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Abstract

In the analysis of point processes or recurrent events, the self-exciting component can be an important factor in

understanding and predicting event occurrence. A Cox-type self-exciting intensity point process is generally not

a proper model because of its explosion in finite time. However, the model with m-memory is appropriate to

analyze sequences of recurrent events. It assumes the most recent m events multiplicatively affect the conditional

intensity of event occurrence. Aside from the interpretability, one advantage is the simplicity of the estimation and

inference–the Cox partial likelihood can be applied and the resulting estimator is consistent and asymptotically

normal. Another advantage is that the model can be applied to the analysis of case-cohort data via the pseudo-

likelihood approach. The simulation studies support the asymptotic theory. Application is illustrated with analysis

of a bladder cancer dataset and of an Australian stock index dataset, which shows evidence of self-excitation.
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1. Introduction

Recurrent event data are encountered frequently in many areas of scientific endeavor, such as the modeling and

predictions of earthquakes and other disastrous events, study of the patterns of neural firings in neuroscience,

assessing the efficacy of cancer medications in suppressing the recurrence of tumors, and analysis of the risk of

default on debt repayments by borrowers. Point processes are natural stochastic process models for the modeling

and analysis of recurrent event data. Depending on the form of the data available and the research questions of

interest, one of two types of point process models might be appropriate. If the data is in the form of a single long

string of event recurrence times, it might be of interest to predict the next event recurrence time by exploiting

potential dependence of the waiting times between events on past events or on exogenous covariates. Models

of this type include the self-exciting point process (Hawkes, 1971; Ogata, 1978), the modulated renewal process

(Cox, 1972; Oakes & Cui, 1994; Lin & Fine, 2009) and the autoregressive conditional duration models (Engle &

Russell, 1998; Fernandes & Grammig, 2006). Another form of data, which appears most often in medical statistics,

consists of multiple strings of event times and covariates for each string. The number of events in each string is

typically small due to censoring, and some individuals might not have experienced a single event by the censoring

time. For data in this form, the main interest in practice is to assess the effects of the covariates on the frequency of

event recurrence. Examples of the models that suits this purpose include the Cox proportional intensities (CoxPI)

model (Andersen & Gill, 1982) and the proportional means model (Lin et al., 2000; Wellner & Zhang, 2007).

In this paper we consider a model that suits the analysis of data in the multiple string form. We are motivated by the

temporal clustering of event times observed in individual strings with multiple events. The temporal clustering of

event times indicates potential self-exciting effect among the events, which, if not properly accounted for, can lead

to erroneous inferences about the effects of the covariate. Although the CoxPI model does not explicitly account

for the potential self-exciting effect and therefore is not directly suitable for data with signs of event clustering, its

many well-known theoretical and computational advantages motivate us to build our model based on it. The aim is

to explicitly incorporate a self-exciting feature in the model, while at the same time retaining as many advantages

of the CoxPI model as possible.
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The method to model event clustering in this paper is motivated by the aforementioned Hawkes self-exciting point

process model, which is a simple point process N(t) with intensity process λ(t) in a self-exciting form,

λ(t) = ν +
∫ t

0

g(t − u) dN(u), (1)

where ν > 0 is the background event intensity and g(·) ≥ 0 is the excitation function. The CoxPI model is a simple

point process with intensity process given by

λ(t) = λ0(t) exp{z(t)Tβ},
where λ0(t) is a baseline intensity function, z(t) is a vector valued process of covariates, and β a vector of parame-

ters. A naı̈ve extension of the CoxPI model by including the integral term in (1) to the logarithm of the intensity,

i.e.,

log λ(t) = log λ0(t) + z(t)Tβ +

∫ t

0

g(t − u) dN(u), (2)

does not lead to an appropriate model because such a model can easily be explosive; see Remark 1 below for

an explanation. However, if we modify the integral term in (2) by restricting the contribution of past events on

the current event intensity to the most recent m (< ∞) events, then the resulting model does not suffer from the

explosion issue and still posses an explicit self-excitation feature. Such a model, which we call the m-memory

Cox-type self-exciting intensity (CoxSEI(m)) model, shall be an appropriate model for recurrent event data with

temporal clustering of event times.

The rest of this paper is organized as follows. In Section 2, we present the CoxSEI(m) model and the estimation

procedure. In Section 3, we present some asymptotic properties of the estimators. In Section 4, we report the

results of some simulation studies and analysis of a bladder cancer data set and an Australian stock index data set.

Section 5 concludes with discussion. Technical proofs are relegated to the Appendix. All computation was done

in R (R Core Team, 2014) with the aid of the package coxsei written by the authors.

2. The CoxSEI(m) Model and the Estimation Procedure

Consider a point process N(t) =
∑∞

j=1 1{T j≤t}, with t ∈ [0,∞) and T j denoting the j-th event time. As a CoxSEI(m)

point process, N(·) has a conditional intensity process given by

λ(t) = μ(t) exp{Z(t)Tβ + φ(t)} (3)

where μ(t) is an unspecified baseline intensity, Z(t) is a possibly time-varying p-vector of covariates, β is a p-vector

of regression coefficients which measures the effects of the covariates to the intensity on the log scale, and φ(t) is

a self-exciting term depending on past events of the process,

φ(t) = φ(t, α, γ) =
m∧N(t−)∑

j=1

αg(t − TN(t−)− j+1, γ) =
∑

j∈M(t)

αg(t − T j, γ), (4)

whereM(t) = { j: {N(t−) + 1 − m} ∨ 1 ≤ j ≤ N(t−)} denotes the set of indexes of the most recent m events in the

past. The excitation function g is specified up to a parameter γ. Normally g is a positive decaying function, and

the parameter γ regulates the decay rate. The decay of g implies that the more recent events have stronger direct

effects on the current event intensity than the events in the more remote past. Typical examples of g include the

exponential decay function g(t, γ) = exp(−γt) and the polynomial function g(t, γ) = (1 + t)−γ, with γ > 0 (e.g.,

Errais et al., 2010; Ogata, 1988). The parameter αmeasures the initial magnitude of the self-exciting effect. While

a positive α implies the self-exciting effect is genuinely excitatory, a negative αwould imply that the “self-exciting”

effect is in fact inhibitory (Kopperschmidt & Stute, 2009).

Remark 1 We assume m to be a positive integer. If m = 0, the self-exciting component vanishes and the CoxSEI(m)

model (3) reduces to a CoxPI model. If m = ∞, the CoxSEI(m) model becomes an infinite-memory Cox-type

self-exciting process. In this case, the process will be explosive under fairly general conditions if α > 0. To

see this, suppose the baseline intensity μ(·) is bounded away from 0 and ∞, g(t, γ) > 0 is decreasing in t, the

covariate processes Z(·) are bounded, and the regression coefficients β are all finite. Write c = inf{μ(t) exp(Z(t)Tβ):

127



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

t ≥ 0} > 0. Let ΔT1 = T1, ΔT j = T j − T j−1, j ≥ 2 denote the durations between events. For any fixed t > 0, there

exists ε > 0 such that ε
∑∞

j=1 1/ j2 < t. As a result,

Pr(N(t) = ∞) = Pr(

∞∑
j=1

ΔT j ≤ t) ≥ Pr(ΔT j ≤ ε/ j2, j = 1, 2, . . . ). (5)

Clearly the probability on the right hand side of (5) can be written as

∞∏
j=1

Pr(ΔT j ≤ ε/ j2 |ΔTk ≤ ε/k2, 1 ≤ k ≤ j − 1)

≥
∞∏
j=1

(
1 − exp

[
−c exp {( j − 1)αg(t, γ)} ε/ j2

])
> 0.

For CoxSEI(m) processes with finite m, under mild regularity conditions, such as C1-C4 to be presented later, the

intensity process λ(·) is bounded away from 0 and ∞ with probability one. As a result, it will not be explosive for

sure (with probability 1). We shall only consider the CoxSEI(m) model with finite m.

Remark 2 Under the CoxSEI(m) model, certain Markov property can be derived for the process. Set Tk = 0 for

k ≤ 0 for notational convenience. Let ξ j(t) = TN(t−)− j+1, 1 ≤ j ≤ m, be the times of the most recent m events before

time t. Let ξ(t) = (ξ1(t), ..., ξm(t))T, t ≥ 0, be an m-vector continuous time process. It can be verified that given the

covariates and ξ(t), ξ(s) and ξ(τ) with s < t < τ are conditionally independent. Therefore ξ(t) is a continuous time

Markov process of dimension m, conditioning on the covariates.

Suppose we have n independent observations of the CoxSEI(m) process N(t) and the covariate process Z(t) until a

censoring time C which is assumed to be independent of N(t) conditional on Z(t). Denote the observations by

{Ni(t),Zi(t); t ≤ Ci, i = 1, ..., n}.
Write θ = (β, α, γ)T, Ψ(t, θ) = Z(t)Tβ + φ(t, α, γ), and Y(t) = I{C ≥ t}. Denote the corresponding i.i.d. copies of

T j, 1 ≤ j ≤ N(C),M(·), Ψ(·), and Y(·) respectively by Ti j, 1 ≤ j ≤ Ni(Ci),Mi(·), Ψi(·), and Yi(·), i = 1, . . . , n.

The estimation of the CoxSEI(m) model is along the same lines as that of the CoxPI model. The estimation of

the parametric part relies on the Cox partial likelihood, and the estimation of the cumulative baseline intensity is

motivated by the Breslow estimator (Breslow, 1972) as in the CoxPI model. Specifically, we note that given the

history of the n subjects prior to time t and the observation that an event occurs at time t, the conditional probability

that the event pertains to the i-th subject is

exp{Ψi(t, θ)}∑
j∈Rt

exp{Ψ j(t, θ)} ,

where Rt = {k : Ck ≥ t, 1 ≤ k ≤ n}. Therefore, the Cox partial likelihood is

L(θ) =

n∏
i=1

π
0≤t≤Ci

[ exp{Ψi(t, θ)}∑
j∈Rt

exp{Ψ j(t, θ)}
] dNi(t)

.

The maximum partial likelihood estimator θ̂ is defined as the maximizer of L(θ) over the parameter spaceΘ ⊂ R
p+2.

The estimator of the cumulative baseline intensity function U(·) = ∫ ·
0
μ(t) dt is similar to the Breslow estimator

(Breslow, 1972) and is given by

Û(t) =
∫ t

0

dN·(s)∑
j∈Rs

exp{Ψ j(s, θ̂)} (6)

where N·(t) =
∑n

i=1 Ni(t ∧Ci).

3. Large Sample Properties of the Estimators

The following conditions are needed to prove the large sample properties of θ̂. Let θ0 be the true value of θ in Θ.

We use the symbols ∂θ and ∂2
θθT

to denote the operators of finding first and second order partial derivatives with

respective to θ.
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C1. The covariate process Z(·) is bounded.

C2. The parameter space Θ is closed, bounded and connected, and contains θ0 as an interior point. Moreover,

Pr(Ψ(·, θ1) = Ψ(·, θ2)) < 1 for any θ1 � θ2 ∈ Θ.

C3. The excitation function g(t, γ) is positive, bounded, decreasing in t, and twice continuously differentiable in

γ. The baseline intensity μ(·) is bounded and continuous.

C4. The matrix Σ(θ) is finite and positive definite and continuous at θ0 where

Σ(θ) = E[

∫ ∞
0

{∂θΨ(t, θ) − ∂θΨ(t, θ)}⊗2Y(t)λ(t) dt],

and

∂θΨ(t, θ) =
E[{∂θΨ(t, θ)}Y(t) exp{Ψ(t, θ)}]

E[Y(t) exp{Ψ(t, θ)}] .

Remark 3 C1 is commonly assumed in the literature and C2 is an identifiability condition. In C3, the monotonicity

of g is practical but can be relaxed. C4 is essential to the asymptotic normality of θ̂. Unlike the classical Cox

model, the global concavity of the log-partial likelihood does not automatically hold in the CoxSEI(m) process.

The large sample properties of θ̂ and Û(·) are given in the following two propositions.

Proposition 4 Assume C1-C3 hold. Then, θ̂ is strongly consistent. If, moreover C4 holds,
√

n(θ̂ − θ0)→ N(0,Σ−1).

where Σ = Σ(θ0), which can be consistently estimated by − 1
n∂

2
θθT

log L(θ)
∣∣∣
θ=θ̂
.

Remark 5 Similar to the efficiency of the Cox partial likelihood estimator in the proportional hazards model, it

can be verified that Σ is the Fisher information matrix for θ and that, as a result, θ̂ is a semiparametric efficient

estimator of θ.

Proposition 6 Let μ0(·) and U0(·) be the true baseline intensity and baseline cumulative intensity functions respec-
tively. Let r(m)(t, θ), R(m)(t, θ), m = 0, 1, 2, and I (θ) be as those defined by (A.1)-(A.7) in the Appendix. Assume
C1-C4 hold. Then the process

√
n{Û(·) − U0(·)} converges weakly to a Gaussian process with mean zero and

covariance function
∫ t1∧t2

0

μ0(s) ds
r(0)(s, θ0)

+

∫ t1

0

r(1)(s, θ0)T

r(0)(s, θ0)
μ0(s) dsΣ−1

∫ t2

0

r(1)(s, θ0)

r(0)(s, θ0)
μ0(s) ds,

which can be estimated uniformly consistently by

n
{ ∫ t1∧t2

0

dN·(s)

R(0)(s, θ̂)2
+

∫ t1

0

R(1)(s, θ̂)T

R(0)(s, θ̂)2
dN·(s)I (θ̂)−1

∫ t2

0

R(1)(s, θ̂)
R(0)(s, θ̂)2

dN·(s)
}
.

Remark 7 The large sample distribution of θ̂ is approximately normal with mean θ0 and variance I (θ̂)−1, and the

distribution of Û(t) is approximately normal with mean U0(t) and variance

∫ t

0

dN·(s)

R(0)(s, θ̂)2
+

∫ t

0

R(1)(s, θ̂)T

R(0)(s, θ̂)2
dN·(s)I (θ̂)−1

∫ t

0

R(1)(s, θ̂)
R(0)(s, θ̂)2

dN·(s). (7)

If the baseline intensity function μ(·) rather than its integral is of interest, then we can estimate it using one

of the many nonparametric methods available, such as kernel smoothing (Ramlau-Hansen, 1983) and the local

polynomial method (Chen et al., 2011). To this end, we first note the intensity process of the aggregate process N·(t)
has a multiplicative form {∑i∈Rt

Ψi(t, θ)}μ(t). Since the nonparametric estimator of μ(t) with the exposure process∑
i∈Rt
Ψi(t, θ) fully known typically has a rate of convergence slower than

√
n, while the plug-in estimator of the

exposure process
∑

i∈Rt
Ψi(t, θ̂) has a

√
n rate, we can simply estimate μ(t) by assuming the estimated exposure

process is the unknown true exposure process.

The proof of Proposition 4 is given in the Appendix. The proof of Proposition 6 is essentially the same as that of

Theorem 3.4 and Corollary 3.5 in Andersen and Gill (1982), and is omitted.
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4. Numerical Studies

4.1 Simulation

This section reports the results of a simulation study. The simulation model is CoxSEI(2) with baseline intensity

μ(t) = 1 + 0.5 cos(2πt) and excitation function g(t) = α exp(−γt) = 0.7e−10t. The covariate process has three static

components Zi, i = 1, 2, 3. Their design distributions are Uniform[0.5,1.5], Uniform[1.5,2.5] and Bernoulli(0.5),

respectively. The regression coefficients associated with the Zi are β1 = 0.2, β2 = 0.4, β3 = 0.6. The censoring

variable is independently generated, following lognormal(0, 0.1). The sample size is n = 100. The simulation was

repeated 100 times. The results are summarized in Table 1. It is seen that the estimates of the parameters βi, α and

γ seem unbiased, and the estimates of the standard errors are close enough to the empirical ones. The empirical

distributions of all estimates are very close to normal distributions, with the two-sided Kolmogorov-Smirnov tests

of normality all having p-values much greater than 0.05.

Table 1. Results of the simulation–fitting the correct model

Parameter β1 β2 β3 α γ

True 0.2 0.4 0.6 0.7 10

Mean Est. 0.200 0.403 0.616 0.690 10.832

Mean SE Est. 0.147 0.147 0.096 0.084 3.382

Empirical SE 0.166 0.133 0.095 0.086 3.326

P-value for the K-S test of normality 0.976 0.937 0.833 0.761 0.622

The estimates of the cumulative baseline intensity function are shown in the left panel of Figure 1, which are

close to the true cumulative intensity function. The standard error estimates calculated from the variance estimator

(7) are shown in the right panel of Figure 1 together with the empirical standard errors, from which we note

the variance estimator (7) for the cumulative intensity estimator is slightly biased upward, but not by much. We

therefore conclude that the proposed estimation procedure works well and conforms with the theory.

Figure 1. The estimates of the cumulative baseline intensity function (left) and of the standard errors (right) based

on the simulated data

Table 2. Results of the simulation–fitting the CoxPI model to data generated by CoxSEI(2) models

β1 β2 β3

True value 0.2 0.4 0.6

Average estimate 0.267 0.543 0.813

Empirical SE 0.225 0.183 0.121

Average SE estimate 0.146 0.146 0.092

To evaluate the effects of neglecting self-excitation on the estimation of the covariate effect, we fit the ordinary

CoxPI model to the data generated from the CoxSEI(2) model. The results are shown in Table 2. The estimated
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covariate effects are clearly inflated and the standard errors are generally underestimated. This implies that appli-

cation of the CoxPI model to recurrent event data without accounting for the potential self-exciting effect may lead

to erroneous inference about the covariate effects.

4.2 Analysis of a Bladder Cancer Dataset

We illustrate the CoxSEI(m) model with two real-life examples. The first is a bladder cancer study reported by

Byar (1980) and frequently used to illustrate event history data analysis methods (e.g. Wei et al., 1989; Therneau

& Hamilton, 1997; Wellner & Zhang, 2007). A total of 118 patients with superficial bladder tumors were admitted

to the study between November, 1971 and August, 1976. The tumors were removed transurethrally and patients

were randomly assigned to one of three treatment groups: placebo, pyridoxine, and thiotepa. For patients who

experienced tumor recurrence, the new tumors were removed at each visit. The initial number of tumors and the

size of the largest initial tumor were recorded for each patient. The censoring time was the earlier of death due to

bladder cancer or other causes and end of study. The follow-up time of all patients varies from 0 to 64 months,

the number of recurrences experienced by the patients varies between 0 and 9 with mean 1.6 and variance 5.3; see

Figure 2. The data is available from the R package survival (Therneau and original Splus→R port by Thomas

Lumley, 2011). We have made slight modifications to the data by adding 0.5 to the two 0 censoring times and

to the censoring times that equal the corresponding patient’s last recurrence time. These modifications caused

no appreciable difference to the numerical result of fitting the CoxPI model using the coxph function from the R

package survival.

Figure 2. Bladder tumor recurrence (solid point) and censoring (end of line) times of the 118 bladder cancer

patients

We fitted the CoxSEI(m) model to the modified data with m = 0, 1, . . . , 9 and calculated the corresponding values

of the Akaike information criterion (AIC), which is defined as minus twice the maximized log-partial likelihood

value plus twice the number of parameters involved in the partial likelihood. With m = 0 the AIC value was

1626.5, while with m ≥ 1 the AIC values was in the range [1552.9, 1571.6] with the minimal value achieved by

m = 2, which suggests the CoxSEI(2) model gives the best fit to the data. The results of fitting the CoxPI and the

CoxSEI(2) models are shown in Table 3. It is noted that by the CoxPI model the treatment thiotepa has a statistically

significant suppressing effect on tumor recurrence intensity in the presence of other covariates. However, in the

CoxSEI(2) model, while thiotepa still seems to have a beneficial effect in the presence of other covariates and the

self-exciting effect, the beneficial effect is much less conclusive with a p-value substantially greater than 0.05, even

if a single-sided alternative is assumed. Since the estimated α parameter of the self-exciting term is positive and

statistically highly significant, and the AIC suggests CoxSEI(m) with m > 0 fits much better to the data than the

CoxPI model, it seems plausible to conclude the self-exciting effect among bladder tumor recurrences is genuine.
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From a biological point of niew, it also seems natural to suspect the occurrence of a tumor and the ensuing surgery

to remove it could damage the bladder tissue, rendering further tumor recurrences more likely to happen. The

neglect of the self-exciting effect could have been the cause of inflated beneficial effect of thiotepa in the ordinary

CoxPI model, which is similar to the false positives caused by fitting generalized linear models to overdispersed

data without properly accounting for overdispersion.

Table 3. Results of fitting the CoxPI and CoxSEI(2) models to the bladder cancer data

CoxPI model CoxSEI(2) model

Estimate StdErr P-value Estimate StdErr P-value

pyridoxine 0.019 0.171 0.91 0.118 0.173 0.50

thiotepa -0.518 0.186 0.0054** -0.253 0.191 0.19

number 0.187 0.036 2.12e-07*** 0.115 0.040 0.004**

size -0.007 0.044 0.87 -0.004 0.046 0.94

α NA NA NA 0.924 0.122 3.09e-14***

γ NA NA NA 0.005 0.010 0.31

Signif. codes: 0 *** 0.001 ** 0.01 * 0.5. 0.1 1

4.3 Analysis of an Australian Stock Index Data Set

As an example where the baseline event intensity might also be of interest, we consider data on intra-day times of

exceedance of a threshold value by the tick-by-tick return of an Australian stock index, the All Ordinaries Index.

Our consideration of the index return exceedance process is motivated by Embrechts et al. (2011). During the

period from 1 January 1996 to 3 June 2011 GMT, there were roughly 4,000,000 price moves of the All Ordinaries

Index. The corresponding tick-by-tick log-returns varied in the range [−1.114, 1.103] × 10−1, with the maximum

and minimum returns attained at 10:13:33.614 and 10:14:01.295 respectively on 28 Jun 2010. The 99th percentile

of the returns was q(0.99) = 4.39 × 10−4. For the purpose of illustrating the CoxSEI(m) model, we only considered

the intra-day times in year 2010 at which the returns exceeded q(0.99). There were 3,131 such exceedances on 254

trading dates in 2010. We filtered out the data on the 24th and 31st December 2010 as the stock exchange closed

early at 14:10 on these two days and the baseline event intensity near 14:10 on these days would be substantially

higher than on regular trading days when the market closes at 16:10. Since the market dynamics of after hours

trading is expected to be different from that of normal hours trading, we also excluded the data outside the nor-

mal trading hours, 10:00-16:10. This left us with 3,030 exceedances on 252 trading days. The daily number of

exceedances varied between 0 and 66, with mean 12.02 and variance 111.14.

To apply the CoxSEI(m) model, we need the assumption that the return exceedance processes on different days

are conditionally independent. A times series plot of the daily number of return exceedances showed quite strong

serial correlation even after weekday and month of year were accounted for using a Poisson regression. However,

if we fit an order 1 autoregressive time series model with weekday and month as external categorical covariate

variables, then the Ljung-Box tests revealed no significant serial correlation among the residuals, with p-values

> 0.05 up to lag 14 and > 0.01 up to lag 20. Therefore we assumed that the daily exceedance processes were

conditionally independent given weekday, month and the number of exceedances on the previous trading day. We

fitted CoxSEI(m) models with exponential excitation function g(t) = α exp(−γt) and different m values to the data.

We then selected the value of m using the AIC. The unit used in measuring time is the hour.

The AIC value was 31766.2 when m = 0, and in the range [31435.5, 31634.7] when m ≥ 1, with the minimal value

31435.5 attained by m = 1. The parametric part of the results of fitting the CoxSEI(1) model are shown in Table

4, from which we note that the number of exceedances on the previous day (yesterday) has a highly significant

positive effect on the current day exceedance intensity. This could be interpreted as an inter-day exciting effect

among the return exceedances on the All Ordinaries Index. The month effect is significant with February, June,

July and August seeing more and April seeing less exceedances than January. In the presence of other variables,

the differences between March, May, September, October, November, December and January were not significant.

The weekday effects do not seem to be individually significant. The parameter α is highly significant with a

positive value, suggesting the existence of intra-day exciting effect among the return exceedances. The parameter

γ is also highly significantly different from 0, indicating the self-exciting effect is decaying over time. The month

effect we have observed on the return exceedance intensity is reminiscent of the January effect in financial returns

observed in the US financial market. In view of the common theory which relates the January effect to the end of

the fiscal year in US, we might also speculate that Australia’s end of the fiscal year in June have contributed to the
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increased market volatility which is reflected by the increased intensity of the return exceedance process.

Table 4. Parametric part of the results of fitting the CoxSEI(1) model to the all ordinaries index data

Estimate StdErr Z-value P-value

Tuesday 0.0710 0.0586 1.2119 0.2255

Wednesday 0.0439 0.0581 0.7555 0.4500

Thursday -0.0316 0.0581 -0.5436 0.5867

Friday -0.1127 0.0592 -1.9054 0.0567 .

February 0.2482 0.1117 2.2217 0.0263 *

March -0.0233 0.1216 -0.1913 0.8483

April -0.3778 0.1506 -2.5091 0.0121 *

May 0.0637 0.1181 0.5397 0.5894

June 0.2458 0.1091 2.2522 0.0243 *

July 0.2764 0.1081 2.5570 0.0106 *

August 0.2279 0.1139 2.0003 0.0455 *

September 0.1345 0.1136 1.1839 0.2365

October 0.1894 0.1134 1.6698 0.0950 .

November 0.1598 0.1167 1.3694 0.1709

December -0.0476 0.1275 -0.3730 0.7091

yesterday 0.0378 0.0019 20.3590 < 2.2e-16 ***

α 1.1441 0.0670 17.0764 < 2.2e-16 ***

γ 1.3515 0.1830 7.3859 7.573e-14 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.5. 0.1 1

In Figure 3 we show the estimated cumulative baseline intensity function and a local linear estimate of the baseline

intensity function using the method discussed in Remark 7. From the figure we note the baseline intensity of return

exceedance at market open is substantially much higher than in the rest of the trading hours and the intensity during

the morning hours are generally higher than in the afternoon hours. The very high return exceedance intensity at

market open is to be expected considering that the occurrence of large and sudden price changes of the constituents

of the index are likely to be due to the availability of price impacting information accumulated overnight when

the local exchange is closed but many overseas exchanges are still running. The relatively high intensity during

the rest of morning hours could be linked with the opening of Asian stock exchanges, such as the Malaysian and

Singapore stock exchanges at 11:00 AEST (Australian Eastern Standard Time), the Hong Kong and Mainland

China exchanges at 11:30 AEST. The opening times are to be postponed by an hour when Australia observes the

Daylight Saving Time from the first Sunday of October to the first Saturday of April.

Figure 3. Estimated cumulative baseline intensity (left) and baseline intensity (right) of the All Ordinaries Index

return exceedance process with point-wise 95% confidence limits

5. Discussion

In this paper we have considered an extension of the CoxPI model called the CoxSEI(m) model for the analysis

of recurrent event data that has the feature of temporal clustering of events experienced by the same individual.
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Considering the potentially erroneous inference about the covariate effects that could have been caused by ne-

glecting the self-exciting effects, it seems warranted to develop formal statistical tests to detect the existence of

the self-exciting/inhibitory effect. While the likelihood ratio test seems a natural candidate test, the asymptotic

null distribution of the likelihood ratio statistic is non-standard. The reason is that under the null hypothesis of no

self-exciting effect or equivalently, α = 0 in the examples considered in this paper, the parameter γ is unidentifiable

and the asymptotic normality of γ̂ fails, and therefore, the asymptotic distribution of the likelihood ratio statistic

under the null fails to be χ2. In an unreported simulation study, we have found that the empirical distribution of

the likelihood ratio statistic deviates substantially from the χ2
1

and χ2
2

distributions. Continuing work concerning

the asymptotic null distribution of the likelihood ratio test or concerning other tests is desirable.

In constructing the self-excitation term (4) in the CoxSEI(m) model, we have parametrized the effects of the recent

m events on the current event intensity in the form of αg(t − TN(t−)+1− j, γ) rather than using m unstructured coeffi-

cients corresponding to the m events respectively. The consideration behind this choice is interpretability. With a

decreasing function g, the individual excitation effects on the current event intensity associated with recent events

are monotone with more recent events having more significant effects, which tends to agree with our intuition. In

contrast, the unstructured coefficients approach could give rise to estimated coefficients with erratic patterns which

are hard to interpret.

The CoxSEI(m) model considered in this work may appear to be a special case of the CoxPI model with a time-

dependent covariate
∑

j∈M(t) g(t−T j, γ). However this is generally not the case because of the nonlinear dependence

of g on the unknown parameters γ.

In the real data examples, our choice of the parametric form of the excitation function is essentially arbitrary and

we have not considered how to select the excitation function using any data-driven procedures. The main reason

is that for the correct estimation of the covariate effects and the baseline intensity function, the specific choice of

the excitation function is much less important than the inclusion of the self-excitation term in the model. However,

further work concerning formal specification tests for the excitation function is clearly desirable.

From the viewpoint of explicitly accounting for potential self-exciting effects in intensity based regression analysis

of recurrent event data, one can also consider the combination of the Hawkes self-exciting point processmodel

with the Aalen additive intensity regression model (Aalen, 1980). Although care is needed in fitting such a model

to guarantee the positivity of the intensity process and the accommodation of self-inhibitory effects might not be

as easy, this additive model is arguably more intuitive and easier to interpret in specific contexts. Therefore such a

model also deserves investigation, and shall be considered elsewhere.

Another advantage of the CoxSEI(m) model is that it can be applied to the analysis of data collected by the cost

effective case-cohort design (Prentice, 1986), with inference based a pseudo-likelihood approach; for details, see

the companion paper F. Chen and K. Chen (2014).
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Appendix

Technical Details

The following are the quantities referred to in Proposition 6.

r(0)(t, θ) = E[Y(t) exp{Ψ(t, θ)}] (A.1)

r(1)(t, θ) = E[{∂θΨ(t, θ)}Y(t) exp{Ψ(t, θ)}] (A.2)

r(2)(t, θ) = E[{∂2
θθT
Ψ(t, θ) + ∂θΨ(t, θ)⊗2}Y(t) exp{Ψ(t, θ)}], (A.3)

R(0)(t, θ) =
∑
j∈Rt

exp{Ψ j(t, θ)}, (A.4)

R(1)(θ, t) =
∑
j∈Rt

{∂θΨ j(t, θ)} exp{Ψ j(t, θ)} (A.5)

R(2)(θ, t) =
∑
j∈Rt

{∂2
θθT
Ψ(t, θ) + ∂θΨ(t, θ)⊗2} exp{Ψ j(t, θ)} (A.6)

I (θ) =

n∑
i=1

∫ Ci

0

{R(2)(t, θ)
R(0)(t, θ)

− R(1)(t, θ)⊗2

R(0)(t, θ)2
−
∑

k∈Mi(t)

∂2
θθT
Ψi(t, θ)

}
dNi(t) (A.7)

Proof of Proposition 4. We first show consistency. Write

1

n
log{L(θ)} = 1

n

n∑
i=1

∫ Ci

0

{
Ψi(t, θ) − log

[ n∑
j=1

Yj(t) exp{Ψ j(t, θ)}
]}

dNi(t). (A.8)

The conditions C1-C3 ensure that Ψ(t, θ)Y(t) is P-Glivenko-Cantelli over [0, t0] × Θ for any fixed t0 > 0. As a

result,

1

n

n∑
j=1

Yj(t) exp{Ψ j(t, θ)} → E[Y(t) exp{Ψ(t, θ)}]

uniformly over [0, t0] ×Θ with probability one. Separate the integration over [0,∞) into [0, t0) and [t0,∞) in (A.8)

and notice that Ψ(t, θ) is bounded. We have

1

n
[log{L(θ)} − log{L(θ0)}]→ l(θ) − l(θ0)

where

l(θ) = E
(∫ C

0

[Ψ(t, θ) − log E{exp{Ψ(t, θ)}μ0(t)Y(t)}] dN(t)
)

=

∫ ∞
0

E
(
[Ψ(t, θ) − log E{exp{Ψ(t, θ)}μ0(t)Y(t)}] exp{Ψ(t, θ0)}Y(t)μ0(t)

)
dt.

Observe that, for any positive random variable ξ and nonnegative η with positive mean, Jensen’s inequality implies

E[η log ξ]/E[η] ≤ log E[ξη] − log E[η].

Set ξ = exp{Ψ(t, θ) − Ψ(t, θ0)} and η = exp{Ψ(t, θ0)}Y(t)μ(t). It is seen that the integrand in the second expression

of l(θ) achieves maximum when θ = θ0. By C2, l(θ) achieves maximum only at θ0. The uniform convergence over

Θ implies that θ̂ is strongly consistent.

Under C4, in addition to C1-C3, one can apply the empirical approximation to show

1

n
∂2
θθT

log{L(θ)} → −Σ

in probability, uniformly over Bn, which is a ball centered at θ0 with radius O(n−1/2). By Taylor’s expansion,

1

n
{log L(θ) − log L(θ0)}

= (θ − θ0)T
1

n

n∑
i=1

∫ Ci

0

{∂θΨi(t, θ0) − ∂θΨ(t, θ0)} dNi(t) − 1

2
(θ − θ0)T Σ (θ − θ0) + oP(n−1/2)

136



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

uniformly over θ ∈ Bn. Then, the asymptotic normality of θ̂ holds. In addition, Σ can be consistently estimated by

− 1
n∂

2
θθT

log L(θ) at θ = θ̂. The proof is complete. �
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