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Abstract

Let F = (F (t), t ∈ R+) be a filtration on some probability space, and X be the strong solution of the equation

X(t) = X̊ +
∫ t

0
Q(s, X(s))dι(s) +

∫ t
0
σ(s, X(s−))dY(s), where X̊ is an F (0)-measurable Rd-valued random variable,

ι is a continuous increasing process with F (0)-measurable values at all times, Y is an Rm-valued locally square

integrable martingale with respect to F subjected to some mild additional demands, Q and σ are continuous in

x ∈ Rd random functions on R+×Rd (the former Rd-valued and F-progressive in (ω, t) ∈ Ω×R+, the latter (d×m)-

matrix-valued and F-predictable). Suppose also that there exists an F (0) ⊗ B+-measurable in (ω, t) nonnegative

random process ψ such that, for all t, x, x�Q(t, x) ≤ −ψ(t)|x|2 and
∫ t

0
ψ(s)dι(s) < ∞. Under these assumptions,

E(|X(t)|2|F (0) is evaluated from above.
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1. Introduction

The random processes under consideration are assumed given on a common probability space (Ω,F ,P). Let F 0

be a sub-σ-algebra of F . We introduce the notation: E0 = E
(
· · · |F 0

)
(the definition of conditional expectation, in

particular E0, adopted in this article does not demand finiteness of first absolute moment–see Section 2);V+0 is the

class of all increasing from zero numeral random processes whose values at all times are F 0-measurable random

variables, V+, c
0

is its subclass of continuous processes. If, besides, a filtration F = (F (t), t ∈ R+) is given, then

we identify F 0 with F (0). By �M2 we denote, following (Gikhman & Skorokhod, 1982, 2009), the class of all

Rm-valued (m will be determined by context, if matters) locally square integrable martingales w.r.t. F.

Let X be the strong solution of a stochastic differential equation of the kind

X(t) = X̊ +
∫ t

0

Q(s, X(s))dι(s) +

∫ t

0

σ(s, X(s−))dY(s),

where ι ∈ V+, c
0

and Y is chosen from some subclass of �M2 which is constructed and studied in Section 2 (and was

introduced in (Yurachkivsky, 2013a, 2013b)). The goal of this article is to find an upper bound, much more exact

than that provided by the Gronwall–Bellman lemma, for E0|X(t)|2. This is done in Section 3 containing the final

result of the article together with its application to stability theory. In the case σ = const, an estimate for E0|X(t)|2
was found in (Yurachkivsky, 2013a), and it is the starting point for our present research. Sections 1 and 2 contain

preparatory technical results of which the Fubini-type theorem for conditional expectations (Proposition 2.3) may

be of interest on its own right.

Stability of order p of the solution of a SDE is usually studied with the aid of Lyapunov’s functions (see, e.g.,

Khasminsky, 2012; Shen & Sun, 2011). But this approach is fruitful only when Q, σ and ι are nonrandom and

Y has independent increments, so that X is a Markov process. Our Theorem 3.1 yields, as a byproduct, sufficient

conditions for mean square stability without these restrictive assumptions. The only specific condition of that

theorem–inequality (26)–is of quadratic nature, which explains why the theorem concerns only the case p = 2.

All vectors are thought of as columns;
∫ b

a means
∫

]a,b]
. We use the Euclidean norm | · | of vectors and the operator

norm ‖ · ‖ of matrices
(
‖A‖ = sup|x|≤1 |Ax|

)
. The symbols Matrd×m, S and S+ signify the class of all d ×m matrices
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with real entries, the class of all symmetric m × m matrices with real entries and its subclass of nonnegative (in

the spectral sense) matrices, respectively. For A, B ∈ S, the inequality A ≤ B means that B − A ∈ S+ (so that

one may speak about increasing S-valued functions). The words “almost surely” are tacitly implied in relations

between random variables, including the convergence relation unless it is explicitly written as the convergence in

probability. Indicators are denoted by I with two possible modes of writing the set: IB or I{· · · }.
The reference books for the notions and results of stochastic analysis used in this paper are (Elliott, 1982; Gikhman

& Skorokhod, 1982, 2009; Jacod & Shiryaev, 1987; Liptser & Shiryaev, 1989).

2. Deterministic Preliminaries

Lemma 1.1 For any S ∈ S and B ∈ Matrd×m, tr BS B� ≤ ‖B‖2 tr S .

Proof. By a familiar property of symmetric matrices there exist real numbers λ1, . . . , λm and an orthonormal basis

h1, . . . , hm in Rm such that S = λ1h1h
�
1 + . . .+ λmhmh

�
m. Let us take an arbitrary orthonormal basis e1, . . . , ed in Rd.

Then for any symmetric d × d matrix A one has tr A = e�1 Ae1 + . . . + e
�
d Aed. In particular,

tr BS B� =
d∑

i=1

e�i BS B�ei =

d∑
i=1

e�i
m∑

j=1

λ jBh jh
�
j B�ei =

m∑
j=1

λ j

d∑
i=1

e�i (Bh j)(Bh j)
�ei,

i.e., tr BS B� =
∑m

j=1 λ j tr
(
(Bh j)(Bh j)

�). It remains to note that, firstly, for any x ∈ Rd tr xx� = |x|2 and, secondly,

|Bh j| ≤ ‖B‖ since |h j| = 1. �
In the subsequent three statements, H is a Borel Matrd×m-valued function and K is an increasing continuous S-

valued function, both defined on ]a, b] ⊂ R+. The (i, j)th entry of the the matrix H(s) (respectively K(s)) will be

denoted by hi j(s) (respectively κi j(s)). For an arbitrary natural n, we denote n = {1, . . . , n}.
Lemma 1.2 Suppose that ∫ b

a
‖H(s)‖2d tr K(s) < ∞. (1)

Then for all i ∈ d and λ, μ, ν ∈ m ∫ b

a
hiλ(s)2dκμν(s) < ∞. (2)

Proof. Obviously, the module of each entry of any matrix does not exceed the operator norm of the latter. So to

deduce (2) from (1) it suffices to show that for all μ, ν ∈ m, s ∈]a, b] and t ∈]s, b]

|κμν(t) − κμν(s)| ≤ tr K(t) − tr K(s). (3)

And this follows from the above-stated and the inequality ‖S ‖ ≤ tr S for an arbitrary S ∈ S+ (the norm of such a

matrix equals to its greatest eigenvalue). �

Corollary 1.1 Under condition (1), the integrals
∫ b

a hiμ(s)dκμν(s)h jν(s), i, j ∈ d, μ, ν ∈ m, are well-defined and

hereon the integral
∫ b

a H(s)dK(s)H(s)� exists.

Lemma 1.3 Condition (1) implies that

tr

∫ b

a
H(s)dK(s)H(s)� ≤

∫ b

a
‖H(s)‖2d tr K(s). (4)

Proof. For continuous H, the integrals on both sides of (4) are the limits of the Riemann–Stieltjes integral sums,

so in this case the inequality is immediate from Lemma 1.1.

By the dominated convergence theorem the class of those functions H which satisfy (4) contains the limit of every

pointwise convergent and uniformly bounded sequence of its elements. So it contains all bounded Borel functions,

since each of them arises from continuous ones by virtue of at most countably many bounded pointwise passages

to the limit. In case ‖H‖ is unbounded we introduce the functions

Hn(s) =
nH(s)

n ∨ ‖H(s)‖ .
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By construction ‖Hn(s)‖ ≤ n ∧ ‖H(s)‖, so by what was proved

tr

∫ b

a
Hn(s)dK(s)Hn(s)� ≤

∫ b

a
‖H(s)‖2d tr K(s).

It remains to show that ∫ b

a
Hn(s)dK(s)Hn(s)� →

∫ b

a
H(s)dK(s)H(s)�. (5)

Denote the (k, p)th entry of Hn(s) by hnkp(s). From (3) and the inequality ‖Hn(s)‖ ≤ ‖H(s)‖ we have

∣∣∣∣∣∣
∫ b

a
hniμ(s)hn jν(s)dκμν(s) −

∫ b

a
hiμ(s)h jν(s)dκμν(s)

∣∣∣∣∣∣ ≤
∫ b

a
gnk(s)d tr K(s), (6)

where k = (i, j, μ, ν), gnk = |hniμhn jν − hiμh jν|. Obviously, gnk ≤ 2‖Hn‖2 + 2‖H‖2 and all the more gnk ≤ 4‖H‖2.

Herein limn→∞ gnk(s) = 0 (since, evidently, limn→∞ Hn(s) = H(s)), which together with the last inequality and (1)

yields by the dominated convergence theorem

lim
n→∞

∫ b

a
gnkd tr K(s) = 0.

And this jointly with (6) entails (5). �
Lemma 1.4 Let f be a continuous at zero Rd-valued function on Rd such that x� f (x) ≤ c|x|2 for some c ∈ R and
all x ∈ Rd. Then f (0) = 0.

Proof. Denote q = f (0). By the assumption q� f (εq) ≤ cε|q|2 for all ε > 0. Hence, letting ε → 0 and taking to

account continuity of f at zero, we get |q|2 ≤ 0. �
2. Probabilistic Preliminaries

2.1 Extended Conditional Expectations

The definition of conditional expectation adopted in this article is due to Meyer (Shiryaev, 1996, Ch. II, § 7). It

admits existence of the conditional expectation of a random variable with infinite first absolute moment. In this

subsection, we recall some properties of thus generalized conditional expectation and prove several statements

concerning this notion.

Denote R+ = R+ ∪ {∞} and, for a ∈ R, a+ = a ∨ 0, a− = −(a ∧ 0), so that a = a+ − a−. In what follows,

“nonnegative” means “R+-valued” (the value∞ is not admitted).

Let G be a sub-σ-algebra of F . The conditional given G expectation of an R+-valued random variable γ is

defined, according to (Shiryaev, 1996), as the G-measurable R+-valued random variable E(γ|G) such that EγIG =

E(E(γ|G)IG) for every G ∈ G. For an R-valued random variable γ such that P{E(γ+|G) = ∞ = E(γ−|G)} = 0 we

set by definition E(γ|G) = E(γ+|G) − E(γ−|G). Further E(γ|G) is defined in the obvious way for Rd-valued (and

even Cd-valued if one needs) γ. Thus defined (on some extension of L1(Ω,F ,P)) conditional expectation is called

extended.

It is immediate from the above definition that E(cγ|G) = cE(γ|G) for every c ∈ R and Rd-valued random variable

γ such that E(|γ| | G) < ∞. In particular, E(−γ|G) = −E(γ|G) for such γ. This together with Lemma 2.11 in

(Yurachkivsky, 2013a) leads to the following conclusion.

Proposition 2.1 Let α and β be Rd-valued random variables such that E(|α| | G) < ∞, E(|β| | G) < ∞. Then
E(α ± β|G) = E(α|G) ± E(β|G).

Lemma 2.1 (Yurachkivsky, 2013a, Lemma 2.3) Let α and β be nonnegative random variables such that α ≤ β.
Then E(α|G) ≤ E(β|G).

Corollary 2.1 Let E(|γ| |G) < ∞. Then |E(γ|G)| ≤ E(|γ| |G).

Lemma 2.2 (Yurachkivsky, 2013a, Lemma 2.13) Let α and β be nonnegative random variables, α G-measurable.
Then E(αβ|G) = αE(β|G).

Lemma 2.3 (Yurachkivsky, 2013a, Lemma 2.14; Yurachkivsky, 2013b, Lemma 1.9) Let α and β be real-valued
random variables such that E(|β| | G) < ∞ and α is G-measurable. Then E(αβ|G) = αE(β|G).
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Lemma 2.4 (Yurachkivsky, 2013a, Corollary 2.8) For every sequence (γn) of nonnegative random variables one
has E(lim γ|G) ≤ lim E(γ|G).

In this subsection, we consider R-valued random processes. The total variation on [a, b] of a function f will be

denoted by var
[a,b]

f .

The following statement is immediate from Lemma 2.1, Proposition 2.1, Corollary 2.1 and the definition of total

variation.

Lemma 2.5 Let F be a random process on [a, b] such that var
[a,b]

F is a random variable (i. e., an F -measurable

function of ω ∈ Ω) and

E0

(
|F(a)| + var

[a,b]
F
)
< ∞. (7)

Then: (i) E0F(s) exists for all s ∈ [a, b]; (ii) the inequality var
[a,b]

E0F ≤ E0 var
[a,b]

F holds.

Lemma 2.6 Let ξ be a càdlàg random process on [a, b]. Assume that there exists a random variable Γ such that

sup
a<s≤b

|ξ(s)| ≤ Γ (8)

and E0Γ < ∞. Then lim
s→a+

E0ξ(s) = E0ξ(a).

Proof. Denote Ξ(t) = supa<s≤t |ξ(s) − ξ(a)|. Any càdlàg function is determined by its values on a dense subset of

[a, b], so the supremum may be taken over s ∈ [a, t]∩Q. Thus Ξ(t) is an F -measurable function of ω ∈ Ω, which

entitles us to define ρ(t, ε) by

ρ(t, ε) = E0I{Ξ(t) > ε}, (9)

so that P{Ξ(t) > ε} = Eρ(t, ε). Right-continuity of ξ implies that, for any ε > 0, the left-hand side of the last

equality tends to zero as t → a+. Hence, taking to account that ρ(·, ε) is an increasing process (since Ξ increases

by construction and the operator E0 is isotonic by Lemma 2.1), we get

lim
t→a+
ρ(t, ε) = 0. (10)

Denote Γn = ΓI{Γ > n}. Writing, for arbitrary n ∈ N and ε ∈]0, 2n], the identity

1 = I{Ξ(t) > 2n} + I{ε < Ξ(t) ≤ 2n} + I{Ξ(t) ≤ ε},
we obtain from (8), (9) and the definition of Ξ (with the use of Proposition 2.1 and Lemma 2.1, of course) E0Ξ(t) ≤
2E0Γn + 2nρ(t, ε) + ε, which together with (10) yields

lim
t→a+

E0Ξ(t) ≤ 2E0Γn + ε. (11)

By construction the sequence (Γn) decreases to zero. By assumption E0Γ < ∞, whence by Lemma 2.1 E0Γ1 < ∞.

Then Lemma 2.9 in (Yurachkivsky, 2013a) asserts that E0Γn ↘ 0, which together with (11) where ε is arbitrary

yields E0Ξ(t)→ 0 as t → a+. It remains to note that |E0ξ(s) − E0ξ(a)| ≤ E0| ξ(s) − ξ(a)| by Corollary 2.1. �
The proof of Lemma 2.6 will not change if we substitute a by an arbitrary inner point of [a, b], so, under its

assumptions,

lim
s→t+

E0ξ(s) = E0ξ(t)

for any t ∈ [a, b[. If, moreover, ξ increases, then by Lemma 2.1 E0ξ(t1) ≤ E0ξ(t2) as t1 < t2. Hence, repeating,

up to notation, the proof of Theorem II.7.4 (Shiryaev, 1996), we deduce the following statement (for classical

conditional expectations, it is a particular case of that theorem).

Proposition 2.2 Let F be a right-continuous increasing random process on [a, b] such that for any s ∈ [a, b],
E0|F(s)| < ∞. Then there exists a right-continuous increasing random process G on [a, b] such that

P{G(s) = E0F(s)} = 1, s ∈ [a, b]. (12)

Corollary 2.2 Let a càdlàg random process F on [a, b] satisfy condition (7). Then there exists a càdlàg random
process G on [a, b] with property (12).
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Otherwise speaking, Corollary 2.2 asserts existence, under the above stated assumptions, of the càdlàg version of

E0F. In what follows, we consider namely it.

We denote by F0 the filtration with F (t) = F (0), t ∈ R+ (so that a random process is F0-adapted iff its values at

all times are F (0)-measurable random variables). ThenV+0 can be defined equivalently as the class of all starting

from zero F0-adapted increasing random processes.

Proposition 2.3 Let F and ϕ be random processes on [a, b], the former càdlàg and satisfying condition (7), the
latter continuous and F0-adapted. Then∫ b

a
ϕ(s)dE0F(s) = E0

∫ b

a
ϕ(s)dF(s). (13)

Note that the integral on the right-hand side of (13) is, due to continuity of ϕ, the limit of Riemann-Stieltjes sums

and therefore an F -measurable function of ω.

Proof. 1◦. Denote

ζ = max
a≤s≤b

|ϕ(s)|, χ =
∫ b

a
ϕ(s)dF(s);

by var we mean var
[a,b]

. It follows from the assumptions on ϕ that, firstly, ζ(ω) < ∞ for all ω ∈ Ω and, secondly, ζ is

an F 0-measurable random variable. The evident inequality |χ| ≤ ζ var F and condition (7) imply, by Lemmas 2.1

and 2.2, that E0|χ| ≤ ζE0 var F and, consequently, E0|χ| < ∞. Thus E0χ exists.

2◦. Denote G(s) = E0F(s). Condition (7) implies that var G < ∞ (by Lemma 2.5) and var F < ∞ (by Corollary

2.5 in (Yurachkivsky, 2013a)). Let us impose the interim assumption varϕ < ∞. Then the integration-by-parts

formula yields

χ = ϕ(b)F(b) − ϕ(a)F(a) −
∫ b

a
F(s)dϕ(s). (14)

F0-adaptedness of ϕ implies by Lemma 2.2 that E0|ϕ(s)F(s)| = |ϕ(s)|E0|F(s)|. Hence and from finiteness of

E0|F(s)| established in the proof of Lemma 2.5 we get E0|ϕ(s)F(s)| < ∞, s ∈ [a, b]. Then it follows from (14) and

item 1◦, via Proposition 2.1 and Lemma 2.3, that

E0χ = ϕ(b)G(b) − ϕ(a)G(a) − E0

∫ b

a
F(s)dϕ(s). (15)

The evident inequality |F(s)| ≤ |F(a)| + var F implies by Lemma 2.1 that E0|F(s)| ≤ E0(|F(a)| + var F), which

together with with (7) and the interim assumption varϕ < ∞ shows that
∫ b

a (E0|F(s)|)|dϕ(s)| < ∞. Hence, recalling

that ϕ is F0-adapted, we get by Theorem 1.17 in (Yurachkivsky, 2013b)

E0

∫ b

a
F(s)dϕ(s) =

∫ b

a
G(s)dϕ(s). (16)

As was shown above, var G < ∞ and G may be, without loss of generality, considered càdlàg, so the integration-

by-parts formula yields
∫ b

a ϕ(s)dG(s) = ϕ(b)G(b) − ϕ(a)G(a) − ∫ b
a G(s)dϕ(s), which together with (16) and (15)

results in ∫ b

a
ϕ(s)dG(s) = E0χ. (17)

And this is none other than equality (13).

3◦. In this item, we impose the interim assumption ϕ(a) = 0 = ϕ(b) instead of varϕ < ∞. We extend ϕ to the

whole real line, putting ϕ(s) = 0 as s � [a, b], so that
∫ |ϕ(t)| dt < ∞ (

∫
means

∫
R

) and ϕ is uniformly continuous

on R. Let us take an arbitrary nonnegative function g ∈ C1(R) such that
∫

g(t)dt = 1 and g(t) = 0 as |t| > 1. Set

gn(t) = ng(nt),

ϕn(s) =

∫
ϕ(t)gn(s − t)dt ≡

∫
ϕ(s − t)gn(t)dt.

By construction all trajectories of ϕn are continuously differentiable and therefore have finite variation on [a, b].

So, according to item 1◦, ∫ b

a
ϕn(s)dG(s) = E0χn, (18)

5
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where χn =
∫ b

a ϕn(s)dF(s) (existence of E0χn is justified in the same manner as was done for E0χ in item 1◦).
Obviously, ϕn ⇒ ϕ, which together with var G < ∞ yields

∫ b

a
ϕn(s)dG(s)→

∫ b

a
ϕ(s)dG(s). (19)

By construction the random process ϕn is F0-adapted, since so is ϕ. Continuity of both ϕ and ϕn implies that

‖ϕn − ϕ‖∞ = sup
s∈Q
|ϕn(s) − ϕ(s)|. Thus ‖ϕn − ϕ‖∞ is an F 0-measurable random variable, whence with account of the

evident inequality |χn −χ| ≤ ‖ϕn −ϕ‖∞ var F we get by Lemmas 2.1 and 2.2 E0|χn −χ| ≤ ‖ϕn −ϕ‖∞E0 var F, which

together with (7) and the relation ϕn ⇒ ϕ yields E0|χn − χ| → 0. Herein E0χn − E0χ = E0(χn − χ) by Proposition

2.1, and |E0(χn − χ)| ≤ E0|χn − χ| by Corollary 2.1. Consequently, E0χn → E0χ, which together with (18) and (19)

entails (17).

4◦. In case |ϕ(a)| + |ϕ(b)| > 0 we take an arbitrary F0-adapted continuous random process φ such that φ(a) =

ϕ(a), φ(b) = ϕ(b), ∫ b

a
φ(s)dE0F(s) = E0

∫ b

a
φ(s)dF(s) (20)

(for example, φ(s) = ((b − s)ϕ(a) + (s − a)ϕ(b))/(b − a)) and put ϕ0 = ϕ − φ, so that

E0

∫ b

a
ϕ(s)dF(s) = E0

∫ b

a
ϕ0(s)dF(s) + E0

∫ b

a
φ(s)dF(s). (21)

According to item 3◦
∫ b

a ϕ0(s)dE0F(s) = E0
∫ b

a ϕ0(s)dF(s), which together with (20) and (21) entails (13). �
2.2 A Subclass of the Class of Locally Square Integrable Martingales

Let our probability space (Ω,F ,P) be endowed with a right-continuous flow of σ-algebras (or, in the terminology

of (Jacod & Shiryaev, 1987; Liptser & Shiryaev, 1989), filtration) F = (F (t), t ∈ R+). ByK we denote the class of

all F-adapted Rm-valued (m will be determined by context, if matters) càdlàg random processes M satisfying the

conditions:

M1. For all t E0|M(t)|2 < ∞.

M2. For all t ≥ s ≥ 0 E(M(t)|F (s)) = M(s).

M3. The process E0|M|2 is continuous.

Lemma 2.7 (Yurachkivsky, 2013a, Lemma 3.7) Let M have properties M1 and M2. Then the equality E(M(ς)|F (s)) =

M(ς ∧ s) holds for every s ∈ R+ and bounded stopping time ς.

Proposition 2.4 (Yurachkivsky, 2013a, Theorem 3.9) K ⊂ �M2.

For arbitrary random process ξ and nonnegative random variable τ, we denote ξτ(t) = ξ(t ∧ τ).
Proposition 2.5 For any M ∈ K and stopping time τ, Mτ ∈ K .

Proof. By Proposition 2.4 M ∈ �M2, so Mτ ∈ �M2, too. We consider, without loss of generality, that M(0) = 0.

Then by Corollary 3.11 in (Yurachkivsky, 2013a)

E0|Mτ(t)|2 = E0 tr〈Mτ〉(t). (22)

Herein 〈Mτ〉 = 〈M〉τ by Theorem I.1.19 in (Gikhman & Skorokhod, 2009) and therefore

E0 tr〈Mτ〉(t) = E0 tr〈M〉(t ∧ τ). (23)

The process tr〈M〉 increases, so by Lemma 2.1 E0 tr〈M〉(t ∧ τ) ≤ E0 tr〈M〉(t) (= E0|M(t)|2 by Corollary 3.11 in

(Yurachkivsky, 2013a)). Thus E0|Mτ(t)|2 < ∞, which together with equalities (22) and (23) yields E0|Mτ(t)|2 −
E0|Mτ(s)|2 = E0 tr〈M〉(t ∧ τ) − E0 tr〈M〉(s ∧ τ) (= E0(tr〈M〉(t ∧ τ) − tr〈M〉(s ∧ τ)) by Proposition 2.1). Hence

and from the evident inequalities 0 ≤ f (t ∧ τ) − f (s ∧ τ) ≤ f (t) − f (s) (for arbitrary t > s ≥ 0 and increasing

function f ) we get by Lemma 2.1 and Proposition 2.1 0 ≤ E0|Mτ(t)|2 − E0|Mτ(s)|2 ≤ E0 tr〈M〉(t) − E0 tr〈M〉(s)

(= E0|M(t)|2 − E0|M(s)|2 by Corollary 3.11 in (Yurachkivsky, 2013a)). Thus the process E0|Mτ|2 is continuous,

since by the choice of M so is E0|M|2.
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The equality E0(Mτ(t)|F (s)) = Mτ(s) for t ≥ s follows from Lemma 2.7, if one sets ς = t ∧ τ (so that ς ∧ s =
τ ∧ s). �
In (Yurachkivsky, 2013a), this statement was implicitly used in the proof of the main result.

3. The Main Result

In this section, we obtain, under appropriate assumptions, a conditional mean square estimate for the solution of

the equation

X(t) = X̊ +
∫ t

0

Q(s, X(s))dι(s) +

∫ t

0

σ(s, X(s−))dZ(s). (24)

Along with this equation in its general form we will consider its particular case

X(t) =
∫ t

0

Q(s, X(s))dι(s) + N(t). (25)

First of all we impose the following assumptions:

S1. For every Z ∈ K Equation (24) has the unique strong solution on R+.

S2. For every N ∈ K Equation (25) has the unique strong solution on R+.

The Borel σ-algebra in R+ will be denoted by B+.

The solution of (25) was evaluated in (Yurachkivsky, 2013a) by virtue of a special lemma cognate to the comparison

theorems in (Ikeda & Watanabe, 1981, Ch. VI), without recourse to Lyapunov functions. That inequality underlies

the derivation of our main result.

Theorem 3.1 Let X̊ be an F (0)-measurable Rd-valued random variable, ι be an F0-adapted increasing continuous
random process, Y be an Rm-valued random process of class K , Q and σ be continuous in x ∈ Rd random
functions on R+ ×Rd, the former Rd-valued and F-progressive in (ω, t) ∈ Ω×R+, the latter (d ×m)-matrix-valued
and F-predictable in (ω, t). Assume the following: conditions S1 and S2 are satisfied; there exists an F (0) ⊗ B+-
measurable in (ω, t) nonnegative random process ψ such that

x�Q(t, x) ≤ −ψ(t)|x|2 (26)

and ∫ t

0

ψ(s)dι(s) < ∞ (27)

for all x ∈ Rd, t > 0; there exist random processes L ∈ V+0 and R ∈ V+, c
0

such that

‖σ(t, x)‖2 ≤ L(t)|x|2, (28)

tr〈Y〉(t) − tr〈Y〉(s) ≤ R(t) − R(s) (29)

and ∫ t

0

L(u)dR(u) < ∞ (30)

for all x ∈ Rd, t > s ≥ 0.

Then the strong solution of the equation

X(t) = X̊ +
∫ t

0

Q(s, X(s))dι(s) +

∫ t

0

σ(s, X(s−))dY(s) (31)

satisfies, for all t, the inequality

E0|X(t)|2 ≤ ∣∣∣X̊∣∣∣2 exp

{∫ t

0

L(s)dR(s) − 2

∫ t

0

ψ(s)dι(s)

}
. (32)

Proof. 1◦. Denote τn = inf{s: |X(s)| ≥ n}, Yn(t) = Y(t ∧ τn), so that τn is a stopping time,

|X(s−)| ≤ n as s ≤ τn, (33)

7
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and Yn belongs, by Proposition 2.5 and the choice of Y , to K (and all the more to �M2–see Proposition 2.4).

Let Xn be the strong solution of the equation

Xn(t) = X̊ +
∫ t

0

Q(s, Xn(s))dι(s) +

∫ t

0

σ(s, Xn(s−))dYn(s) (34)

(condition S1 justifies this definition). Denote Ξn(s) = σ(s, Xn(s−)),Un(t) =
∫ t

0
‖Ξn(s)‖2d tr〈Yn〉(s),T (t) =∫ t

0
L(s)dR(s),

Mn(t) = X̊ +
∫ t

0

Ξn(s)dYn(s), (35)

so that

Xn(t) =
∫ t

0

Q(s, Xn(s))dι(s) + Mn(t). (36)

Obviously, processes of class V+0 (in particular L and R) are F (0) ⊗ B+- measurable in (ω, t). Then T possesses

this property, too, and is therefore F0-adapted.

By Theorem I.1.19 in (Gikhman & Skorokhod, 2009) 〈Yn〉(t) = 〈Y〉(t ∧ τn). Consequently,

Un(t) =
∫ t∧τn

0

‖Ξn(s)‖2d tr〈Y〉(s),

whence in view of (28), (29) and (33) we have for any t2 > t1 ≥ 0

Un(t2) − Un(t1) ≤ n2(T (t2) − T (t1)). (37)

Hence and from F0-adaptedness of T we get by Lemmas 2.1 and 2.3

E0(Un(t2) − Un(t1)) ≤ n2(T (t2) − T (t1)). (38)

In particular, E0Un(t) < ∞ for any t, whence by Proposition 2.1

E0(Un(t2) − Un(t1)) = E0Un(t2) − E0Un(t1). (39)

The process R is, by assumption, continuous, so condition (30) implies continuity of T and therefore, in view

of (39) and (38), continuity of E0Un. Then by Lemma 3.12 in (Yurachkivsky, 2013a) (applied to Hn row-wise)

Mn ∈ K , hereon Theorem 4.3 in (Yurachkivsky, 2013a) asserts that, under the above assumptions (including S2)

on Q,

E0|Xn(t)|2 ≤ e−Ψ(t)
(
|Mn(0)|2 +

∫ t

0

eΨ(s)dE0 tr〈Mn〉(s)

)
, (40)

where

Ψ(t) = 2

∫ t

0

ψ(s)dι(s) (41)

(< ∞ by condition (27)). It remains to derive (32) from (40).

2◦. As was found out, Yn and Mn belong to �M2. Inequality (37) and condition (30) show that Un(t) < ∞, or,

minutely, ∫ t

0

‖Ξn(s)‖2d tr〈Yn〉(s) < ∞.

Then from (35) we have by Theorem I.4.40 in (Jacod & Shiryaev, 1987)

〈Mn〉(t) =
∫ t

0

Ξn(s)d〈Yn〉(s)Ξn(s)�.

Hereon Lemma 2.7 asserts that for any b > a ≥ 0

tr〈Mn〉(b) − tr〈Mn〉(a) ≤ Un(b) − Un(a). (42)

8
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By construction Un is a nonnegative increasing random process, so

|Un(a)| + var
[a, b]

Un = Un(b) − Un(a). (43)

Denote Φ = eΨ. The process ι, being F0-adapted and continuous, is F (0) ⊗ B+-measurable in (ω, t); for ψ this

was assumed. Then it follows from (41) that Ψ is F (0) ⊗ B+-measurable in (ω, t) and all the more F0-adapted.

Besides, it is continuous, since so is ι. These properties of Ψ together with relations (43), (38) and (30) imply by

Proposition 2.3 that ∫ t

0

Φ(s)dE0Un(s) = E0

∫ t

0

Φ(s)dUn(s). (44)

Inequality (42) and finiteness of E0Un(t) established above imply by Proposition 2.1 and Lemma 2.1 that

E0 tr〈Mn〉(b) − E0 tr〈Mn〉(a) ≤ E0Un(b) − E0Un(a)

for all b > a ≥ 0, which together with (44) yields

∫ t

0

Φ(s)dE0 tr〈Mn〉(s) ≤ E0

∫ t

0

Φ(s)dUn(s).

Recalling the definition of Un and the equality 〈Yn〉(t) = 〈Y〉(t ∧ τn), we rewrite the last inequality in the form

∫ t

0

Φ(s)dE0 tr〈Mn〉(s) ≤ E0

∫ t∧τn

0

Φ(s)‖σ(s, Xn(s−))‖2d tr〈Y〉(s). (45)

By condition (28) ‖σ(s, Xn(s−))‖2 ≤ L(s)|Xn(s−)|2, which together with condition (29) yields, for any nonnegative

random variable ρ,

∫ ρ
0

Φ(s)L(s)‖σ(s, Xn(s−))‖2d tr〈Y〉(s) ≤
∫ ρ

0

Φ(s)L(s)|Xn(s−)|2dR(s). (46)

Continuity of R implies that

∫ ρ
0

Φ(s)L(s)|Xn(s−)|2dR(s) =

∫ ρ
0

Φ(s)L(s)|Xn(s)|2dR(s),

which together with (45), (46) and Lemma 2.1 yields

∫ t

0

Φ(s)dE0 tr〈Mn〉(s) ≤ E0

∫ t

0

Φ(s)L(s)|Xn(s)|2dR(s). (47)

Denoting Vn = ΦE0|Xn|2 and noting that Mn(0) = X̊ because of (35), we get from (40) and (47)

Vn(t) ≤ ∣∣∣X̊∣∣∣2 + E0

∫ t

0

L(s)Φ(s)|Xn(s)|2dR(s). (48)

By assumption R ∈ V+0 , so Theorem 2.19 in (Yurachkivsky, 2013a) asserts that

E0

∫ t

0

L(s)Φ(s)|Xn(s)|2dR(s) =

∫ t

0

E0(L(s)Φ(s)|Xn(s)|2)dR(s). (49)

It was shown above that the process Ψ (and therefore Φ) is F0-adapted; for L this was assumed. Thus by Lemma

2.2 E0(L(s)Φ(s)|Xn(s)|2) = L(s)Vn(s), which together with (48) and the definitions of Vn and T turns (48) into

Vn(t) ≤ ∣∣∣X̊∣∣∣2 +
∫ t

0

Vn(s)dT (s). (50)

By construction T increases and is continuous (since R possesses these properties and L is nonnegative). So (50)

yields by the Gronwall–Bellman lemma Vn(t) ≤ ∣∣∣X̊∣∣∣2 eT (t). Multiplying both sides of this inequality by e−Ψ(t), we

get

E0|Xn(t)|2 ≤ ∣∣∣X̊∣∣∣2 eT (t)−Ψ(t). (51)

9
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Obviously, τn → ∞ and Xn(t) = X(t) as t < τn. So Xn(t)→ X(t), whence by Lemma 2.4 E0|X(t)|2 ≤ lim E0|Xn(t)|2.

Comparing this with (51), we arrive at (32). �
This theorem gives rise to some important conclusions concerning stochastic stability of the solution of Equation

(31) (various kinds of stochastic stability are defined and studied in (Khasminsky, 2012)). Wishing to stress that

this solution depends on the initial value X̊, we shall denote it more minutely than earlier, namely X
(
·, X̊
)
.

Corollary 3.1 Let the conditions of Theorem 3.1 be fulfilled and let, besides,

lim
N→∞ sup

t>0

P
{∫ t

0

L(s)dR(s) − 2

∫ t

0

ψ(s)dι(s) ≥ N
}
= 0.

Then for any ε > 0

sup
t≥0

P
{
E0
∣∣∣∣X (t, X̊)

∣∣∣∣2 > ε
}
→ 0 as X̊

P−→ 0. (52)

Corollary 3.2 Let the conditions of Theorem 3.1 be fulfilled and let, besides,

sup
t>0

(∫ t

0

L(s)dR(s) − 2

∫ t

0

ψ(s)dι(s)

)
< ∞.

Then for any ε > 0 relation (52) holds.

Note that condition (26) implies, by Lemma 1.4, that Q(t, 0) = 0. Likewise σ(t, 0) = 0 because of (28). Thus

X(t, 0) = 0. So relation (52) asserts a kind of stochastic stability (which may be called the conditional mean square
stability) of the trivial solution of (31). The following straightforward consequence of Theorem 3.1 gives sufficient

conditions for unconditional mean square stability.

Corollary 3.3 Let the conditions of Corollary 3.2 be fulfilled with nonrandom ι, ψ, L and R. Then sup
t>0

E
∣∣∣∣X (t, X̊)

∣∣∣∣2 →
0 as E

∣∣∣X̊∣∣∣2 → 0.

For the very special case when d = m = 1, ι(s) = s,Q(s, x) = ax, σ(s, x) = bx, and Y is the standard Wiener

process this result is well known (Khasminsky, 2012, Ch.VI, §3) (and almost trivial, since under these assumptions

E
∣∣∣∣X (t, X̊)

∣∣∣∣2 can be calculated explicitly).
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