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Abstract

For fitness preferential attachment random networks, we define the empirical degree and pair measure, which

counts the number of vertices of a given degree and the number of edges with given fits, and the sample path

empirical degree distribution. For the empirical degree and pair distribution for the fitness preferential attachment

random networks, we find a large deviation upper bound. From this result we obtain a weak law of large numbers

for the empirical degree and pair distribution, and the basic information theorem or an asymptotic equipartition

property for fitness preferential attachment random networks.
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1. Introduction

This paper establishes an asymptotic equipartition property (AEP) for fitness preferential attachment (P. A) random

networks. The AEP is an important characteristics used often in information theory to partition output samples of

a stochastic data source. See, example (Doku-Amponsah, 2010) and the references therein for similar result for

networked datasets modelled as coloured random graphs or random fields.

In the past three decades technological advances in the Social Sciences, Web Science and related fields have yielded

large amounts of diverse networked datasets which are best described in terms of the preferential attachment

graphs. Example the WWW, consisting of over 800 million documents (vertices) and a large number of links

(edges) pointing from one document to another, is best model by preferential attachment graphs (See Lawrence

& Giles, 1998, 1999). In order to transmit or compress datasets from this random network source, one require

efficient coding schemes and approximate pattern matching algorithms, and the AEP for P. A networks play a key

role in this regard, example by providing bounds on the possible performance of these schemes or algorithms.

P. A models can be easily defined and modified, and can therefore be calibrated to serve as models for social

networks and the web graph. These graphs model fairly well the dynamics of the occurrence of power law degree

distributions in large networks (See Barabasi & Albert, 1999).

The main ideal behind the P. A models is that growing networks are constructed by adding nodes successively. If

a new node appears, it gets a fit or colour or symbol or spin according to some law μ on a finite alphabet and it is

linked by an edge to one or more existing node(s) with a probability proportional to function of their degree and

fits. The dynamics of the graph is completely determined by the function f known as the attachment rule.

There are three regime of P. A graphs. Namely, for linear regime: f (k) ≈ k, sublinear regime: f (k) ≤ k and

superlinear regime: f (k) ≥ k. Several results about the asymptotic behaviour of these graphs have been established
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recently.

Few large deviation results for P. A model have so far been found. In article (Choi et al., 2011), P. A schemes where

the selection mechanism is possibly time-dependent are considered, and an in infinite dimensional large deviation

principle for the sample path evolution of the empirical degree distribution is found by Dupuis-Ellis type methods.

Dereich and Morters (2009) studied a dynamic model of random networks, where new vertices are connected to old

ones with a probability proportional to a sublinear function of their degree. For this model of random networks,

they obtained a strong limit law for the empirical degree distribution. Results on the temporal evolution of the

degrees of individual vertices via large and moderate deviation principles were also found.

Bryc et al. (2009) found the large deviation principle and related results for a class of Markov chains associated to

the ‘leaves’in P. A model of random graphs using both analytic and Dupuis-Ellis-type path arguments.

In this article, we prove a large deviation upper bound for the empirical degree and pair distribution, and use

it to find an AEP for for P. A models of random graphs in the linear regime f . i.e. f (k) ≈ k. Our proofs use the

techniques of exponential change-of-measure for random graphs (see, Dembo et al., 2003; Doku-Amponsah, 2006,

2010; Doku-Amponsah & Morters, 2010).

To be specific, we prove a large deviation upper, see Theorem 1, for the empirical degree and pair distribution

of the fitness P. A model of random graphs. For a given, empirical degree and pair distribution we prove from

the large deviation upper bound a weak law of large numbers, see Theorem 3. And from this weak law of large

numbers we find the AEP for a networked structure datasets model, see Theorem 7, as a fitness P. A model of

random graphs.

2. Large Deviation Upper Bound for P. A Random Graphs

We write N = N ∪ {0}. Given a weight function f : N × X → [0, ∞] and a probability law μ on finite alphabet X,
we define coloured (fitness) P. A random network as follows:

• Assign vertex n = 1 (the root of the network) colour X(n) according to μ: X → [0, 1].

• If a new vertex n is introduced, it gets colour X(n) independently according μ,

• It connects to vertices vn ∈ { 1, . . . , n − 1 } independently with probability proportional to

f (N(vn), A(n)),

where A(n) =
(
X(vn), X(n)

)
and N(m) is the in-degree of vertex m. We consider

{
(N(vn), A(n)): n = 1, 2, 3, . . .

}
under the joint law of colour and graph. Denote by X a typed graph and by X(i) colour of vertex i.

We write X∗ = X × X. In this paper, we shall restrict ourself to functions of the form

f (k, a) = γ(a)k + β(a),

where γ: X∗ → (0, ∞], β: X∗ → [0, ∞].We assume

γ(a) + β(a) := c, for all a ∈ X. (1)

and that the function f satisfy the following weak preference condition:

inf
a∈X

∞∑
k=0

1
f (k,a)

= ∞. (2)

Let N(m)(i) be the degree of vertex i at time m and observe that at time n, the law of the fitness P. A graph is given

by

P
(n)
f (X) =

n∏
m=1

μ(X(m))×
n∏

m=2

f (N(m)( jm), A(m))∑m−1
i=1 f (N(m)(i), A(m)).

For every X, we define empirical degree and pair measure measure MX on N × X∗ by

MX(k, a) =
1

n − 1

n−1∑
m=1

δ(N(m)( jm),A(m))(k, a).
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We write �m(a) =
{
jm ∈ {1, 2, 3, ...,m − 1}: x( jm) = a1, x(m) = a2

}
and for every m = 2, 3, 4, ..., n − 1. We define a

probability measure on N × X∗ by

LX
m
n

(k, a) =
1

m − 1

m−1∑
j=1

δN(m)( j)(k)1l{ j∈�m(A(m)} ⊗ δA(m)(a),

where

1l{ j∈�m(b)} ⊗ δb(a) =

{
1l{ j∈�m(b)} if b = a,
0 otherwise.

and notice,

LX
1 (k, a) = MX(k, a).

We denote byM(X) the space of probability measures on X equipped with the weak topology andM(N ×X∗) the

space of probability measures on N × X∗, equipped with the topology generated by total variation metric.

‖π − π̂‖ :=
1

2

∑
(k,a)∈N×X∗

‖π(k, a) − π̂(k, a)‖.

We are now in the position to state our large deviation upper bound for the fitness P. A model of random graphs.

We write ω̂(k | a) := 1l −∑k
j=0 ω(k | a) and state our large deviation upper bound for the empirical pair measure.

Theorem 1 Suppose X is coloured P. A random graph with colour law μ: X → (0, 1] and linear weight function
f : N × X∗ → [0,∞]. Then, for any close Γ ⊂ M(N × X∗),

lim sup
n→∞

1

n
logP

{
MX ∈ Γ} ≤ − inf

ω∈Γ
J(ω),

J(ω) = H
(
ω2,1 ‖ μ

)
+
∑
a∈X
ω2,1(a)H

(
ω(·|a) ‖ c

f (·, a)
⊗ ω̂(·| a)

)
,

where ω2,1 is the X− marginal of the probability measure ω2 and

c
f (·, a)
⊗ ω̂(·| a)(k) =

c
f (k, a)

ω̂(k | a).

Observe that J(ω) = 0 if and only if ω(k, a) = cω2(a)
f (k, a)

(
1l − ∑k

j=0 ω(k | a)
)
, and hence solving recursively for ω(· | a)

we get

ω(k |a) = π f (k |a) :=
c

c + f (k, a)

k−1∏
i=0

f (i, a)

c + f (i, a)
. (3)

Here we remark that conditions (1) and (2) are necessary for π f (· |a) to be a probability measure onN (See Dereich

& Morters, 2009, p. 13). Note, if f (k, a) = w(k) then (3) concise with the asymptotic degree distribution of random

trees and general branching processes found in (Rudas et al., 2008).

3. Basic Information Theorem for Fitness P. A Random Networks

Our main theorem is the AEP for networked datasets modelled as fitness P. A graph. In this section, we state the

AEP for networked data structure described by fitness P. A graphs. By P we denote the (probability) law of a

fitness P. A graph with n vertices. Thus we write

P(x) := P

{
X = x

}
, for each fitness P. A graph x.

Theorem 2 Suppose X is coloured P. A random graph with colour law μ: X → (0, 1] and linear weight function
f : N × X∗ → [0,∞]. Then, for any ε > 0,

lim
n→∞P

{∣∣∣∣ 1n log P(X) −
∑
a1∈X
μ(a1) log μ(a1) −

∑
(k, a)∈N×X∗

μ ⊗ μ(a)π f (k |a) log f (k, a)/c
∣∣∣∣ ≥ ε} = 0.

In other words, in order to transmit a coloured P. A graph in the given regime one needs with high probability,

about n
log 2

[ ∑
a1∈X
μ(a1) log μ(a1) +

∑
(k, a)∈N×X∗

μ ⊗ μ(a)π f (k |a) log f (k, a)/c
]

bits.
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4. Proof of Theorem 1

4.1 Dynamics of the Sample Path Empirical Degree Distribution

Denote by D([0, 1],R) the space of right continuous left limited(cadlag) paths from [0, 1] to R. We define the

sample path space

DM :=D([0, 1] :M(N × X))

=
{
the set of all ν : [0, 1] 
→ M(N × X) such that ν(k, a) ∈ D([0, 1],R) for all k ≥ 0, a ∈ X and 〈ν〉 = 1

}

and endow it with the topology of uniform convergence associated with the norm

‖ν − ν̂‖ := sup
t∈[0,1]

‖νt − ν̂t‖.

For any ν ∈ DM, we write νt(k |a) := νt(k, a)∑∞
k=0 νt(k, a)

, for all t ∈ [0, 1] and (k, a) ∈ N × X.Write ν̇t: =
dνt
dt for the time

derivative of the measure νt and we associate with each path ν ∈ DM, the relaxed measure on [0, 1] × (N × X)

ν̄(dk, dt|a) = νt(dk|a)dt.

We call ν ∈ DM absolutely continuous if for each k ∈ N, there exists ν̇(k|a) such that

ν1(k|a) − ν0(k|a) =

∫ 1

0

ν̇s(k|a)ds.

For each absolutely continuous path ν, we define νν(·|a), ν̄(·, ·|a)-almost everywhere by

ννt (k|a) := −
k∑

i=0

ν̇t(i|a).

By νν � ν we mean ν is absolutely continuous. We write

DMn(N×X) :=
{
ν ∈ DM(N×X) : ([nt] − 1)ν[nt]/n ∈ N, ∀t ∈ [0, 1)

}
.

Note that the measure LX
[nt]/n, for t ∈ [0, 1) is deterministic and its distribution is degenerate at some ν[nt]/n, for

t ∈ [0, 1) converging to νt, t ∈ [0, 1).

4.2 Exponential Change-of-Measure

Throughout the remaining part of this paper we shall assume νt(k|a) ≤ ννt (k|a), for all t ∈ [0, 1].

Let g̃: N × X → R, and write lim
n→∞ L [nt]

n
:= νt ∈ DM, we define the function Ug̃: [0, 1] × X → R by

U(n)
g̃ ⊗ ν(a, t) = log

〈 eg̃(·, a)

f , ν [nt]
n

(·|a)〉
〈 f , ν [nt]

n
(·|a)〉 ,

and note that

lim
n→∞U(n)

g̃ ⊗ ν(a, t) = log
〈 eg̃(·, a)

f , νt(·|a)〉
〈 f , νt(·|a)〉 =: Ug̃ ⊗ ν(a, t).

We use g̃ to define a new fitness P. A random graph as follows:

• At time m = 1 assign the root m of the network fit X(m) according to the law μ̃ given by

μ̃(a1) = eh̃(a1)−U(h̃)μ(a1).

• For any other time m = 2, 3, 4, ....n new node m which appear gets fit X(m) according to the fit law μ̃. It connects

to node vm, independently with probability proportional to

f̃ (N(m)(vm), A(m)) =
1

f (N(m)(vm), A(m))
eg̃(N(m)(vm),A(m)).
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We denote by P f̃ ,n the law of the new fitness P. A graph and observe that it is absolute continuous with respect to

P f ,n, as for fitness graph X we have that

dP f̃ ,n

dP f ,n
(X) =

n∏
m=1

μ̃(X(m))

μ(X(m))
×

∏n−1
m=1 f̃ (N(m)( jm), A(m))∏n−1

m=2

∑m−1
i=1 f̃ (N(m)(i), A(m))

×
∏n−1

m=2

∑m−1
i=1 f (N(m)(i), A(m))∏n−1

m=1 f (N(m)( jm), A(m))
(4)

= e
(n−1)

〈
h̃−U(h̃),MX

〉
+(n−1)

〈
g̃−2 log f ,MX

〉
−(n−1)

〈
Ug̃⊗L,MX⊗id

〉
, (5)

where id is the identity function from [0, 1] to [0, 1]. The following Lemma will be used to establish the upper

bound in a variational formulation.

Lemma 3 For every θ > 0, there exits a compact set Kθ ⊂ M(X∗) such that

lim sup
n→∞

1
n logP f ,n

{
MX � K

∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≤ −θ. (6)

Proof. Let 1 ≥ δ > 0, and l ∈ N.We choose k(l, δ) ∈ N large enough such that, for large n, we have

[nt]−1∑
i=1

el21l{N([nt]) (i)>k(l,δ)} f (N([nt])(i),a)

c([nt]−1)
≤ 2eδ, for all a ∈ X and for all t.

Now using Chebyschev’s inequality we have

P f ,n

{
MX(N([nt]) > k(l, δ)) ≥ l−1, L[nt]/n = ν[nt]/n,∀t∈(0,1]

}
≤ e−nl

E

{
e
∑n−1

m=1 l21l{N(m) ( jm)>k(l,δ)} , L m
n
= ν [m]

n
, m = 2, 3, 4, ..., n − 1

}

= e−nl
n∏

m=2

E

{
el21l{N(m) ( jm)>k(l,δ)} , L m

n
= ν [m]

n

}

≤ e−nl
[

sup
a∈X

sup
t≥0

( [nt]−1∑
i=1

el2 1l{N([nt])(i)>k(l,δ)}
f (N([nt])(i),a)

([nt]−1)

〈
f , ν [nt]

n
(·|a)

〉 )]n

= e−nl
[

sup
a∈X

sup
t≥0

(

[nt]−1∑
i=1

el2 1l{N([nt])(i)>k(l,δ)}
f (N([nt])(i),a)

c([nt]−1)
)
]n

≤ e−nl × (2eδ)n

= en(l−δ−log 2)

Now given θ, we choose M > θ + δ + log 2 and define the set

Γδ,θ :=
{
ν : ν(N > k(l, δ)) < l−1, l ≥ M

}
As
{
N ≤ k(l, δ)

}
is pre-compact, Γδ is compact in the weak topology by prokohov criterion. Moreover

P f ,n

{
MX � Kθ

∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≤ 1

1−e−1
e−θ

P

{
L[nt]/n=ν[nt]/n,∀t∈(0,1]

} = 1
1−e−1 e−θ.

Now letting Kθ be the closure of ∩1≥δ>0Γδ,θ and taking limit as n approaches ∞, we have (6) which ends the proof

the Lemma. �
4.3 Proof of Theorem 1

We derive the upper bound in a variational formulation. To do this, we denote by C1 the space of all functions on

X and by C2 the space of all bounded continuous functions on N × X∗.
We define on the space of probability measuresM(N × X) the function K̂ given by

K̂ν(ω) = sup
g̃∈C2,h̃∈C1

{ ∫
(h̃ − U(h̃))ω2,1(da1) +

∫
g̃(k, a)ω(dk, da)

− 2

∫
log f (k, a)ω(dk, da) −

∫
Ug̃ ⊗ ν(a, t)ω2(da) ⊗ dt

}
.

(7)
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Lemma 4 For every close set F ⊂ M(N × X), we have

lim sup
n→∞

1
n logP f ,n

{
MX ∈ F

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
≤ − inf

ω∈F K̂ν(ω) (8)

Proof. We let h̃ ∈ C1, g̃ ∈ C2 and use the Jensen’s inequality to obtain

e(supa1
h̃(a)−infa1

h̃(a1)) ≤
∫

eh̃(X(n))−U(h̃)dP̃ f ,n

= E

{
e

(n−1)

[〈
h̃−U(h̃),MX

〉
+

〈
g̃−2 log f ,MX

〉
−
〈

Ug̃⊗L,MX⊗id
〉]
, (L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
.

This yields the inequality

lim sup
n→∞

1
n logE

{
e

(n−1)

[〈
h̃−U(h̃),MX

〉
+

〈
g̃−2 log f ,MX

〉
−
〈

Ug̃⊗L,MX⊗id
〉]∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
= 0. (9)

Given ε > 0, define K̂ε,ν by K̂ν,ε(ω) = min
{
K̂ν(ω), ε−1} − ε. For ω ∈ F we fix h̃ ∈ C1 and g̃ ∈ C2 such that

〈h̃ − U(h̃), ω2,1〉 + 〈g̃ − 2 log f , ω〉 − 〈Uνg̃, ω ⊗ id〉 ≥ K̂ν,ε(ω).

Now, because the function g̃ is bounded, we can find open neighbourhood Bω of ω, such that

inf
ω̃∈Bω

{
〈h̃ − U(h̃), ω2,1〉 + 〈g̃ − 2 log f , ω〉 − 〈Uνg̃, ω ⊗ id〉

}
≥ K̂ν,ε(ω) − ε. (10)

Take δ = ε, apply the Chebyshev’s inequality to (10) and use (9) to get

lim sup
n→∞

1
n logP f ,n

{
MX ∈ Bω

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}

≤ lim sup 1
n logE

{
e

(n−1)

[〈
h̃−U(h̃),MX

〉
+

〈
g̃−2 log f ,MX

〉
−
〈

Ug̃⊗L,MX⊗id
〉]∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])

}
− K̂ν,ε(ω) + ε

≤ − K̂ν,ε(ω) + 2ε

(11)

Using Lemma 3 with θ = ε−1, we may choose the compact set Gε, such that

lim sup
n→∞

1
n logP f ,n

{
MX � Gε

∣∣∣∣(L[nt]/n = ν[nt]/n, ∀t ∈ (0, 1])
}
≤ −ε−1.

Now, the set F ∩Gε is compact and therefore we may be covered by finitely many sets Bω1
, . . . , Bωr , with ωi ∈ F,

for i = 1, . . . , r. Hence, we have that

P f ,n

{
MX ∈ F

∣∣∣∣L = (L[nt]/n = ν[nt]/n, ∀t ∈ (0, 1])
}

≤
r∑

i=1

P

{
MX ∈ Bωi

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
+ P
{
MX � Gε

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
.

Next we use (11) to obtain for small enough ε > 0,

lim sup
n→∞

1
n logP f ,n

{
MX ∈ F

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}

≤ r
max

i=1
lim sup

n→∞
1
n logP f ,n

{
MX ∈ Bωi

∣∣∣∣(L[nt]/n = ν[nt]/n,∀t∈(0,1])
}
− ε−1 ≤ −K̂ν,ε(ω) + 2ε.

Taking ε ↓ 0 we get the desire statement. �
We show that the function K̂ν(ω) in Lemma 4 may be replaced by the good rate function

Kν(ω) = H
(
ω2,1 ‖ μ

)
+
∑
a∈X
ω2(a)H

(
ω(·|a) ‖ c

f (·, a)
⊗
∫ 1

0

νt(·|a)dt
)
.
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Lemma 5 For every ν ∈ DM we have that K̂ν(ω) ≥ Kν(ω). Moveover, the function Kν is good rate function and
lower semi-continuous onM(N × X).

Proof. Suppose ν1 = ω.Then, using the Jensen’s inequality, by our assumption (1) and the variational characteri-

zation of entropy we have

H
(
ω2,1 ‖ μ

)
= sup

h̃

{ ∫
h̃(a1)ω2,1(da1) − log

∫
eh̃(a1)μ(da1)

}

∑
a∈X
ω2(a)H

(
ω(·|a) ‖ c

f (·, , a)
⊗
∫ 1

0

νt(·|a)dt
)

= sup
g̃

{ ∫
g̃(k, a)ω(dk, da) − log

∫ ∫
c eg̃(k, a)

f (k, a)
ω2(da)

∫
νt(dk|a)dt

}

≤ sup
g̃

{ ∫
g̃(k, a)ω(dk, da) − 2 log c −

∫ ∫
log
( ∫

eg̃(k, a)

c f (k, a)
νt(dk|a)

)
ω2(da)dt

}

= sup
g̃

{ ∫
g̃(k, a)ω(dk, da) − 2 log

∫
f (k, a)ω(dk, da) −

∫ ∫
log
( ∫

eg̃(k, a)

c f (k, a)
νt(dk|a)

)
ω2(da)dt

}

≤ sup
g̃

{ ∫
g̃(k, a)ω(dk, da) − 2

∫
log f (k, a)ω(dk, da) −

∫ ∫
log
( 〈 eg̃

f , νt(·|a)〉
〈 f , νt(·|a)〉

)
ω2(da)dt

}

= sup
g̃

{ ∫
g̃(k, a)ω(dk, da) − 2

∫
log f (k, a)ω(dk, da) −

∫
Uνg̃(a, t)ω2(da) ⊗ dt

}

=K̂ν(ω)

Recall the definition of Kν above and notice, mapping ω→ Kν(ω) is continuous function. Moreover, for all α < ∞,

the level sets {Kν ≤ α} are contained in the bounded set

{
ω ∈ M(N × X) :

∑
a∈X
ω2(a)H

(
ω(·|a) ‖ c

f (·, a)
⊗
∫ 1

0

νt(·|a)dt
)
≤ α
}

and are therefore compact. Consequently, Kν is a good rate function. �
4.4 Proof of Theorem 1 by Mixing

To use the technique of mixing LDP results developed in (Biggins, 2004), we check the main criteria needed for

the validity of (Biggins, 2004, Theorem 5(a)) in the following Lemma. We write Θn := DMn(N×X), Θ := DM(N×X),
and define

Pf ,n(ν1) := P

[
MX = ν1

∣∣∣ LX
[nt]
n

(·, a) = ν [nt]
n

(·, a), t ∈ [0, 1) and a ∈ X
]

Pn

(
ν [nt]

n
, t ∈ [0, 1)

)
:= P

{
LX

[nt]
n

= ν [nt]
n

}

Then, the joint distribution of MX and LX is obtained by the mixture of Pf ,n and Pn as follows:

dP̃ f ,n(ν, ν1) := dPn(ν)dPf ,n(ν1).

Lemma 6 The family of distributions (i) (Pf ,n, n ∈ N) (ii) (P̃ f ,n, n ∈ N) are exponentially tight.

Proof. (i) As this family distributions obey a large deviation upper bound with a good rate function Kν(ω), the

family (Pf ,n, n ∈ N) is exponentially tight (See, e.g. Dembo & Zeitouni, 1998, Exercise 4.1.10(c)).

(ii) By (i) for every θ2 we can find Kθ2 , compact subset ofDM(N×X) such that, we have

lim sup
n→∞

1

n
log Pf ,n(Kc

θ2
) ≤ −θ2.

Also by Lemma 3, for every θ1 we can find Kθ1 , compact subset ofM(N × X) such that, we have

lim sup
n→∞

1

n
log Pf ,n(Kc

θ1
) ≤ −θ1.
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Take θ = min(θ1, θ2) and define the relatively compact set Γθ by

Γθ :=
{
(ν1, ν) ∈ M(N × X) ×DM(N×X) : ν1 ∈ Kθ1 and ν ∈ Kθ2

}
.

Now, let δ > 0 and notice that, for sufficiently large n we have that

P̃ f ,n(Γc
θ) ≤ P

{
MX ∈ Kc

θ1

}
+ P
{
LX ∈ Kc

θ2

} ≤ C(θ)e−n(θ−δ).

Taking limit n→ ∞ followed by δ ↓ 0 of above inequality, yields

lim sup
n→∞

1

n
log P̃ f ,n(Γc

θ) ≤ −θ

which proves the second part of the Lemma. �
Now, as J(ν1) is lower semi-continuous by the continuity of the relative entropies, and by Lemma 6 the families

of distributions (i) (Pf ,n, n ∈ N) (ii) (P̃ f ,n, n ∈ N) are exponentially tight, we have that the latter obeys a large

deviation upper bound with good rate function give by J(ν1) (See Biggins, 2004, Theorem 5(a) and proof).

We obtain the form of the rate function in Theorem 1 by noting that

∫ 1

0

νt(k |a)dt ≤
∫ 1

0

ννt (k |a)dt = −
∫ 1

0

k∑
i=0

ν̇(i |a) = 1 −
k∑

i=0

ν(i |a).

4.5 Proof of Theorem 2

We recall π f (k |a) = c
c+ f (k,a)

∏k−1
i=0

f (i,a)

c+ f (i,a)
and state our weak law of large numbers.

Lemma 7 Suppose X is coloured preferential attachment random graph with colour law μ: X → (0, 1] and linear
weight function f : N × X∗ → [0,∞]. Then, for any ε > 0),

lim
n→∞P

{∣∣∣MX(k, a) − π f (k |a)μ ⊗ μ(a)
∣∣∣ ≥ ε} = 0

and

lim
n→∞P

{∣∣∣ ∞∑
k=0

MX(k, a) − μ ⊗ μ(a)
∣∣∣ ≥ ε} = 0.

Proof. To begin, the proof of Lemma 7 we define the closed set

F =
{
ω ∈ M(N × X∗) :

∣∣∣ω(k, a) − π f (k |a)μ ⊗ μ(a)
∣∣∣ ≥ ε or

∣∣∣ ∞∑
k=0

ω(k, a) − μ ⊗ μ(a)
∣∣∣ ≥ ε}.

�
Notice, by Theorem 1, we have that

lim sup
n→∞

1

n
logP

{
MX ∈ F

} ≤ − inf
ω∈F J(ω). (12)

We end the proof of the Lemma by showing that the left hand side of (12) is negative. For this purpose we suppose

that there exists a sequence ωn such that J(ωn) ↓ 0. Then, because J is good rate function and all its level sets are

compact, and by lower semi-continuity of the mapping ω → J(ω) there is a limit ω ∈ F with J(ω) = 0. Then, we

have H
(
ω2,1 ‖ μ

)
= 0 and ∑

a∈X
ω2(a)H

(
ω(·|a) ‖ c

f (·, a)
⊗ ω̂(·| a)

)
= 0.

This implies ω2,1(a1) = μ(a1) and ω(k |a) = π f (k |a) which contradicts ω ∈ F.We begin by recalling the distribution

of the typed graph X as follows

P
(n)
f (X = x) =

n∏
m=1

μ(x(m))×
n∏

m=2

f (n(m)( jm), a(m))∑m−1
i=1 f (n(m)(i), a(m))

.
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and note that,

− 1
n log P(x) = − 1

n log μ(x(1)) − (n−1)
n 〈log μ,MX〉 − (n−1)

n 〈log f ,MX〉 − 1
n

∑
m=2

log(m − 1) −
n∑

m=2

m−(m−1)
n log〈 f , LX

m
n
〉.

Now 1
n log μ(x(1))→ 0, 1

n
∑

m=2 log(m − 1) converges to 0 and

n∑
m=2

m−(m−1)
n log〈 f , LX

m
n
〉 →
∫ 1

0

log〈 f , νt〉dt = log c,

as n approaches infinity. Further,

〈log μ,MX〉 → 〈log μ, μ〉 and 〈log f ,MX〉 → 〈log f , μ ⊗ μ ⊗ π f 〉,
by Lemma 7 as n approaches infinity, which completes the proof of the AEP.
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