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Abstract

To extend the deterministic compartments pharmacokinetics models as diffusions seems not realistic on the bio-

logical side because the paths of these stochastic processes are not smooth enough. In order to extend the one

compartment intra-veinous bolus models, this paper suggests to model the concentration process C by a class of

stochastic differential equations driven by a fractional Brownian motion of Hurst parameter belonging to ]1/2, 1[.

The first part of the paper provides probabilistic and statistical results on the concentration process C: the distri-

bution of C, a control of the uniform distance between C and the solution of the associated ordinary differential

equation, and consistent estimators of the elimination constant, of the Hurst parameter of the driving signal, and of

the volatility constant.

The second part of the paper provides applications of these theoretical results on simulated concentrations: a

method to choose the parameters on small sets of observations, and simulations of the estimators of the elimination

constant and of the Hurst parameter of the driving signal. The relationship between the quality of the estimations

and the size/length of the sample is discussed.

Keywords: pharmacokinetics, one compartment bolus models, fractional Brownian motion, fractional Ornstein-

Uhlenbeck process, ergodicity, least-square estimation

1. Introduction

The compartments pharmacokinetic models describe how an administered drug is transmitted among the body’s

compartments. The concentration of the drug in each compartment can be modeled by ordinary differential equa-

tions (see Jacomet, 1989).

In particular, in the one compartment models, the concentration is classically modeled by a linear (deterministic)

differential equation with a negative constant coefficient, taking in account the absorption and the elimination steps.

Only the one compartment models are studied in the current paper.

By D’Argenio and Park (1997), the elimination process has a deterministic component and a random component.

A natural way to take in account these components is to add a stochastic noise in the linear differential equation

which classically models the concentration. It has been studied in the Itô stochastic calculus framework by many

authors (see Sen & Bell, 2006; Donnet & Samson, 2013).

However, as mentioned in Delattre and Lavielle (2011), since the standard Brownian motion has α-Hölder contin-

uous paths with α ∈]0, 1/2[, the extension of the deterministic model as a diffusion is not realistic on the biological

side. Delattre and Lavielle force the regularity of the paths of the concentration process C by putting

Ct := C0 exp

(
−
∫ t

0

Dsds
)

; t ∈ R+
where D is the diffusion which extends the deterministic model.

As mentioned in Marie (2014), another way to increase the regularity of the paths of the concentration process is

to replace the standard Brownian motion by a fractional Brownian motion BH of Hurst parameter H ∈]1/2, 1[ as
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as driving signal. Since the signal is not a semi-martingale anymore, the stochastic integral is taken pathwise, in

the sense of Young (see Lejay, 2010). The Young integral keeps the regularity of the driving signal, therefore the

concentration process has α-Hölder continuous paths with α ∈]0,H[.

In both Itô and pathwise stochastic calculus frameworks, an interesting volatility function is x ∈ R+ �→ σxβ with

σ ∈ R and β ∈ [0, 1]. It covers classical models:

• β = 0, σ � 0: Langevin equation. Its solution is the so-called Ornstein-Uhlenbeck process.

• β = 1/2, σ � 0: Cox-Ingersoll-Ross model.

• β = 1, σ � 0: Linear stochastic differential equation.

• σ = 0: Linear ordinary differential equation.

In the Itô stochastic calculus framework, that concentration model has been studied on the statistical side in

Kalogeropoulos et al. (2008). In the pathwise stochastic calculus framework, it has been studied on probabilistic

side in Marie (2014).

This paper is devoted to the probabilistic and statistical study of the special case of the one compartment intra-

veinous (i.v.) bolus model with a fractional Brownian signal:

Ct = C0 − υ
∫ t

0

Csds + σ
∫ t

0

Cβs dBH
s ; t ∈ [0, τ0] (1)

where

τ0 := inf {t ∈ R+ : Ct = 0} ,
the exponent β belongs to [0, 1[, υ > 0 is the rate of elimination describing the removal of the drug by all elimination

processes including excretion and metabolism, and C0 := A0/V with A0 > 0 the administered dose and V > 0 the

volume of the elimination compartment.

Since its vector field is of class C∞ on the bounded sets of R∗+, Equation (1) admits a unique continuous pathwise

solution defined on [0, τ0] and satisfying C. = Xγ+1
. , where γ := β/(1 − β) and X is the solution of the following

fractional Langevin equation:

Xt = C1−β
0
− υ(1 − β)

∫ t

0

Xsds + σ(1 − β)BH
t ; t ∈ R+ (2)

That equation is obtained by applying the rough change of variable formula to the process C and to the map

x ∈ R+ �→ x1−β on [0, τ0]. For details, the reader can refer to Marie (2014). The fractional Langevin equation is

deeply studied in Cheridito et al. (2003).

Since the concentration process has to be positive and to end when it hits zero, it can be defined as the solution of

Equation (1) on [0, τ0].

For the sake of simplicity, even if the following equality is only true on [0, τ0], throughout this paper, C is defined

on R+ by

Ct := |C1−β
0
+ σBH

t (ϑ)|γ+1e−υt; t ∈ R+
with

ϑt := (1 − β)eυ(1−β)t; t ∈ R+
and the Young/Wiener integral (see Appendix A)

BH
t (ϑ) :=

∫ t

0

ϑsdBH
s ; t ∈ R+.

Note that for H = 1 and β = 0, the fractional Brownian motion coincides with t ∈ R+ �→ ξt such that ξ � N(0, 1),

and

Ct =

∣∣∣∣∣συ ξ +
(
C0 − σ

υ
ξ
)

e−υt
∣∣∣∣∣ ; t ∈ R+.

That limit case illustrates that the Hurst parameter H is continuously controlling the regularity of the paths of the

concentration process, but also that σ and H provide two complementary ways to control the impact of the random

component on the elimination process with respect to its deterministic component.
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In mathematical finance, the semi-martingale property of the prices process is crucial in order to ensure the com-

pleteness of the market. The Itô stochastic calculus is then tailor-made to model prices in finance. In pharmacoki-

netics, the semi-martingale property of the concentration process seems not crucial on the biological side.

To replace the standard Brownian motion by a fractional Brownian motion in the pathwise stochastic calculus

framework implies that the concentration process does not satisfy the Markov property anymore. In general, it

makes the estimation of the parameters υ, σ and H difficult, but the relationship between C and X mentioned

above allows to bypass these difficulties by using results coming from Hu and Nualart (2010), Istas and Lang

(1997), and Brouste and Iacus (2013). On the estimation of υ (resp. σ and H) in a wider class of models, see also

Neuenkirch and Tindel (2014) (resp. Berzin & León, 2008).

Since the stochastic process C could model the elimination process more realistically than the deterministic models,

it could be used for potentially toxic drugs involving in clinical studies. For instance, the elimination of the

ketamine, which can be neurotoxic but more effective than classical antidepressants in the treatment of major

depressive disorders (see Correll & Futter, 2006), could be modeled by the stochastic process studied in the current

paper. On a pharmacokinetic/pharmacodynamic model of the elimination of the ketamine, see Dahan et al. (2011).

The pathwise models as Equation (1) are well adapted to population pharmacokinetics. Indeed, the pathwise

stochastic calculus framework is tailor-maid to assume that the parameters of the studied equation are random.

These problems will be studied in forthcoming papers.

The second section is devoted to probabilistic and statistical properties of the processes X and C. The first part deals

with the distribution of the concentration process C and a control, in probability, of the uniform distance between

the fractional Ornstein-Uhlenbeck process X and the solution of the associated ordinary differential equation. The

second part provides a strongly consistent estimator of the elimination constant υ, and an extension of existing

ergodic theorems for the fractional Ornstein-Uhlenbeck process X is established. The third part provides a strongly

consistent estimator of (H, σ). A weakly consistent estimator of υ is deduced when the values of H and σ are

unknown.

The third section is devoted to the application of the theoretical results of the second subsection on simulated

concentrations. For small sets of observations, the first part provides a method to choose the parameters H, σ
and β. The cornerstone of the method is the control of the uniform distance between X and the solution of the

associated ordinary differential equation mentioned above. The second part illustrates the convergence of the

estimators provided at Section 2. The relationship between the quality of the estimations and the size/length of the

sample is discussed.

Appendices A and B provide respectively useful definitions and results on the fractional Brownian motion, and the

proofs of the results stated at Section 2.

2. Probabilistic and Statistical Properties of the Concentration Process

The first subsection deals with the distribution of the concentration process C (see Lemma 1 and Proposition 2)

and a control, in probability, of the uniform distance between the fractional Ornstein-Uhlenbeck process X and the

solution of the associated ordinary differential equation (see Proposition 3).

The second subsection provides a strongly consistent estimator of the elimination constant υ studied in Hu and

Nualart (2010), and an extension of existing ergodic theorems for the fractional Ornstein-Uhlenbeck process X is

established.

The third subsection provides a special case of the strongly consistent estimator of (H, σ) studied in Istas and Lang

(1997) and Brouste and Iacus (2013). A weakly consistent estimator of υ is deduced when the values of H and σ
are unknown.

Refer to Appendix B for the proofs of the results stated in this section.

2.1 Distribution of the Concentration Process and Related Topics

The following lemma provides a suitable expression of the covariance function of the fractional Ornstein-Uhlenbeck

process X.

Lemma 1 BH(ϑ) is a centered Gaussian process of covariance function RH,ϑ such that:

RH,ϑ(s, t) = αH(1 − β)2

∫ s

0

∫ t

0

|u − v|2(H−1)eυ(1−β)(u+v)dudv
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for every s, t ∈ R+. Then, the covariance function RX of the fractional Ornstein-Uhlenbeck process X satisfies:

RX(s, t) = αHσ
2(1 − β)2

∫ s

0

∫ t

0

|u − v|2(H−1)e−υ(1−β)[(t−u)+(s−v)]dudv

for every s, t ∈ R+.

Proposition 2 For every n ∈ N
∗ and t1, . . . , tn ∈ R+, the distribution of the random vector (Ct1 , . . . ,Ctn ) has a

density χn with respect to the Lebesgue measure on (Rn,B(Rn)) such that:

χn(x1, . . . , xn) =
2n(1 − β)n1Rn

+
(x1, . . . , xn)

(2π)n/2
√| det(Rn)|

n∏
i=1

x−βi ×

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣R−1
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1−β

1
...

x1−β
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − Vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1−β

1
...

x1−β
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − Vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; (x1, . . . , xn) ∈ Rn

where, Rn ∈ S n(R+) and Vn ∈ Rn are defined by

Rn(i, j) := αHσ
2(1 − β)2

∫ ti

0

∫ t j

0

|u − v|2(H−1)e−υ(1−β)[(t j−u)+(ti−v)]dudv

and
Vn(i) := C1−β

0
e−υ(1−β)ti

for every i, j ∈ {1, . . . , n}.
It is a straightforward application of Lemma 1, the equality C. = |X.|γ+1, and Marie (2014), Proposition 5.1.

Let Xdet be the solution of the ordinary differential equation associated to Equation (2):

Xdet
t = X0 − υ(1 − β)

∫ t

0

Xdet
s ds; t ∈ R+.

Proposition 3 For every x > 0 and T > 0,

P(‖X − Xdet‖∞,T > x) � 2 exp

[
− x2

2σ2RH,ϑ(T,T )

]
.

Let λ ∈]0, 1[ be arbitrarily chosen. By Proposition 3, it is sufficient to assume that σ2 ∈ [0,M(λ, x,H)] with

M(λ, x,H) :=
x2

2RH,ϑ(T,T ) log(2/λ)
,

to ensure with probability greater than 1 − λ that |Xt − Xdet
t | � x ∈ R∗+ for every t ∈ [0,T ].

Consider the function Cdet : R+ → R
∗
+ defined by Cdet

t := |Xdet
t |γ+1 for every t ∈ R+.

Corollary 4 For every x > 0 and T > 0 such that Cdet
T > xγ+1,

P[∀t ∈ [0,T ],Ct ∈ [|(Cdet
t )1−β − x|γ+1, |(Cdet

t )1−β + x|γ+1]] � 1 − 2 exp

[
− x2

2σ2RH,ϑ(T,T )

]
.

An application of Proposition 3 and Corollary 4 is provided at Subsection 3.1.

2.2 Ergodic Theorem and Estimator of the Elimination Constant

Let Y be the stochastic process defined by:

Yt := σ(1 − β)
∫ t

−∞
e−υ(1−β)(t−s)dBH

s ; t ∈ R+.
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Theorem 5 Let f : R→ R be a continuous function such that:

∃n ∈ N∗,∃(a1, b1, c1), . . . , (an, bn, cn) ∈ R∗+ × R2
+ : ∀x, ε ∈ R, | f (x + ε) − f (x)| �

n∑
i=1

ci(1 + |x|)bi |ε|ai .

Then,
1

T

∫ T

0

f (Xt)dt
a.s.−−−−→

T→∞ E[ f (Y0)] < ∞.

With the notations of Theorem 5, put f (x) := xn; x ∈ R. For every x, ε ∈ R,

| f (x + ε) − f (x)| �
n−1∑
i=0

(
n
i

)
|x|i|ε|n−i

�
n−1∑
i=0

pi(x)|ε|ai

where ai := n − i and

pi(x) :=

(
n
i

)
(1 + |x|)i ; x ∈ R, i = 0, . . . , n − 1.

Then, by Theorem 5 together with Hu and Nualart (2010), Lemma 5.1:

lim
T→∞

1

T

∫ T

0

Xn
t dt = E(Yn

0 ) P-a.s.

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n!σn(1 − β)n−nHυ−nH Hn/2Γn/2(2H)

2n/2(n/2)!
if n ∈ 2N∗

0 if n ∈ N∗ − (2N∗)
(3)

For n = 2, (3) coincides with Hu and Nualart (2010), Lemma 3.3.

Assume that the values of the parameters H and σ are known. For T > 0 arbitrarily chosen, consider

υ̂T :=
1

1 − β
[

1

σ2(1 − β)2HΓ(2H)T

∫ T

0

X2
t dt
]−1/(2H)

.

Proposition 6 υ̂T is a strongly consistent estimator of υ.

It is a straightforward consequence of (3) for n = 2. The estimator υ̂T is studied in Hu and Nualart (2010), Section

4. In particular, a central limit theorem is proved for υ̂T when H ∈]1/2, 3/4[ (see Hu & Nualart, 2010, Theorem

4.1).

2.3 Estimators of the Hurst Parameter and of the Volatility Constant

Assume that the concentration process C is discretely observed at times t0, . . . , tn, where n ∈ N∗, tk := kδn for every

k ∈ {0, . . . , n}, and (δn)n∈N is a strictly positive real sequence such that:

lim
n→∞ δn = 0 and lim

n→∞ nδn = ∞.

Proposition 7 Consider

Ĥn :=
1

2
log2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−2∑
k=2

|Xtk+2
− 2Xtk + Xtk−2

|2

n−1∑
k=1

|Xtk+1
− 2Xtk + Xtk−1

|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Ĥn is a strongly consistent estimator of H.
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Proposition 8 Consider a0 := −1/4, a1 := 1/2, a2 := −1/4 and

σ̂n :=
1

1 − β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1

8
×

n−1∑
k=1

|Xtk+1
− 2Xtk + Xtk−1

|2

2∑
k,l=0

akal|k − l|2Ĥnδ2Ĥn
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

.

σ̂n is a strongly consistent estimator of σ.

Refer to Brouste and Iacus (2013), Theorem 1, based on Istas and Lang (1997), Theorem 3, for a proof of Propo-

sition 7 and Proposition 8.

The R-package Yuima, developed by A. Brouste and S. Iacus, allows to compute an estimation of (H, σ) via

(Ĥn, σ̂n) from observations of the fractional Ornstein-Uhlenbeck process X.

Proposition 9 Consider

υ̂∗n :=
1

1 − β

⎡⎢⎢⎢⎢⎢⎢⎣ 1

σ̂2
n(1 − β)2ĤnΓ(2Ĥn)n

n−1∑
k=0

X2
kδn

⎤⎥⎥⎥⎥⎥⎥⎦
−1/(2Ĥn)

.

υ̂∗n is a weakly consistent estimator of υ.

3. Numerical Simulations and Pharmacokinetics

For small sets of observations, the first subsection provides a method to choose the parameters H, σ and β. Propo-

sition 3 is the cornerstone of the method. The second subsection illustrates the convergence of the estimators

provided at Section 2. The relationship between the quality of the estimations and the size/length of the sample is

discussed.

3.1 A Method to Choose H, σ and β on Small Sets of Observations

Consider n ∈ N
∗ and (t1, . . . , tn) ∈ R

n
+ satisfying t1 < · · · < tn � T . Throughout this subsection, assume that

the concentrations have been observed at times t1, . . . , tn. These concentrations c1, . . . , cn provide observations

x1, . . . , xn of the fractional Ornstein-Uhlenbeck process X by putting xi := c1−β
i ; i = 1, . . . , n.

Consider the following values of the other parameters involving in Equation (1), coming from Jacomet (1989),

Chapter II.3:

Parameters Values

T 3h

υ 3.5h−1

C0 1g

n 500

In order to choose H, σ and β, a method is provided by using these values as an example.

Let λ ∈]0, 1[ be arbitrarily chosen. On one hand, as mentioned at Subsection 2.1, by Proposition 3; it is sufficient

to assume that σ2 ∈ [0,M(λ, x,H)] with

M(λ, x,H) :=
x2

2RH,ϑ(T,T ) log(2/λ)
,

to ensure with probability greater that 1 − λ that |Xt − Xdet
t | � x ∈ R∗+ for every t ∈ [0,T ]. If in addition Xdet

T > x,

by Corollary 4:

P[∀t ∈ [0,T ], Ct ∈ [|(Cdet
t )1−β − x|γ+1, |(Cdet

t )1−β + x|γ+1]] � 1 − λ.
On the other hand, as mentioned in the introduction, the Hölder regularity of the paths of the concentration process

is controlled by the Hurst parameter H.

The method stated bellow is based on these two points, and allows to choose the parameters H, σ and β on small

sets of observations.

For H = 0.9 and β = 0.9, the following array provides the values of M(λ, x,H) for the usual levels λ =
0.01, 0.05, 0.10:
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xγ+1 — λ 0.01 0.05 0.10

0.1 0.26 0.38 0.46

0.2 0.30 0.43 0.53

0.4 0.36 0.50 0.61

On the two following figures, some paths of the process C are respectively plotted for the extreme cases σ2 = 0.26

and σ2 = 4 > 0.61. The paths of the concentration process are plotted in black and the associated deterministic

model is plotted in red:

Figure 1. (H, σ) = (0.9,
√

0.26) Figure 2. (H, σ) = (0.9, 2)

For H = 0.6 and β = 0.9, the following array provides the values of M(λ, x,H) for the usual levels λ =
0.01, 0.05, 0.10:

xγ+1 — λ 0.01 0.05 0.10

0.1 0.70 1.00 1.23

0.2 0.80 1.15 1.42

0.4 0.92 1.32 1.63

On the two following figures, some paths of the process C are plotted as for H = 0.9:

Figure 3. (H, σ) = (0.6,
√

0.70) Figure 4. (H, σ) = (0.6, 2)

In order to model the concentration process realistically, it is adapted to take H = 0.9 and, for instance:

σ2 ∈ ]0; M(0.01, 0.21−β, 0.9)]

= ]0, 0.30].

Indeed,

• For H = 0.9 with σ2 = 4 > M(0.10, 0.41−β, 0.9) = 0.61, the paths of the concentration process seem locally

regular enough, but not globally.
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• For H = 0.6 with σ2 = M(0.01, 0.11−β, 0.6) = 0.70, the paths of the concentration process seem globally

regular enough, but not locally.

• For H = 0.6 with σ2 = 4 > M(0.10, 0.41−β, 0.6) = 1.63, the paths of the concentration process seem not

regular enough locally and globally.

To take β = 0.9 is also adapted, because if β ∈ [0, 0.8], for every

σ ∈ [M(0.01, 0.11−β, 0.9); M(0.10, 0.41−β, 0.6)]

the paths of the concentration process seem not significantly perturbed with respect to the associated deterministic

model. Then, to take β = 0.9 ensures that the value of the parameter σ can be chosen such that the following

realistic condition is satisfied:

P(∀t ∈ [0,T ], Xt ∈ [Xdet
t − 0.21−β, Xdet

t + 0.21−β]) � 0.99.

On the observed concentrations c1, . . . , cn, the following method allows to choose H, σ and β:

• Step 1. Take H ∈]0.5, 1[ close to 1, as 0.9.

• Step 2. Take β ∈]0, 1[.

• Step 3. Choose a standard level λ ∈]0, 1[ as 0.01 or 0.05, and put for instance

x :=
n

max
i=1
|c1−β

i − (C0e−υti )1−β|
=

n
max

i=1
|xi −C1−β

0
e−υ(1−β)ti |.

Then, compute M(λ, x,H).

If the value of υ is unknown, since the paths of the concentration process have to be moderately perturbed

with respect to the associated deterministic model, it can be approximated by linear regression as in Jacomet

(1989) (see Subsection 3.2).

• Step 4. Take σ2 ∈]0; M(λ, x,H)] such that the paths of the concentration process are regular enough locally

and globally to model the elimination of the administered drug.

If the paths of the concentration process are not significantly perturbed with respect to the associated deter-

ministic model for some standard levels λ ∈]0, 1[, then go to the second step and choose a greater value of

the parameter β. If the paths of the concentration process are not globally regular enough for some standard

levels λ ∈]0, 1[, then go to the second step and choose a smaller value of the parameter β.

3.2 Parameters Estimation

Throughout this subsection, assume that the concentration process C has been discretely observed at times t0, . . . , tn,

where n ∈ N∗, tk := kδn for every k ∈ {0, . . . , n}, and (δn)n∈N is a strictly positive real sequence such that:

lim
n→∞ δn = 0 and lim

n→∞ nδn = ∞.

Consider the following values of the parameters involving in Equation (1):

Parameters Values

T nδn ; n = 10, . . . , 103

β 0

υ 1.5h−1

H 0.9

σ2 0.26

C0 1g

The two following figures illustrate the convergence of the estimators υ̂n and Ĥn provided at Proposition 6 and

Proposition 7 respectively. For every n belonging to {10, . . . , 103}, the concentration process C is simulated at the
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times t0, . . . , tn and estimations of υ and H are computed on these simulated observations denoted by c1, . . . , cn via

υ̂n and Ĥn. The estimations are plotted in black and the values of the parameters are plotted in red:

Figure 5. υ̂n; n = 10, . . . , 103 Figure 6. Ĥn; n = 10, . . . , 103

The estimator υ̂n converges slowly to the elimination constant υ. Then, if the number n of observations is insuffi-

cient, since the paths of the concentration process have to be moderately perturbed with respect to the associated

deterministic model, it is possible de take

υ ≈ −cov[t1, . . . , tn; log(c1), . . . , log(cn)]

var(t1, . . . , tn)

as in Jacomet (1989). The method provided at Subsection 3.1 is also an alternative to choose H and σ on small

sets of observed concentrations.

4. Discussion and Perspectives

The stochastic model studied in this paper is a natural extension of usual deterministic models used in pharma-

cokinetics. It has smooth enough paths to take realistically in account the random component of the elimination

process, and its explicit expression together with the Decreusefond-Lavaud method allow to simulate it easily. As

mentioned at Section 3, the estimators of the parameters υ, H and σ provide good estimations for large sets of

observed concentrations. The method described at Subsection 3.1 is well adapted to small sets of observations.

For these reasons, the model could be used in clinical applications.

Assume that the therapeutic response Rt to the administered drug at time t ∈ [0, τ0] satisfies Rt := F(Ct,Ot),

where F ∈ C1(R2;R) and O is a stochastic process with R-valued paths, not depending on the initial concentration

C0 = A/V . The random variable Ct is derivable with respect to C0 > 0 and

∂Rt

∂C0

= C−β
0

[C1−β
0
+ σBH

t (ϑ)]γe−υt∂1F(Ct,Ot).

Differential calculus could then allow to compute the dose maximizing the therapeutic response Rt for some well

chosen functions F and well chosen stochastic processes O. On the sensitivity analysis in pharmacokinetics, see

Abraham et al. (2007).

Since the stochastic process C seems to model the elimination process more realistically than the deterministic

function Cdet, the perspective of clinical applications described above could be interesting for potentially toxic

drugs.

For instance, the elimination of the ketamine, that can be neurotoxic but more effective than classical antidepres-

sants in the treatment of major depressive disorders (see Correll & Futter, 2006), could be modeled by the stochastic

process studied in the current paper. To choose F and O such that Rt models the Hamilton rating scale or the Beck

depression inventory at time t could allow to compute the dose of ketamine maximizing its antidepressant effect

and minimizing its neurotoxic effect. On a pharmacokinetic/pharmacodynamic model of the elimination of the

ketamine, see Dahan et al. (2011).

Throughout the paper, the model has been studied for one patient. The population pharmacokinetics consists in

making sparse measurements of the concentration of the drug on several patients. In a population model, the

coefficients are random.
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The pathwise models as Equation (1) are well adapted to population pharmacokinetics. Indeed, the pathwise

stochastic calculus framework is tailor-maid to assume that the parameters of the studied equation are random.

These two problems will be studied in forthcoming papers.

Finally, even if this paper deals with an application in pharmacokinetics, note that the studied model could be used

in various degradation processes in physics and chemistry.
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Appendix A. Fractional Brownian Motion

Inspired by Nualart (2006) and, Decreusefond and Ustünel (1999), this appendix deals with the fractional Brownian

motion BH of Hurst parameter H ∈]1/2, 1[, its reproducing kernel Hilbert space and the Young/Wiener integral

with respect to BH . On the Gaussian processes, the reader can refer to Neveu (1968).

For a time T > 0 arbitrarily chosen, consider

ΔT := {(s, t) ∈ [0,T ]2 : s < t}.
Definition A.1 A fractional Brownian motion of Hurst parameter H ∈]0, 1] is a centered Gaussian process BH of

covariance function RH defined by:

RH(s, t) :=
1

2
(s2H + t2H − |t − s|2H) ; s, t ∈ [0,T ].

The process BH is a semi-martingale if and only if H = 1/2 (see Nualart, 2006, Proposition 5.1.1). Then, it is not

possible to integrate with respect to BH in the sense of Itô. However, since

E(|BH
t − BH

s |2) = |t − s|2H

for every s, t ∈ [0,T ], the Kolmogorov continuity criterion ensures that BH has α-Hölder continuous paths with

α ∈]0,H[. Therefore, for every stochastic process X with β-Hölder continuous paths such that α + β > 1, X can

be integrated with respect to BH in the sense of Young. About the Young integral, which extends the well-known

Riemann-Stieljès integral, the reader can refer to Lejay (2010).

In the sequel, assume that H ∈]1/2, 1[ and put αH := H(2H − 1). The vector space

H :=

{
h ∈ L2([0,T ]; dt) : αH

∫ T

0

∫ T

0

|t − s|2(H−1)h(s)h(t)dsdt < ∞
}
,

equipped with the scalar product 〈., .〉H defined by

〈ϕ, ψ〉H := αH

∫ T

0

∫ T

0

|t − s|2(H−1)ϕ(s)ψ(t)dsdt ; ϕ, ψ ∈ H ,

is the reproducing kernel Hilbert space of BH .

Proposition A.2 There exists a standard Brownian motion B such that:

BH
t =

∫ t

0

KH(t, s)dBs; t ∈ [0,T ]

where

KH(t, s) := cH s1/2−H
∫ t

s
(u − s)H−3/2uH−1/2du ; (s, t) ∈ ΔT

and cH > 0 denotes a deterministic constant only depending on H.

BH(h) :=

∫ T

0

(K∗Hh)(t)dBt ; h ∈ H

where

(K∗Hh)(s) :=

∫ T

s
ϕ(t)
∂KH

∂t
(t, s)dt ; s ∈ [0, T ]

defines an iso-normal Gaussian process onH , called Wiener integral with respect to BH.

That proposition summarizes several results proved at Nualart (2006), Section 5.1.3.

On one hand, since the Wiener integral defined at Proposition A.2 is an iso-normal Gaussian process, it satisfies:

∀ϕ, ψ ∈ H , E[BH(ϕ)BH(ψ)] = 〈ϕ, ψ〉H .
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On the other hand, the Hölder continuous functions on [0,T ] belong to H . Then, for every (deterministic) β-
Hölder continuous function h: [0,T ]→ R such that α+ β > 1, the Young integral of h with respect to BH on [0,T ]

coincides with the Wiener integral BH(h).

There are many methods to simulate sample paths of a fractional Brownian motion. The most popular methods

are the Wood-Chang algorithm (exact method) and the wavelet-based simulation (approximate method). Refer to

Dieker (2004) for a survey on the simulation of the fractional Brownian motion.

This appendix concludes on the Decreusefond-Lavaud method (see Decreusefond & Lavaud, 1996), which is easy

to implement. It is based on the Volterra representation of BH provided at Proposition A.2. For i = 0, . . . , n,

consider ti := iT/n. Then,

BH
ti ≈

i−1∑
j=0

⎡⎢⎢⎢⎢⎣ 1

t j+1 − t j

∫ t j+1

t j

(ti − t)H−1/2dt
⎤⎥⎥⎥⎥⎦ΔBt j

=
(T/n)H−1/2

H + 1/2

i−1∑
j=0

[(i − j)H+1/2 − (i − j − 1)H+1/2]ΔBtj

by putting ΔBt j := (T/n)1/2ξ j for j = 0, . . . , n − 1, where ξ0, . . . , ξn−1 are n independent random variables of same

distribution N(0, 1).

Appendix B. Proofs

Proof of Lemma 1. For every t ∈ R+,

BH
t (ϑ) = BH(ϑ1[0,t])

where BH is the Wiener integral with respect to BH , defined at Proposition A.2. Then, BH(ϑ) is a centered Gaussian

process, and

RH,ϑ(s, t) = 〈ϑ1[0,s], ϑ1[0,t]〉H
= αH

∫ s

0

∫ t

0

|u − v|2(H−1)ϑuϑvdudv

for every s, t ∈ R+. Since

Xt = [C1−β
0
+ σBH

t (ϑ)]e−υ(1−β)t; t ∈ R+,
the covariance function RX satisfies:

RX(s, t) = σ2e−υ(1−β)(s+t)RH,ϑ(s, t)

= αHσ
2(1 − β)2

∫ s

0

∫ t

0

|u − v|2(H−1)e−υ(1−β)[(t−u)+(s−v)]dudv

for every s, t ∈ R+. �
Proof of Proposition 3. For every t ∈ R+,

Xt − Xdet
t = −υ(1 − β)

∫ t

0

(Xs − Xdet
s )ds + σ(1 − β)BH

t .

Then,

Xt − Xdet
t = σBH

t (ϑ)e−υ(1−β)t ; t ∈ R+.
Let T > 0 be arbitrarily chosen. Since X − Xdet is a centered Gaussian process and its paths are almost surely

bounded on [0,T ], by Borell’s inequality (see Adler, 1990, Theorem 2.1):

∀x ∈ R∗+, P(‖X − Xdet‖∞,T > x) � 2 exp

[
− x2

2(σ∗)2

]

where

(σ∗)2 := sup
t∈[0,T ]

E(|Xt − Xdet
t |2)

= σ2RH,ϑ(T,T ).
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That achieves the proof. �
Proof of Corollary 4. Consider x > 0 and T > 0 such that Xdet

T > x. On one hand, by Proposition 3:

P(‖X − Xdet‖∞,T � x) � 1 − 2 exp

[
− x2

2σ2RH,ϑ(T,T )

]
. (4)

On the other hand, consider ω ∈ Ω such that ‖X(ω) − Xdet‖∞,T � x. Since Xdet is decreasing on [0, T ]:

0 < Xdet
t − x � Xt(ω) � Xdet

t + x

for every t ∈ [0, T ]. So,

|(Cdet
t )1−β − x|γ+1 � Ct(ω) � |(Cdet

t )1−β + x|γ+1

for every t ∈ [0, T ]. Therefore,

{‖X − Xdet‖∞,T � x} ⊂ {∀t ∈ [0,T ], Ct ∈ [|(Cdet
t )1−β − x|γ+1, |(Cdet

t )1−β + x|γ+1]}.
That achieves the proof by Inequality (4). �
Proof of Theorem 5. If f is continuously differentiable, the ergodic theorem stated at Neuenkirch and Tindel

(2011), Proposition 2.3 allows to conclude. In the special case of the fractional Ornstein-Uhlenbeck process, that

additional condition is not required.

Since Y is a centered, stationary and ergodic Gaussian process (see Cheridito et al., 2003), by Birkhoff-Chintchin’s

ergodic theorem together with Fernique’s theorem:

1

T

∫ T

0

f (Yt)dt
a.s.−−−−→

T→∞ E[ f (Y0)] < ∞.

Since Xt = Yt + (X0 − Y0)e−υ(1−β)t for every t ∈ R+, it is sufficient to prove that:

δT :=
1

T

∣∣∣∣∣∣
∫ T

0

f (Xt)dt −
∫ T

0

f (Yt)dt

∣∣∣∣∣∣
a.s.−−−−→

T→∞ 0.

Let T > 0 be arbitrarily chosen, and put pi(x) := ci(1 + |x|)bi ; x ∈ R, i ∈ {1, . . . , n}. Then,

δT � 1

T

∫ T

0

| f [Yt + (X0 − Y0)e−υ(1−β)t] − f (Yt)|dt

� 1

T

n∑
i=1

|X0 − Y0|ai

∫ T

0

pi(Yt)e−aiυ(1−β)tdt.

For i = 1, . . . , n, by Cauchy-Schwarz’s inequality:

1

T

∫ T

0

pi(Yt)e−aiυ(1−β)tdt �
[

1

T

∫ T

0

p2
i (Yt)dt

]1/2 [
1

T

∫ T

0

e−2aiυ(1−β)tdt
]1/2

a.s.−−−−→
T→∞ 0,

because

1

T

∫ T

0

e−2aiυ(1−β)tdt = − 1

2aiυ(1 − β)T [e−2aiυ(1−β)T − 1]

−−−−→
T→∞ 0

and
1

T

∫ T

0

p2
i (Yt)dt

a.s.−−−−→
T→∞ E[p2

i (Y0)] < ∞
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by Birkhoff-Chintchin’s ergodic theorem together with Fernique’s theorem. That achieves the proof. �
Proof of Proposition 9. The fractional Ornstein-Uhlenbeck process X satisfies:

∀p > 0, sup
T∈R+

E(|XT |p) < ∞.

For every k ∈ {0, . . . , n − 1} and t ∈ [tk, tk+1],

E
1/2(|Xt − Xtk |2) � υ(1 − β) sup

T∈R+
E

1/2(X2
T )|t − tk | + σ(1 − β)E1/2(|BH

t − BH
tk |2)

� (1 − β)
[
υ sup

T∈R+
E

1/2(X2
T ) + σ

]
|t − tk |H .

Then,

E

⎡⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣∣ 1

nδn

∫ nδn

0

X2
t dt − 1

n

n−1∑
k=0

X2
kδn

∣∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦ = 1

nδn
E

⎡⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣∣
n−1∑
k=0

∫ tk+1

tk
(X2

t − X2
tk )dt

∣∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦

� 2

nδn
sup
T∈R+

E
1/2(X2

T )

n−1∑
k=0

∫ tk+1

tk
E

1/2(|Xt − Xtk |2)dt

� C
nδn

n−1∑
k=0

∫ tk+1

tk
|t − tk |Hdt =

C
H + 1

δH
n

with

C := 2(1 − β) sup
T∈R+

E
1/2(X2

T )

[
υ sup

T∈R+
E

1/2(X2
T ) + σ

]
.

Therefore,

lim
n→∞E

⎡⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣∣ 1

nδn

∫ nδn

0

X2
t dt − 1

n

n−1∑
k=0

X2
kδn

∣∣∣∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦ = 0 (5)

Let f : R∗+×]1/2, 1[×R+ → R be the continuous map defined by:

f (u, v,w) :=
1

1 − β
[

w
v2(1 − β)2uΓ(2u)

]−1/(2u)

for every u ∈ R∗+, v ∈]1/2, 1[ and w ∈ R+. By Theorem 5, Proposition 7, Proposition 8 and (5):

υ̂∗n = f

⎛⎜⎜⎜⎜⎜⎜⎝Ĥn, σ̂n,
1

n

n−1∑
k=0

X2
kδn

⎞⎟⎟⎟⎟⎟⎟⎠ P−−−−→
n→∞ υ.

That achieves the proof. �
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