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Abstract

In this article for a finite typed random geometric graph we define the empirical locality distribution, which records
the number of nodes of a given type linked to a given number of nodes of each type. We find large deviation
principle (LDP) for the empirical locality measure given the empirical pair measure and the empirical type measure
of the typed random geometric graphs. From this LDP, we derive large deviation principles for the degree measure
and the proportion of detached nodes in the classical Erdős-Rényi graph defined on [0, 1]d. This graphs have been
suggested by (Canning and Penman, 2003) as a possible extension to the randomly typed random graphs.
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1. Introduction

The typed random geometric graph (TRGG) is obtain when n nodes or nodes or points are placed uniformly at
random in [0, 1]d, and in addition each node is assigned an independently chosen type or colour or symbol or
spin from a finite alphabet B. And any two points with types a1, a2 (resp.) distance at most rn(a1, a2) apart are
linked. The linking radius rn plays similar role as the link probability pn in the randomly coloured random graph
models introduced by (Penman, 1998), surveyed by (Canning and Penman, 2003) and studied in (Doku-Amponsah
and Moerters, 2010). The classical Erdős-Rényi graph on [0, 1]d is obtain when n points are chosen at random
uniformly and independently from [0, 1]d and λn edges are inserted at random among the nodes.

In this article we extend the LDP for the empirical locality measure conditioned on the empirical pair measure
and the empirical type distribution, see (Doku-Amponsah et al., 2010, Theorem 2.5), to TRGG models. From this
result we derive the LDP for the degree distribution and proportion of detached nodes the classical Erdős-Rényi
graph defined on [0, 1]d. See (Doku-Amponsah, 2014) for similar result for the classical Erdö-Renyi graphs.

Note that the LDP for the empirical locality measure conditioned on a given empirical pair measure and empirical
type measure of TRGG is a crucial step in the establishment of a full large deviation principle for the empirical
locality measure of TRGG. See (Doku-Amponsah, 2014[b]).

1.1 TRGG Model

The TRGG is a general model of random geometric graphs in which the linking radius depends on the type or
type of the nodes. The main statistics for this model of random graphs are the empirical pair distribution and the
empirical type distribution.

Given a probability measure ν on B and a symmetric function rn : B × B → (0, 1] we define the randomly typed
random geometric graph or typed random geometric graph X having n nodes as follows: Pick nodes X1, ..., Xn at
random independently according to the uniform distribution on [0, 1]d. We assign to each node X j type Z(X j) at
random and independently according to the type law ν. Given the types, we link any two nodes Xi, X j,(i , j) by an
edge independently of everything else, if

∥Xi − X j∥ ≤ rn
[
Z(Xi),Z(X j)

]
.
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In this article we shall refer to rn(a1, a2), for a1, a2 ∈ B as a link radius, and always look at

X = ((Z(Xi),Z(X j)) : i, j = 1, 2, 3, ..., n), E)

under the joint measure of graph and type. We look at X as TRGG with nodes X1, ..., Xn chosen at random uniformly
and independently from the nodes space [0, 1]d. For the purposes of this study we restrict ourselves to the near
intermediate cases .i.e. the link radius rn satisfies the condition nrd

n(a1, a2) → λ(a1, a2) for all a1, a2 ∈ B, where
λ : B2 → [0,∞) is a symmetric function, which is not identically equal to zero.

For any set of finite or countable elements B, let P(B) be the space of probability vectors, and P̃(B) the space of
finite vectors on B, both equipped with the weakest topology on P(B). By convention we write

Z = {0, 1, 2, ...}.

We associate with any typed graph X a probability measure, the empirical type distribution L1
X ∈ P(B), by

L1
X(a) :=

1
n

n∑
j=1

δZ(X j)(a), for a1 ∈ B,

and the empirical pair measure L2
X ∈ P̃∗(B2), by

L2
X(a1, a2) :=

1
n

∑
(i, j)∈E

[δ(X(Yi),Z(X j)) + δ((Z(X j),X(Yi))](a1, a2), for (a, b) ∈ B2.

Also we define the empirical locality measureMX ∈ P(B ×Z), by

MX(a1, σ) :=
1
n

n∑
j=1

δ(Z(X j),A(X j))(a1, σ), for (a1, σ) ∈ B ×Z,

whereA(i) = (σi(a2), a2 ∈ B) and σi(b) is the number of nodes of type a2 linked to node i.

For any n ∈ Z we define

Pn(B) :=
{
ϖ ∈ P(B) : nϖ(a) ∈ Z for all a ∈ B},

P̃n(B × B) :=
{
ω ∈ P̃∗(B × B) : n

1+1l{a1=a2} ω(a1, a2) ∈ Z for all a1, a2 ∈ B
}
,

1.2 Conditional TRGG.

Let ϖ(a1) > 0, for all a1 ∈ B. We observe that the distribution of the TRGG if the empirical type measure ϖn and
empirical pair distribution ωn,

P(ϖn,ωn) := P{ · |H(MX) = (ϖn, ωn)},
may be obtained as follows:

• Pick nodes X1, ..., Xn at random independently according to the uniform distribution on [0, 1]2.

• Give types to the nodes by picking without replacement from the constellation of n types, containing each
type a1 ∈ B precisely nϖn(a) times;

• For each pair {a1, a2} of types make precisely n(a1, a2) links by picking without replacement from the pool
of potential edges linking nodes of type a1 and a2, where

mn(a1, a2) :=
{

nωn(a1, a2) if a1 , a2
n
2 ωn(a1, a2) if a1 = a2 .

In the remainder of the paper we state and prove our LDP results. In Section 0.1 we state our LDPs, Theorem 0.1,
Theorem 0.2, and Corollary 0.3. The proof of Theorem 0.1, carried out in Section 0.1, uses a combinatorial
arguments based on random allocation of typed balls into typed bins and (Doku-Amponsah,Lemma 5, 2014). The
article ends with the proofs of Theorem 0.2 and 0.3 in Subsection 0.1.
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2. Statement of the Results

For any ℓ ∈ P(B×ZB)we denote by ℓ1 theB−marginal of ℓ and for every (a2, a1) ∈ B×B, let ℓ2 be the distribution
of the couple (a1, σ(a2)) under the measure ℓ.We define the finite measure,H ∈ P̃(B × B) by

H2(ℓ)(a2, a1) :=
∑
σ(a2)∈Z

ℓ2(a1, σ(a2))σ(a2), for a1, a2 ∈ B

and writeH1(ℓ) = ℓ1.We define the functionH : P((B ×ZB)→ P(B) × P̃(B ×B) byH(ℓ) = (H1(ℓ),H2(ℓ)) and
observe thatH(MX) = (L1

X ,L2
X).Note that, in the weak topologyH1 is not discontinuous function butH2 is. To be

specific, in the expression
∑
σ(a2)∈Z

ℓ2(a1, σ(a2))σ(a2) the function σ(a2) may not be bounded and hence in the weak

topology the functional ℓ → H2(ℓ) would be discontinuous. We say two of measures (ω, ℓ) ∈ P̃(B×B)×P(B×ZB)
consistent if

H2(ℓ)(a2, a1) = ω(a2, a1), for all a1, a2 ∈ B. (1)

The next theorem gives LDP for the empirical locality measure of a sequence of graphs with given empirical type
distribution and empirical pair distribution.

Theorem 0.1. Let the sequence (ϖn, ωn) ∈ Pn(B) × P̃n(B × B) converges to a limit ((ϖ,ω) ∈ P(B) × P̃∗(B × B).
Suppose that X is a TRGG graph conditioned on the set {H(MX) = (ϖn, ωn)}. Then, the empirical locality measure
MX , as n→ ∞, satisfies an LDP in the space P(B ×Z) with good rate function

J̃((ϖ,ω)(ℓ) =
{

H(ℓ ∥Qpoi) if (ω, ℓ) is consistent and ℓ1 = ϖ2
∞ otherwise. (2)

where
Qpoi(a1 , σ) = ℓ1(a1)

∏
a2∈B

e−
ω(a1 ,a2)
ℓ1(a1)

1
σ(a2)!

(ω(a1, a2)
ℓ1(a)

)σ(a2)
, for a1 ∈ B, σ ∈ Z.

Note that degree distribution DX ∈ P(Z) of a graph with empirical locality distributionMX is given by

DX(r) =
∑
a1∈B

∑
σ∈Z
δr
(∑

a2∈Bσ(a2)
)MX(a1, σ), for r ∈ Z,

i.e. DX(r) is the proportion of nodes in the graph with degree r. Theorem 0.2 below is a spacial case of Theorem 0.1
above whereMX = DX , the degree distribution and ⟨H(MX)⟩ = 2|E|/n.
We write

ρ(d) = πd/2

Γ
( (d+2)

2
) ,

where Γ is the gamma function.

Theorem 0.2. Suppose the sequence λn/n converges to a limit ρ(d)t/2. Let G(n, λn) be a Random geometric graph,
where nodes X1, ..., Xn are chosen at random uniformly and independently from [0, 1]d, and λn edges are inserted
at random among the nodes. Then, as n → ∞, the degree distribution DX of G(n, λn) satisfies large deviation
principle on the space P(Z) with good rate function

η(δ) =
{

H(δ ∥ q⟨δ⟩), ⟨δ⟩ = ρ(d)t
∞ , otherwise. (3)

From Theorem 0.2 above we obtain the following Corollary 0.3 using the contraction principle. See (Dembo and
Zeitouni, 1998).

Corollary 0.3. Suppose the sequence λn/n converges to a limit ρ(d)t/2. Let G(n, λn) be a random geometric graph,
where nodes X1, ..., Xn are chosen at random uniformly and independently from [0, 1]d, and λn edges are inserted
at random among the nodes. Then, the proportion of detached nodes DX(0) of G(n, λn), as n → ∞, obeys an LDP
on the space [0, 1] with good, convex rate function

ξ(y) =
{

y log y
1−e−ρ(d)t + (1 − y) log (1−y)

(1−e−ρ(d)t) + ρ(d)t log λ − ρ(d)t log cρ(d), if y ≥ 1 − tρ(d),
∞ if y < 1 − tρ(d),

(4)

where α = α(y, t) uniquely solve the equation 1−e−α
α
=

1−y
ρ(d)t .
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(Doku-Amponsah,2014) obtained the same result for the proportion of detached nodes in G(n, nt/2).

3. Proof of the Results

3.1 Proof of Theorem 0.1 by Random Allocation

We recall the conditional TRGG from Subsection 0.1 and denote by X(a1) the collection of nodes which have type
a1 ∈ B.
Note that

♯X(a1) = nϖn(a1).

The random allocation model is appropriately obtained when typed balls are dropped at random in typed bins. In
the next Lemma we prove the exponential equivalence for the distribution of M̃X , see (Doku-Amponsah, 2014),
with respect to P̃(ϖn,ωn) the law of the random allocation model andM with respect to P(ϖn,ωn) where

P(ϖn,ωn) = P{ · |H(MX) = (ϖn, ωn)}.

Thus the distribution of the TRGG conditioned to have type lawϖn and edge distributionϖn. Recall the definition
of exponential equivalence, see (Dembo et al., 1998, Definition 4.2.10).We define the metric D of total variation
by

D(ℓ, ℓ̃) = 1
2

∑
(a1,σ)∈B×ZB

|ℓ(a1, σ) − ℓ̃(a1, σ)|, for ℓ, ℓ̃ ∈ P(B ×ZB)

and observe that this metric generates the weak topology.

Lemma 0.4. For every ε > 0,
lim
n→∞

1
n logP

{D(MX , M̃X) ≥ ε} = −∞, (5)

where P is a suitable coupling between the laws P̃(ϖn,ωn) and P(ϖn,ωn).

Proof. Proof of this Lemma given below is also uses the same coupling argument of (Boucheron et al., 2003) pre-
sented in (Doku-Amponsah, 2014). To begin, we label the bins X1, X2, ..., Xn and denote by Z(Xi), i = 1, 2, 3, ..., n
the types of the bins.

For each a1, a2 ∈ B we begin coupling procedure as follows: At every step u = 1, . . . ,mn(a1, a2), we pick at
random two nodes Xu

i ∈ X(a1) and Xu
j ∈ X(a2). We place one ball of type a2 into bin Xu

i and one ball of type a1 in
Xu

j , and join Xu
i with Xu

j by an edge except when Xu
i = Xu

j or the pair of nodes already formed an edge. If one of
these three scenario occur, then we only pick two vertices at random from the set of all vertices of types a1 and a2,
which are not already an edge in our graph model and we place an edge between them. This ends the formation
of the graph having L1

X = ϖn, L2
X = ωn. For this collection denote, for each bin Xi ∈ {X1, X2, ..., Xn},by σi(a2) the

number of balls of type a2 ∈ B it contains, and define the empirical occupancy measure of the collection by

M̃X(a1, σ) =
1
n

∑
v∈V
δ(X̃(v),Ã(v))(a1, σ), for (a1, σ) ∈ B ×ZB.

Observe that
D(MX , M̃X) ≤ 2

n

∑
a1,a2∈B

Bn(a1, a2) , (6)

where Bn(a1, a2) is the total number of steps u ∈ {1, . . . ,mn(a1, a2)} at which there is inconsistency between the
nodes Xu

i , Xu
j sampled and the nodes that received the uth edge linking a1 and a2 in the graph formation.

If a1, a2 ∈ B,the frequency of Xu
i = Xu

j or the two nodes are already linked is equal to

p[u](a1, a2) ≤ 1
mn(a1,a2) 1l{a1=a2} +

(
1 − 1

mn(a1,a2) 1l{a1=a2}
) (u−1)

(mn(a1,a2))2 .

Bn(a1, a2) is a sum of independent 0 or 1 random variables Y1, ..., Ymn(a1,a2) with ‘success’ frequencies equal to
p[1](a1, a2), . . . , p[mn(a1,a2)](a1, a2). Note that E[Yu] = p[u](a1, a2) and

Var[Yu] = p[u](a1, a2)(1 − p[u](a1, a2)).
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Now, we have

EBn(a1, a2) =
mn(a1,a2)∑

k=1

p[u](a1, a2) ≤ 1l{a1=a2} +
(
1 − 1l{a1=a2}

1
mn(a1,a2)

)(
1 − 1

mn(a1,a2)
) ≤ 1 + 1l{a1=a2}.

We write

σ2
n(a1, a2) := 1

mn(a1,a2)

mn(a1,a2)∑
k=1

Var[Yk]

and observe that

lim
n→∞

E(Bn(a1, a2)) = lim
n→∞

Var(Bn(a1, a2)) = lim
n→∞

mn(a1, a2)σ2
n(a1, a2) = 1l{a1=a2} + 1.

Define h(t) = (1 + t) log(1 + t) − t, for t ≥ 0 and apply Bennett’s inequality, see ( Bennett, 2004) to obtain, for very
large n

P
{ Bn(a1,a2)

n ≥ 1l{a1=a2 }+1
n + δ1

} ≤ exp
[
− mn(a1, a2)σ2

n(a1, a2)h( nδ1
n(a1,a2)σ2

n(a1,a2) )
]
,

for any δ1 > 0. Let ε ≥ 0 and choose δ1 = ε
2m2 . Suppose that we have Bn(a1, a2) ≤ δ. Then, by (6),

d(MX , ℓn) ≤ 2δ1m2 = ε.

Hence,

P
{D(MX , M̃X) > ε

} ≤ ∑
a1,a2∈B

P
{
Bn(a1, a2) ≥ nδ1

} ≤ m2 sup
a1,a2∈B

P
{
Bn(a1, a2) ≥ 1l{a1=a2} + 1 + (nδ1)/2

}
≤ m2 sup

a1,a2∈B
exp
[
− mn(a1, a2)σ2

n(a1, a2)h( nδ1
mn(a1,a2)σ2

n(a1,a2) )
]
.

Let 0 ≤ δ2 ≤ 1. The, for very large n we that have

1
n

logP
{
D(MX , M̃X) > ε

}
≤ −(1 − δ2)h( nδ1

2(1+δ2) )

= −(1l{a1=a2} + 1 − δ2)
[
( 1

n +
δ1

2(1l{a1=a2 }+1+δ2) ) log(1 + nδ1
2(1l{a1=a2 }+1+δ2) ) −

δ1
2(1l{a1=a2 }+1+δ2)

]
.

(7)

This ends the proof of the Lemma.

To conclude the proof of Theorem 0.1, we note that empirical occupancy measure M̃X is exponential equivalent
to MX , and further M̃X under the law P̃(ϖn,ωn) obeys a large deviation principle with rate function J̃((ϖ,ω) by
(Doku-Amponsah, Lemma 5, 2014). Therefore, by the exponential equivalent theorem, see (Dembo et al.,1998,
Theorem 4.2.13), M obeys an LDP with the rate function J̃((ϖ,ω).

3.2 Proof of Corollary 0.3 by the Contraction Principle

We prove Corollary 0.3 from Theorem 0.2 by using the contraction principle, (?, Theorem 4.2.1) on the linear
mapping G : P(Z) → [0, 1] given by G(δ) = δ(0). To be specific, Theorem 0.2 implies an LDP for random
variable G(DX) = DX(0) with good rate function

ξ(y) = inf
{
H(δ ∥ q⟨δ⟩) : δ ∈ P(Z), δ(0) = y,

∞∑
r=0

rδ(r) = ρ(d)t
}
.

Note that, we have

ρ(d)t =
∞∑

k=1

kδ(k) ≥
∞∑

k=1

δ(k) = 1 − y,

and that the class of measures satisfying the two constraints is necessarily empty if tρ(d) < 1 − y. If ρ(d)t ≥
1 − y,using the Lagrangian method we can calculate the minimizer p, defined by p(0) = y, p(k) := U(y, t)−1 (α(y,t))k

k!
where α(y, c) uniquely solve

eλ−1
λ
=

1−y
ρ(d)t
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and U(y, t) := eλ−1

1−y . Therefore, we have

η(y) = x log
y

qcρ(d)(0)
+ (1 − y) log

(1 − y)
1 − qcρ(d)(0)

+ (1 − y)
∞∑

k=1

p(k) log p(k)
q̂ρ(d)t(k) .

= y log
y

qρ(d)t(0)
+ (1 − y) log

(1 − y)
1 − qtρ(d)(0)

+ tρ(d) log λ
tρ(d)

= y log
y

e−ρ(d)t + (1 − y) log
(1 − y)

1 − e−ρ(d)t + tρ(d) log λ
tρ(d)

(8)

if tρ(d) ≥ 1− y and∞ otherwise. Particularly, if y = e−tρ(d) then we have α(y, t) = tρ(d), which gives η(e−tρ(d)) = 0.
This end the proof of Theorem 0.3.
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