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Abstract

We consider preferential attachment random graphs which may be obtained as follows: It starts with a single node.
If a new node appears, it is linked by an edge to one or more existing node(s) with a probability proportional to
function of their degree. For a class of linear preferential attachment random graphs we find a large deviation
principle (LDP) for the empirical degree measure. In the course of the prove this LDP we establish an LDP for
the empirical degree and pair distribution see Theorem 0.3, of the fitness preferential attachment model of random
graphs.

Keywords: Large deviation principle, preferential attachment graphs, empirical degree measure, path empirical
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1. Introduction

Preferential attachment (P.A) random graph models have become extremely popular in the last two decades since
they were first studied by (Barabasi and Albert ,1999). Example (Van der Hofstad ,2013), (Newman, 2003) and
(Newman et. al, 2006) provide good overviews.

The P.A model of random graphs are graphs in which nodes are added sequentially and attach to exactly one
randomly chosen existing node and the chance a new node connects to an existing node is proportional to its
degree.

The model is typically generalized to allow for vertices to have m > 1 initial edges by collapsing m vertices in the
one initial edge case into a single vertex (possibly causing loops). The most studied feature of these objects is the
distribution of the degrees of the nodes; that is, the proportion of nodes that have degree k as the graph grows large.
See, example (Collevecchio et. al, 2013), (Krapivsky et. al, 2000), (Rudas et. al, 2007) for results on more general
attachment rules.

Few large deviation results for P.A model have so far been found. In paper ( Choi et. al, 2011), P.A schemes where
the selection mechanism is possibly time-dependent are considered, and an in infinite dimensional large deviation
principle for the sample path evolution of the empirical degree distribution is found by Dupuis-Ellis type methods.

(Dereich and Moerters, 2009) studied a dynamic model of random networks, where new vertices are connected
to old ones with a probability proportional to a sub-linear function of their degree. For this model of random
networks, they obtained a strong limit law for the empirical degree distribution. Results on the temporal evolution
of the degrees of individual vertices via large and moderate deviation principles were also found.

(Bryc et. al, 2009) found the large deviation principle and related results for a class of Markov chains associated to
the ‘leaves’ in P.A model of random graphs using both analytic and Dupuis–Ellis-type path arguments. Recently,
(Doku-Amponsah et. al, 2014) proved a large deviation upper bound for fitness preferential attachment random
network.

In this paper, we find a large deviation principle for the empirical degree distribution of preferential attachment
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random network in the linear regime. See, Theorem 0.1. In the course of the proof of Theorem 0.1, we find a
large deviation principle for the empirical degree and pair measure of the fitness preferential attachment random
networks, see Theorem 0.2 and a joint LDP for the empirical degree and pair measure, and the sample path
empirical degree distribution of the fitness preferential attachment random networks, see Theorem 0.3. The main
technique in our proof is exponential change of measure, see example (Doku-Amponsah et. al, 2014) and the
method of mixtures, see (Biggins, 2004).

2. Main Results
2.1 LDP for the Preferential Attachment Model of Random Graphs

Let f :
{
0, 1, 2, ...

}→ [0, ∞] be a weight function. We define a preferential attachment random graph as follows:
It starts with single vertex serving as root. If a new vertex n is introduced, it connects to vertices vn ∈ { 1, . . . , n−1 }
independently with probability proportional to f (N(vn)), where N(m) is the in-degree of vertex m.

We write N = {0, 1, 2, ...}. In this paper, we shall restrict ourself to functions of the form

f (k) = γk + β, where γ, β ∈ (0, ∞].

We define empirical degree measure L on N by

L(k) =
1

n − 1

n−1∑
m=1

δN(m)( jm)(k).

We denote by M(N) the space of probability measures on N , equipped with the topology generated by total
variation metric ∥π − π̂∥ := 1

2
∑∞

k=0 ∥π(k) − π̂(k)∥.

Theorem 0.1. Suppose X is P.A random graph with linear weight function f : N → [0,∞], satisfying γ ≥ 1 − β,
log(1 + β/γ) < ∞ and

∞∑
k=0

1
γk+β = ∞.

Then, as n → ∞, the empirical degree measure L, satisfies a large deviation principle inM(N) with good rate
function

I(ℓ) = H
(
ℓ ∥ (γ+β)

f ⊗ ℓ̂
)
,

where (γ+β)
f ⊗ ℓ̂(k) = (γ+β)

f (k) ℓ̂(k) and ℓ̂(k) = 1l −∑k
j=0 ℓ(k).

2.2 Large-deviations for Fitness P.A Random Network

To establish Theorem 0.1 we pass to a more general random preferential random graph, the fitness or coloured
preferential random graph. We writeN = N∪{0}. Given a weight function fm/n : N ×X → [0, ∞], m = 1, 2, 3, ...n
and a probability law µ on finite alphabet X, we define coloured (fitness) P.A random network with n vertices as
follows:

• Assign vertex m = 1 (the root of the network) colour X(m) according to µ : X → [0, 1].

• If a new vertex m is introduced, it gets colour X(m) independently according µ,

• it connects to vertices vm ∈ { 1, . . . ,m − 1 } independently with probability proportional to

fm/n(N(vm), A(m)),

where A(m) =
(
X(vm), X(m)

)
and N(m) is the in-degree of vertex m.

• Repeat the previous three steps until we have n vertices.

We consider
{
(N(vm), A(m)) : m = 1, 2, 3, ..., n . . .

}
under the joint law of colour and tree. Denote by X a typed tree

and by X(i) colour of vertex i.We write X∗ = X×X. In this paper, we shall restrict ourself to functions of the form

ft(k, a) = γ(t, a)k + β(t, a),
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where γ : (0, 1] × X∗ → (0, ∞], β : (0, 1] × X∗ → [0, ∞].We assume

γ(t, a) + β(t, a) := ct, for all (t, a) ∈ (0, 1] × X. (0.1)

Let N(m)(i) be the degree of vertex i at time m and observe that at time n, the law of the fitness P.A graph is given
by

P(n)
f (X) =

n∏
m=1

µ(X(m))×
n∏

m=2

fm/n(N(m)( jm), A(m))∑m−1
i=1 fm/n(N(m)(i), A(m)).

For every X, we define empirical degree and pair measure measure MX on N × X∗ by

MX(k, a) =
1

n − 1

n−1∑
m=1

δ(N(m)( jm),A(m))(k, a).

We write ℓm(a) =
{
jm ∈ {1, 2, 3, ...,m − 1

}
: x( jm) = a1, x(m) = a2

}
and for every m = 2, 3, 4, ..., n − 1 we define a

probability measure on N × X∗ by

LX
m
n

(k, a) =
1

m − 1

m−1∑
j=1

δN(m)( j)(k)1l{ j∈ℓm(A(m)} ⊗ δA(m)(a),

where

1l{ j∈ℓm(b)} ⊗ δb(a) =
{

1l{ j∈ℓm(b)} if b = a,
0 otherwise.

and notice,
LX

1 (k, a) = MX(k, a).

We denote byM(X) the space of probability measures on X equipped with the weak topology andM(N ×X∗) the
space of probability measures on N × X∗, equipped with the topology generated by total variation metric.

∥π − π̂∥ = 1
2

∑
(k,a)∈N×X∗

∥π(k, a) − π̂(k, a)∥.

Let limn→∞ LX
[nt]/n = νt and write ν := (νt, t ∈ [0, 1]). The following is an LDP for

(
MX , (LX

[nt]/n, t ∈ [0, 1])
)
.

Theorem 0.2. Suppose X is coloured P.A random graph with colour law µ : X → (0, 1] and linear weight functions
( ft, t ∈ (0, 1]) satisfying inft∈(0,1] ct ≥ 1,

sup
a∈X∗

∫ 1

0
log
(
1 + β(t, a)/γ(t, a)

)
dt < ∞ (0.2)

and

inf
(t,a)∈(0,1]×X∗

∞∑
k=0

1
γ(t,a)k+β(t,a) = ∞ .

Then, as n → ∞, the pair of empirical measures
(
MX , (LX

[nt]/n, t ∈ [0, 1])
)

satisfies a large deviation principle in
M(N × X∗) × {ν} with good rate function

J̃(ω, ν) =

 H(ω2,1 ∥ µ)) +
∑

a∈X ω2(a)
∫

[0,1] H
(
ω(·|a) ∥ ct

ft
⊗ νt(·|a)

)
dt, if ω = ν1,

∞ otherwise,

where ω2,1 is the X− marginal of the probability measure ω2 and

ct
ft(·, a) ⊗ νt(·| a)(k) =

ct

ft(k, a)
νt(k | a).

Our next theorem which generalizes Theorem 0.1 is a special case of Theorem 0.2 above.

78



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015

Theorem 0.3. Suppose X is coloured P.A random graph with colour law µ : X → (0, 1] and linear weight function
f : N × X∗ → [0,∞] satisfying c ≥ 1,

sup
a∈X∗

log
(
1 + β(a)/γ(a)

)
< ∞

and

inf
a∈X∗

∞∑
k=0

1
γ(a)k+β(a) = ∞. (0.3)

Then, as n→ ∞, MX satisfies a large deviation principle inM(N × X∗) with good rate function

J(ω) = H(ω2,1 ∥ µ)) +
∑
a∈X
ω2(a)H

(
ω(·|a) ∥ c

f
⊗ ω̂(k | a)

)
where ω̂(k | a) := 1l −∑k

j=0 ω(k | a).

Observe that J(ω) = 0 if and only if ω(k, a) = cω2(a)
f (k, a)
(
1l − ∑k

j=0 ω(k | a)
)
, and hence solving recursively for ω(· | a)

we get

ω(k |a) = π f (k |a) :=
c

c + f (k, a)

k−1∏
i=0

f (i, a)
c + f (i, a)

. (0.4)

Here we remark that conditions (0.1) and (0.3) are necessary for π f (· |a) to be a probability measure on N . See
(Dereich and Morters, 2009, p. 13). Note, if f (k, a) = w(k) then (0.4) concise with the asymptotic degree distribu-
tion of random trees and general branching processes found in (Rudas et. al, 2008).

3. Proof of Results
3.1 Dynamics of the Path Empirical Degree Distribution

Denote by D([0, 1],R) the space of right continuous left limited(cadlag) paths from [0, 1] to R. We define the
sample path space

DM := D([0, 1] :M(N × X))

=
{
the set of all ν : [0, 1] 7→ M(N × X) such that ν(k, a) ∈ D([0, 1],R) for all k ≥ 0, a ∈ X and ⟨ν⟩ = 1

}
and endow it with the topology of uniform convergence associated with the norm

∥ν − ν̂∥ := sup
t∈[0,1]

∥νt − ν̂t∥.

For any ν ∈ DM we write νt(k |a) := νt(k, a)∑∞
k=0 νt(k, a) , for all t ∈ [0, 1] and (k, a) ∈ N × X. Write ν̇t := dνt

dt for the time
derivative of the measure νt and we associate with each path ν ∈ DM the relaxed measure on [0, 1] × (N × X)

ν̄(dk, dt|a) = νt(dk|a)dt.

We call ν ∈ DM absolutely continuous if for each k ∈ N, there exists ν̇(k|a) such that

ν1(k|a) − ν0(k|a) =
∫ 1

0
ν̇s(k|a)ds.

For each absolutely continuous path ν , we define νν(·|a), ν̄(·, ·|a)- almost everywhere by

ννt (k|a) := −
k∑

i=0

ν̇t(i|a).

By νν ≪ ν we mean ν is absolutely continuous. We write

DMn(N×X) :=
{
ν ∈ DM(N×X) : ([nt] − 1)ν[nt]/n ∈ N, ∀t ∈ [0, 1)

}
.
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Note that the measure LX
[nt]/n, for t ∈ [0, 1) is deterministic and its distribution is degenerate at some ν[nt]/n, for

t ∈ [0, 1) converging to νt, t ∈ [0, 1).

3.2 Exponential Change-of-Measure

Throughout the remaining part of this paper, we assume the sample path degree distribution ν satisfies νt(k|a) =
ννt (k|a), for all t ∈ [0, 1].

Let g̃ : N × X → R, and write lim
n→∞

L [nt]
n

:= νt ∈ DM, we define the function Ug̃ : [0, 1] × X → R by

U(n)
g̃ ⊗ ν(a) = log

⟨
eg̃[nt]/n (·, a)

f[nt]/n(·, a) , ν [nt]
n

(·|a)
⟩
,

and note that

lim
n→∞

U(n)
g̃t
⊗ ν(a) = log

⟨
eg̃t (·, a)

ft(·, a) , νt(·|a)
⟩
=: Ug̃t ⊗ ν(a, t).

We use g̃ to define a new fitness P.A random graph with n vertices as follows:

• At time m = assign the root m of the network fit X(m) according to the law µ̃ given by

µ̃(a1) = eh̃(a1)−U(h̃)µ(a1).

• For any other time m new node m which appear gets fit X(m) according to the fit law µ̃. It connects to node
vm, independently with probability proportional to

f̃m/n(N(m)(vm), A(m)) =
cm/n

fm/n(N(m)(vm), A(m))
eg̃m/n(N(m)(vm),A(m)).

• Repeat the previous three steps until we have n vertices.

We denote by P f̃ ,n the law of the new fitness P.A graph and observe that it is absolute continuous with respect to
P f ,n, as for fitness graph X we have that

dP f̃ ,n

dP f ,n
(X) =

n∏
m=1

µ̃(X(m)
µ(X(m) ×

∏n−1
m=1 f̃m/n(N(m)( jm), A(m))∏n−1

m=2
∑m−1

i=1 f̃m/n(N(m)(i), A(m))
×
∏n−1

m=2
∑m−1

i=1 fm/n(N(m)(i), A(m))∏n−1
m=1 fm/n(N(m)( jm), A(m))

(0.5)

= e
(n−1)
⟨

h̃−U(h̃),MX

⟩
+(n−1)

⟨
g̃·/n−2 log f·/n+log c,MX⊗id

⟩
−(n−1)

⟨
Ug̃·/n⊗L,MX⊗id

⟩
, (0.6)

where id is the identity function from [0, 1] to [0, 1]. The following Lemma will be used to establish the upper
bound in a variational formulation.

Lemma 0.4. For every θ > 0 there exits a compact set Kθ ⊂ M(X∗) such that

lim sup
n→∞

1
n logP f ,n

{
MX < K

∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≤ −θ. (0.7)

Proof. Let 1 ≥ δ > 0, and l ∈ N.We choose k(l, δ) ∈ N large enough such that, for large n, we have

[nt]−1∑
i=1

el21l{N([nt])(i)>k(l,δ)} f[nt]/n(N([nt])(i),a)
c([nt]−1) ≤ 2eδ, for all a ∈ X and for all t.
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Now using Chebyschev’s inequality we have

P f ,n

{
MX(N([nt]) > k(l, δ)) ≥ l−1, L[nt]/n = ν[nt]/n,∀t∈(0,1]

}
≤ e−nlE

{
e
∑n−1

m=1 l21l{N(m) ( jm)>k(l,δ)} , L m
n
= νm

n
, m = 2, 3, 4, ..., n − 1

}
= e−nl

n∏
m=2

E
{
el21l{N(m) ( jm)>k(l,δ)} , L m

n
= νm

n

}
≤ e−nl

[
sup
a∈X

sup
t≥0

( [nt]−1∑
i=1

el2 1l{N([nt])(i)>k(l,δ)}
f[nt]/n(N([nt])(i),a)

([nt]−1)
⟨

f[nt]/n, ν [nt]
n

(·|a)
⟩ )]n

= e−nl
[

sup
a∈X

sup
t≥0

(
[nt]−1∑

i=1

el2 1l{N([nt])(i)>k(l,δ)}
f[nt]/n(N([nt])(i),a)

c([nt]−1) )
]n

≤ e−nl × (2eδ)n

= en(l−δ−log 2)

Now given θ we choose M > θ + δ + log 2 and define the set

Γδ,θ :=
{
ν : ν(N > k(l, δ)) < l−1, l ≥ M

}
As
{
N ≤ k(l, δ)

}
is pre-compact, Γδ is compact in the weak topology by prokohov criterion. Moreover

P f ,n

{
MX < Kθ

∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≤ 1

1−e−1
e−θ

P
{

L[nt]/n=ν[nt]/n,∀t∈(0,1]

} = 1
1−e−1 e−θ.

Now letting Kθ be the closure of ∩1≥δ>0Γδ,θ and taking limit as n approaches∞ we have (0.7) which ends the proof
the Lemma.

�

3.3 Proof of Theorem 0.2.

We derive the upper bound in a variational formulation. To do this, we denote by C1 the space of all functions
on X and by C2 the space of all bounded continuous functions on N × X∗.We define on the space of probability
measuresM(N × X) the function K̂ given by

K̂ν(ω) =
∫

[0,1]
sup

g̃∈C2,h̃∈C1

{ ∫
(h̃ − U(h̃))ω2,1(da1) +

∫
g̃t(k, a)ω(dk, da) − 2

∫
log f̃t(k, a)ω(dk, da)

+ log ct −
∫

Ug̃t ⊗ ν(a, t)ω2(da)
}
dt.

(0.8)

Lemma 0.5. For every close set F ⊂ M(N × X) we have

lim sup
n→∞

1
n logP f ,n

{
MX ∈ F

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≤ − inf

ω∈F
K̂ν(ω) (0.9)

Proof. We let h̃ ∈ C1, g̃ ∈ C2 and use the Jensen’s inequality to obtain

e(supa1
h̃(a)−infa1 h̃(a1)) ≤

∫
eh̃(X(n))−U(h̃)dP̃ f ,n

= E
{
e

(n−1)
[⟨

h̃−U(h̃),MX

⟩
+

⟨
g̃[nt]/n−2 log f[nt]/n+log ct ,MX⊗id

⟩
−
⟨

Ug̃[nt]/n⊗L,MX⊗id
⟩]
, (L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
.

This yields the inequality

lim sup
n→∞

1
n logE

{
e

(n−1)
[⟨

h̃−U(h̃),MX

⟩
+

⟨
g̃[nt]/n−2 log f[nt]/n+log ct ,MX⊗id

⟩
−
⟨

Ug̃[nt]/n⊗L,MX⊗id
⟩]

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
= 0. (0.10)
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Given ε > 0, define K̂ε,ν by K̂ν,ε(ω) = min
{
K̂ν(ω), ε−1} − ε. For ω ∈ F we fix h̃ ∈ C1 and g̃ ∈ C2 such that

⟨h̃ − U(h̃), ω2,1⟩ + ⟨g̃t − 2 log ft + log ct, ω ⊗ id⟩ − ⟨Uνg̃t
, ω ⊗ id⟩ ≥ K̂ν,ε(ω).

Now, because the function g̃t is bounded, we can find open neighbourhood Bω of ω, such that

inf
ω̃∈Bω

{
⟨h̃ − U(h̃), ω2,1⟩ + ⟨g̃t − 2 log ft + log ct, ω ⊗ id⟩ − ⟨Uνg̃t

, ω ⊗ id⟩
}
≥ K̂ν,ε(ω) − ε. (0.11)

Take δ = ε, apply the Chebyshev’s inequality to (0.11) and use (0.10) to get

lim sup
n→∞

1
n logP f ,n

{
MX ∈ Bω

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}

≤ lim sup 1
n logE

{
e

(n−1)
[⟨

h̃−U(h̃),MX

⟩
+

⟨
g̃·/n−2 log f·/n+log ct ,MX⊗id

⟩
−
⟨

Ug̃·/n⊗L,MX⊗id
⟩]∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
− K̂ν,ε(ω) + ε

≤ −K̂ν,ε(ω) + 2ε

(0.12)

Using Lemma 0.4 with θ = ε−1 we may choose the compact set Gε such that

lim sup
n→∞

1
n logP f ,n

{
MX < Gε

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≤ −ε−1.

Now, the set F ∩Gε is compact and therefore we may be covered by finitely many sets Bω1 , . . . , Bωr , with ωi ∈ F
, for i = 1, . . . , r. Hence, we have that

P f ,n

{
MX ∈ F

∣∣∣∣L = ν} ≤ r∑
i=1

P
{
MX ∈ Bωi

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}

+ P
{
MX < Gε

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
.

Next we use (0.12) we obtain for small enough ε > 0,

lim sup
n→∞

1
n logP f ,n

{
MX ∈ F

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}

≤ r
max

i=1
lim sup

n→∞
1
n logP f ,n

{
MX ∈ Bωi

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
− ε−1 ≤ −K̂ν,ε(ω) + 2ε

Taking ε ↓ 0 we get the desire statement.

We show that the function K̂ν(ω) in Lemma 0.5 may be replaced by the good rate function

Kν(ω) = H
(
ω2,1 ∥ µ

)
+
∑
a∈X
ω2(a)

∫
[0,1]

H
(
ω(·|a) ∥ ct

ft(·, a)
⊗ νt(·|a)

)
dt.

Lemma 0.6. For every ν ∈ DM we have that K̂ν(ω) ≥ Kν(ω).Moveover, the function Kν is good rate function and
lower semi-continuous onM(N × X).

Proof. Suppose ν1 = ω.Then, using the Jensen’s inequality, by our assumption (0.1) and the variational charac-
terization of entropy we have

H
(
ω2,1 ∥ µ

)
= sup

h̃

{ ∫
h̃(a1)ω2,1(da1) − log

∫
eh̃(a1)µ(da1)

}
82
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∑
a∈X
ω2(a)

∫
[0,1]

H
(
ω(·|a) ∥ ct

ft(·, , a)
⊗ νt(·|a)

)
dt

=

∫
[0,1]

sup
g̃t

{ ∫
g̃t(k, a)ω(dk, da) − log

∫ ∫
ct

eg̃(k, a)

ft(k, a)ω2(da)νt(dk|a)
}
dt

≤
∫

[0,1]
sup

g̃

{ ∫
g̃t(k, a)ω(dk, da) + log ct − 2 log ct −

∫
log
( ∫

eg̃t (k, a)

ft(k, a)νt(dk|a)
)
ω2(da)

}
dt

=

∫
[0,1]

sup
g̃t

{ ∫
g̃(k, a)ω(dk, da) + log ct − 2 log

∫
ft(k, a)ω(dk, da) −

∫
log
( ∫

eg̃t (k, a)

ft(k, a)νt(dk|a)
)
ω2(da)

}
dt

≤
∫

[0,1]
sup

g̃

{ ∫
g̃t(k, a)ω(dk, da) + log ct − 2

∫
log ft(k, a)ω(dk, da) −

∫
log
⟨

eg̃t (·|a)

ft(·|a) , νt(·|a)
⟩
ω2(da)

}
dt

=

∫
[0,1]

sup
g̃t

{ ∫
g̃t(k, a)ω(dk, da) + log ct − 2

∫
log ft(k, a)ω(dk, da) −

∫
Ug̃t (a)ω2(da)

}
dt

= K̂ν(ω)

Recall the definition of Kν above and notice, mapping ω→ Kν(ω) is continuous function. Moreover, for all α < ∞,
the level sets {Kν ≤ α} are contained in the bounded set{

ω ∈ M(N × X) :
∑
a∈X
ω2(a)

∫
[0,1]

H
(
ω(·|a) ∥ ct

f (·, a)
⊗ ννt (·|a)

)
dt ≤ α

}
and are therefore compact. Consequently, Kν is a good rate function.

3.4 Lower Bound

We establish the lower bound by using the upper bound. To begin. we let O be open subset ofM(N × X).

Lemma 0.7.
lim inf

n→∞
1
n logP f ,n

{
MX ∈ O

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≥ − inf

ω∈O
K̂ν(ω) (0.13)

Proof. Suppose ω = ν1.We define the function g̃t,ω : X → R by

g̃t,ω(k, a) =
{

log ft(k,a)ω(k|a)
ctνt(k|a) if νt(k|a) > 0,

0 otherwise,

Let Bω be open neighbourhood of ω such that for all ω̃, ∈ Bω we have that

⟨g̃t,ω − 2 log ft, ω̃⟩ − ⟨Ug̃t,ω ⊗ ν, ω̃ ⊗ dt⟩ ≥ ⟨g̃t,ω − 2 log ft, , ω⟩ − ⟨Ug̃t,ω ⊗ ν, ω ⊗ dt⟩ − 2ε.

We use P̃ f ,n the law of the coloured preferential attachment graph obtained by transforming P f ,n using g̃t,ω. We
observe that colour law in the transformed measure is ω2,1 and the linear weight function is

f̃t(k, a) = ω(k|a)
νt(k|a) ,

where

γ̃(t, a) =
|∑∞k=0 kω(k|a) − 1|∑∞

k=0 k2ν1(k|a) − 1

β̃(t, a) =
(
∑∞

k=0 k2νt(k|a) − 1) − |∑∞k=0 kω(k|a) − 1|∑∞
k=0 k2νt(k|a) − 1
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and that therefore γ̃(t, a) + β̃(t, a) = 1.We use (0.6) to obtain

P f ,n

{
MX ∈ O, (L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
≥ Ẽ
{ P̃ f ,n

Pνf ,n
(X)1l{MX∈Bω

}, (L[nt]/n = ν[nt]/n,∀t∈(0,1])
}

= Ẽ
{

exp
(
− (n − 1)⟨g̃t,ω + log ct − Ug̃t,ω , MX ⊗ dt⟩ − (n − 1)⟨log 1

f 2
t
, MX ⊗ dt⟩

)
× 1l{MX∈Bω

}}
≥ exp

(
− (n − 1)⟨g̃t,ω + log ct − Ug̃t,ω , ω ⊗ dt⟩ + ε

)
× P̃ f ,n

{
MX ∈ Bω, (L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
≥ exp

(
− (n − 1)(⟨g̃t,ω, ω ⊗ dt⟩ − 2⟨log( ct

ft
), MX ⊗ dt⟩) + ε)

)
× P̃ f ,n

{
MX ∈ Bω, (L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
≥ exp

(
− (n − 1)(⟨g̃t,ω, ω ⊗ dt⟩ + ε) − 2

∫ 1

0
log(1 + βt/γt)dt

)
× P̃ f ,n

{
MX ∈ Bω, (L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
,

(0.14)

where we have used ct > 1 in the last inequality.

Therefore we have that

lim inf
n→∞

1
n logP f ,n

{
MX ∈ O

∣∣∣∣ (L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≥ −⟨g̃t,ω, ω ⊗ dt⟩ + 3ε

+ lim inf
n→∞

1
n log˜̃P f ,n

{
MX ∈ O

∣∣∣∣ (L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
,

(0.15)

where we have used (0.2) in the last inequality.

We complete the proof of the lower bound by showing that the last term in (0.15) above vanishes. We shall use the
upper bound with the measure P f ,n replaced by P̃ f ,n. Thus, by Lemma 0.5 we have that

lim sup
n→∞

1
n log P̃ f ,n

{
MX ∈ (Bω)c

}
≤ − inf

ω̃∈(Bω)c
K̃ν(ω̃),

K̃ν(ω̃) =
{

H(ω̃2,1 ∥ ν1,2)) +
∑

a∈X ω̃2(a)
∫

[0,1] H(ω̃(·|a) ∥ 1
f̃t
⊗ νt(·|a))dt if ω̃ = ν1,

∞ otherwise,

where Ac denotes complement of the set A. It therefore suffice to show that the infimum above is positive. Suppose
for contradiction that there exits sequence ω̃n ∈ (Bω)c with K̃ν(ω̃n) ↓ 0. Then, because the mapping ω̃ 7→ K̃ν(ω̃) is
lower semi-continuous, we can construct a limit point ω̃ ∈ (Bω)c with K̃ν(ω̃) = 0. This implies that ω̃2 = ν1 = ω2
and
∑

a∈X ω̃2(a)
∫

(0,1] H(ω̃(·|a) ∥ 1
f̃t
⊗ νt(·|a))dt = 0. Hence ω̃(k|a)ω(k|a) = νt(k|a)νt(k|a), for all k ∈ N , and t ∈ (0, 1)

which yields ω̃ = ω. This contradicts ω̃ ∈ (Bω)c.

3.5 Proof of Theorem 0.1 By Mixing

To use the technique of mixing LDP results developed in (Biggins, 2004), we check the main criteria needed for the
validity of (See, Biggins, 2004, Theorem 5(a)) in the following Lemma. We writeΘn := DMn(N×X),Θ := DM(N×X),
and define

P f ,n(ν1) := P
[
MX = ν1

∣∣∣ LX
[nt]
n

(·, a) = ν [nt]
n

(·, a), t ∈ [0, 1) and a ∈ X
]

Pn

(
ν [nt]

n
, t ∈ [0, 1)

)
:= P
{
LX

[nt]
n

= ν [nt]
n

}
Then, the joint distribution of MX and LX is obtained by the mixture of P f ,n and Pn as follows:

dP̃ f ,n(ν, ν1) := dPn(ν)dP f ,n(ν1).

Lemma 0.8. The family of distributions (i) (P f ,n, n ∈ N) (ii) (P̃ f ,n, n ∈ N) are exponentially tight.

Proof. (i) As this family distributions obey a large deviation upper bound with a good rate function Kν(ω), the
family (P f ,n, n ∈ N) is exponentially tight. See, e.g. (Dembo and Zeitouni, 1998, Exercise 4.1.10(c)).

(ii) By (i) for every θ2 we can find Kθ2 , compact subset ofDM(N×X) such that, we have

lim sup
n→∞

1
n

log P f ,n(Kc
θ2

) ≤ −θ2.
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Also by Lemma 0.4, for every θ1 we can find Kθ1 , compact subset ofM(N × X) such that, we have

lim sup
n→∞

1
n

log P f ,n(Kc
θ1

) ≤ −θ1.

Take θ = min(θ1, θ2) and define the relatively compact set Γθ by

Γθ :=
{
(ν1, ν) ∈ M(N × X) ×DM(N×X) : ν1 ∈ Kθ1 and ν ∈ Kθ2

}
.

Now, let δ > 0 and notice that, for sufficiently large n we have that

P̃ f ,n(Γc
θ) ≤ P

{
MX ∈ Kc

θ1

}
+ P
{
LX ∈ Kc

θ2

} ≤ C(θ)e−n(θ−δ).

Taking limit n→ ∞ followed by δ ↓ 0 of above inequality, yields

lim sup
n→∞

1
n

log P̃ f ,n(Γc
θ) ≤ −θ

which proves the second part of the Lemma. �

Now, as J(ν1, ν) is lower semi-continuous by the continuity of the relative entropies, and by Lemma 0.8 the families
of distributions (i) (P f ,n, n ∈ N) (ii) (P̃ f ,n, n ∈ N) are exponentially tight, we have that the latter obeys a large
deviation principle with good rate function give by J(ν1). (See, Biggins, 2004, Theorem 5(a)).

3.6 Proof of Theorem 0.3 We note that in case of this theorem γt = γ, βt = β, and hence ct = c for all t ∈ (0, 1].
Therefore, Theorem 0.2 and the contraction principle, (see Dembo and Zeitouni, 1998, Theorem 4.2.1) imply the
large deviation principle for MX in the spaceM(N × X) with good rate function

inf
ν∈DM

{
J̃(ω, ν) : ω = ν1

}
= inf
ν∈DM

{
H(ω2,1 ∥ µ) +

∑
a∈X
ω2(a)

∫ 1

0
H
(
ω(·|a) ∥ c

f
⊗ νt(·|a)

)
dt : ω = ν1

}
≥ inf
ν∈DM

{
H(ω2,1 ∥ µ) +

∑
a∈X
ω2(a)H

(
ω(·|a) ∥ c

f
⊗
∫ 1

0
νt(·|a)dt

)
: ω = ν1

}
= H(ω2,1 ∥ µ) +

∑
a∈X
ω2(a)H

(
ω(·|a) ∥ c

f
⊗ ω̂(·|a)

)
= J(ω)

where in the third step, we have used the inequality

νt(k|a) ≤
∫ 1

0
νt(k|a)dt =

∫ 1

0
ννt (k|a)dt = 1l −

k∑
i=0

ν1(i|a) = 1l −
k∑

i=0

ω(i|a) = ω̂(k|a)

for all (k, a) ∈ N × X and for all t ∈ [0, 1]. This ends the proof this Theorem. 3.7Proof of Theorem 0.1

In the case of an preferential attachment graph, the function c = γ(a)+β(a) degenerates to a constant c = γ+β and
MX = L ∈ M(N). Theorem 0.3 and the contraction principle imply a large deviation principle for L with good
rate function

J(ℓ) = H
(
ℓ ∥ (γ+β)

f ⊗ ℓ̂
)
= I(ℓ),

where (γ+β)
f ⊗ ℓ̂(k) = (γ+β)

f (k) ℓ̂(k) and ℓ̂(k) = 1l −∑k
j=0 ℓ(k).

References
Barabasi, A., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286,509-512.

Biggins, J. D. (2004). Large deviations for mixtures. El. Comm. Probab., 9, 60-71.

Bryc, W., Minda, D., & Sethuraman, S. (2009). Large deviations for the leaves in some random trees. Adv. in
Appl. Probab., 41(3), 845-873. http://dx.doi.org/10.1239/aap/1253281066

Collevecchio, A., Cotar, C., & LiCalzi, M. (2013). On a preferential attachment and generalized Polyaurn model.
Ann. Appl. Probab., 23, 1219-1253.

85



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015

Choi, J., & Sethuraman, S. (2011). Large deviations of the degree structures in P.A schemes. The annals of applied
probability, 23, 722-763.

Dembo, A., & O. Zeitouni, O. (1998). Large deviations techniques and applications. Springer, New York.

Dereich, S., & Morters, P. (2009). Random networks with sublinear preferential attachement: Degree evolutions.
Electronic Journal of Probability, 14, 1222-1267.

Doku-Amponsah, K. (2006). Large deviations and basic information theory for hierarchical and networked data
structures. PhD Thesis, Bath.

Doku-Amponsah, K., Mettle, F. O., & Ansah-Narh, T. (2014). Large deviations, Basic Information Theorem for
Fitness Preferential Attachment Random Networks. International Journal of Statistics and Probability, 3(2),
101-109. http://dx.doi.org/10.5539/ijsp.v3n2p101

Doku-Amponsah, K. & Mörters, P. (2010). Large deviation principle for empirical measures of coloured random
graphs. The annals of Applied Probability, 20, 1989-2021. http://dx.doi.org/10.1214/09-AAP647

Krapivsky, P. L., Redner, S., & Leyvraz, F. (2000). Connectivity of growing random networks. Physical review
letters, 85, 4629.

Lawrence, S., & Giles, C. L. (1998)(1999). Science, 280, 98 (1998); Nature, 400, 107 (1999).

M. Newman, M, Barabasi, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks. Princeton
University Press.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM review.

Rudas, B., Toth, B., & Valko, B. (2008). Random Trees and General Branching Processes.
http://arxiv.org/abs/math/0503728

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

86


