−1/2 e−x/2xδ/4−1/2(
√

xζ
2

)δ/2−1
∞∑

n=0

(
√

xζ/2)2n

n!Γ(δ/2 + n)
, x > 0,

where Γ(x) =
∫ ∞

0 tx−1e−tdt.

Therefore

gt(x) = gδ,ζ(
f (x)
L

)
∣∣∣∣ f ′(x)

L

∣∣∣∣, x > 0.

We then complete the proof of Theorem 3.

Remark 2 Let us denote P(t,T ) the price of zero-coupon bond paying 1 dollar at a maturity date T . If we take the
risk premium as q(rt), defined by (4), then Q is the so-called risk neutral probability. Thus,

P(t, u) = EQ(e−
∫ u

t rsds|Ft) = EQ(e−
∫ u−t

0 rsds)

= EP(e
−

∫ u−t
0

∣∣∣∣r1−γ
0 e−(γ−1)bs+σ|γ−1|

∫ s
0 e−b(γ−1)(s−l)dBl

∣∣∣∣ 1
1−γ

ds
).

5. Moment Estimations of rt

Proof of Theorem 4 By Itô’s formula, it follows that

dr−2γ
t = (−2γr−2γ−1

t (a − brt) +
2γ(2γ + 1)σ2

2
r−2

t )dt − 2γσr−γ−1
t dBt

= −2aγ(r−2γ
t )1+ 1

2γ dt + 2bγr−2γ
t dt + γ(2γ + 1)σ2(r−2γ

t )
1
γ dt + Mt.

(10)

5.1 Case I: 1
2 ≤ γ < 1

If 1
2 ≤ γ < 1, since

(x−2γ)
1
γ ≤ (x−2γ)1+ 1

2γ + 1, ∀x > 0,

we have

E(r−2γ
t ) ≤ r−2γ

0 + γ(2γ + 1)σ2t + 2bγ
∫ t

0
E(r−2γ

s )ds

in case (2γ + 1)σ2 ≤ 2a.

Gronwall’s lemma yields that

E(r−2γ
t ) ≤ Ψ(t) + 2bγ

∫ t

0
Ψ(s)e2bγ(t−s)ds,

where Ψ(t) = r−2γ
0 + γ(2γ + 1)σ2t. It’s clear that the right hand side of the inequality is locally integrable with

respect to t. Therefore,

E
∫ t

0
r−2γ

s ds < ∞

holds for any t > 0.

On the other hand, by Itô’s formula,

dr2(γ−1)
t =

(
2(γ − 1)r2γ−3

t (a − brt) +
2(γ − 1)(2γ − 3)σ2

2
r4γ−4

t

)
dt + 2(γ − 1)σr3γ−3

t dBt.
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Notice that 2γ − 3 ≤ 4γ − 4 < 0, and if (2γ + 1)σ2 ≤ 2a, then

2(γ − 1)(2γ − 3)σ2

2
≤ 2a(1 − γ).

Thus E(r2(γ−1)
t ) ≤ r2(γ−1)

0 + (γ − 1)(2γ − 3)σ2t + 2b(1 − γ)
∫ t

0 E(r2(γ−1)
s )ds.

By using Gronwall’s lemma again,

E(r2(γ−1)
t ) ≤ Ψ̃(t) + 2b(1 − γ)

∫ t

0
Ψ̃(s)e2b(1−γ)(t−s)ds,

where Ψ̃(t) = r2(γ−1)
0 + (γ − 1)(2γ − 3)σ2t.

So we have proved Theorem 4 in case that 1
2 ≤ γ < 1, (2γ + 1)σ2 ≤ 2a.

5.2 Case II: 1 < γ < 3
2

Note that 0 < 1
γ
< 1 in this case. Since

x
1
γ ≤ x + 1, ∀x > 0,

by (10) we have

E(r−2γ
t ) ≤ r−2γ

0 + γ(2γ + 1)σ2t + γ(2b + (2γ + 1)σ2)
∫ t

0
E(r−γs )ds.

Gronwall’s lemma yields that

E(r−2γ
t ) ≤ Ψ(t) + γ(2b + (2γ + 1)σ2)

∫ t

0
Ψ(s)eγ(2b+(2γ+1)σ2)(t−s)ds,

where Ψ(t) = r−2γ
0 + γ(2γ + 1)σ2t. Then

E
∫ t

0
r−2γ

s ds < ∞

holds for any t > 0.

On the other hand, by (1),

E(rt) = r0 + at − b
∫ t

0
E(rs)ds.

Thus E(rt) = a
b + (r0 − a

b )e−bt. Since 1 < γ ≤ 3
2 ,

E(r2(γ−1)
t ) ≤ 1 + E(rt) = 1 +

a
b
+ (r0 −

a
b

)e−bt.

We complete the proof of Theorem 4.

From this, we know that E
∫ t

0 q(rs)2ds < ∞ for any t > 0 if 1
2 ≤ γ < 1 and (2γ + 1)σ2 ≤ 2a, or 1 < γ < 3

2 .

Therefore, we have proved that
∫ t

0 q(rs)dBs is a true martingale.
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