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Abstract

Let X = (X1, X2, . . . , Xn) be a time series, that is a sequence of random variable indexed by the time t = 1, 2, . . . , n.

We assume the existence of a segmentation τ = (τ1, τ2, . . . , τn) such that Xi is a family of independent identically

distributed (i.i.d) random variable for i ∈ (τk, τk + 1], and k = 0, . . . ,K where by convention τo and τK+1 = N.

In the literature, it exist two main kinds of change points detections: The change points on-line and the change

points off-line. In this work, we consider only the change point analysis (off-line), when number of change points

is unknown. The result obtained is based on Filtered Derivative method where we use a second step based on False

Discovery Rate. We compare numerically this new method with the Filtered Derivative with p-Value.

Keywords: off-line detection of multiple change points, filtered derivative method, false discovery rate, linear time

and memory complexity

1. Introduction

Change-point detection is an important problem in many applications, and it has been well-studied for a long time,

see e.g. the textbooks (Basseville & Nikirov, 1993; Brodsky & Darkhovsky, 1993; Csorgo & Horváth, 1997), or

(Huskovà & Meintanis, 2006b; Gombay & Serban, 2009) for an updated overview. Depending on the method of

data acquisition, there exist two different kinds of change detection: A posteriori or off-line change-point detection

arises when the series of observations is complete at the time we process the data, whereas in sequential analysis,

the detection is performed on line. In this work, we only consider the a posteriori problem. In this century, the state

to the art method was the Penalized Least Square Criterion (PLS): When the number of change point is known,

PLS minimizes a contrast function (Bai & Perron, 1998; Lavielle & Moulines, 2000). When the number of change

point is unknown, many authors use the penalized version of the contrast function (Lavielle & Teyssière, 2006;

Lebarbier, 2005). From a computational point of view, PLS method use the dynamic programming algorithms and

it needs to compute a matrix. Therefore, the time and memory complexity of PLS algorithm is of order O(n2),

where n denote the size of the dataset. Due to the data deluge, the size of datasets are larger and larger, then

the computational complexity of statistical method has became a challenge. Cumulative sum can be iteratively

computed and therefore leads to algorithms with both time and memory complexity of order O(n). Among these

methods, the Filtered Derivative has been introduced by Benveniste and Basseville (1984) and Basseville and

Nikirov (1993). The advantage of Filtered Derivative method is the time and memory complexity, both of order

O(n). On the other hand, Filtered Derivative method leads to many false discoveries of change points. Recently,

Bertrand, Fhima, and Guillin (2011) have introduced a method called Filtered Derivative with p-value (FDpV) (see

below for more details). Change detection by FDpV method has been successfully applied to real life large datasets

(n = 120, 000 or n = 40, 000) of heartbeat series (Bertrand, Fhima, & Guillin, 2011; Ayache & Bertrand, 2011;

Khalfa, Bertrand, Boudet, Chamoux, & Billat, 2012). However, Step 2 of FDpV algorithm use single hypothesis

tests, and therefore it does not allow to control the rate of false discoveries. In this work, we propose to replace

the family of single hypothesis tests of Step 2 in FDpV method by the use of the False Discovery Rate. The

False Discovery Rate (FDR) has been introduced for multiple tests (Benjamini & Hochberg, 1995). Moreover, we

investigate the effect of adding a Step 3, for taking advantage of the enlargement of windows when the number of

potential change point decreases.

The rest of this paper is structured as follows: Section 1 describes the problem and the comparison criterions.
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Section 2 recall the methods (FDpV and PLS) used for off-line change detection. Section 3 described the new

method proposed in this work (FDqV), then Section 4 contains the numerical comparison. Eventually, the choice

of the extra-parameters for FDpV or FDqV method is discussed in Section 5.

2. Description of the Problem

In this section we describe the problem of change point analysis and we give some comparison’s criterions. For

sake of simplicity, we restrict ourselves to a toy model, since we still have checked on real life datasets the efficiency

of FDpV method, see Bertrand, Fhima, and Guillin (2011), Ayache and Bertrand (2011) and Khalfa, Bertrand,

Boudet, Chamoux, and Billat (2012).

2.1 Change Point Analysis: A Toy Model

Let X = (X1, X2, . . . , XN) be a series indexed by the time t = 1, 2, . . . ,N. We assume that there exists a segmentation

τ = (τ1, . . . , τK) such that Xt is a family of independent identically distributed (iid) random variables for t ∈
(τk, τk+1], and k = 0, . . . ,K, where by convention τ0 = 0 and τK+1 = N. The most simple model is Xt a sequence

of independent Gaussian variable with Xt ∈ N(μ(t), σ), where N(μ, σ) denote the Gaussian law with mean μ and

standard deviation σ = 1, and t �→ μ(t) is a piecewise constant map, that is μ(t) = μk for all time t ∈ (τk, τk+1]. We

will use this model in all the sequel of this work.

2.2 Comparison Criterions

Assume that we do not know in advance the number K of change points. We have to estimate the configuration of

change τ = (τ1, . . . , τK) and the values of the mean (μ0, μ1, . . . , μK). We denote the estimates by τ̂ = (τ̂1, . . . , τ̂K̂)

and (μ̂0, μ̂1, . . . , μ̂K). Remark that the number of change points is unknown and estimated by K̂.

Criterion

1) The quality of estimation for one sample can be measured by two criterions:

i) K̂ − K

ii) The integrated square error (ISE). Actually, we can reformulate the problem as an estimation of a noisy signal.

The signal is

s(t) =
K∑

k=0

μk × 1(τk ,τk+1](t)

where we have set by convention τ0 = 0 and τK+1 = N. The estimated signal is then

ŝ(t) =
K̂∑

k=0

μ̂k × 1(̂τk ,̂τk+1](t)

and the integral square error (ISE) by

IS E =
N∑

i=1

{[̂
s(t) − s(t)

]2
}

2) However, a result on just one simulation is hazardous. So, we have to do M simulations, with e.g. M = 1, 000

and calculate the mean integrated square error (MISE).

3) The second family of criterions is the time complexity and the memory complexity that is the mean CPU time

for estimating ŝ and which quantity of memory is used.

Remark 1 Other criterium are possible, like the BIC (Schwarz) criterium based on the likelihood, see e.g. Ciuperca

(2011a).

3. Some Methods for Change Point Analysis

In this section, we recall some methods for change point analysis: The Penalized Least Square Error (PLS) and the

Filtered Derivative with p-value (FDpV).

3.1 Penalized Least Square Method

Set SK = {τ such that length(τ) = K, that is τ = (τ1, . . . , τK)} the set of all possible configuration of change of

length K . Firstly, when the number of change points K is known, for each configuration of change τ ∈ SK , we can

13



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 1; 2014

define

μ̂k = mean(X, (τk, τk + 1]) :=
1

(τk+1 − τk)

τk+1∑
i=τk+1

Xi, f or k = 0, . . . ,K (1)

where mean(X, Box) denotes the mean of the family Xt for the indices t ∈ Box. Next, we search the configuration

of change τ̂K ∈ SK which minimizes the square error Q(τ) defined by

Q(τ) =

K∑
k=0

τk+1∑
t=τk+1

|Xt − μ̂k |2 (2)

and we denote it by τ̂K . Secondly, we consider that the number of change points K is unknown. We remark that

the map K �−→ Q(̂τK) is decreasing. So minimizing the function Q(τ) with an unknown number of changes will

lead to consider as optimal the trivial configuration of changes τ� = (1, 2, . . . ,N). To avoid this drawback, we add

a penalty term proportional to the length of the change point configuration. Eventually we want to minimize

pen(K) = Q(̂τK) + β × K for K = 0 . . . ,N.

Different choices of the penalty coefficient β are possible. In Lavielle and Moulines (2000), the following choice

is proposed:

β1 =
2σ2(logn)

n
.

In Lebarbier (2005) and Birgé and Massart (2007), the proposed choice is

β2 =
σ2

n
×

[
2 + 5 × log(

n
K

)
]

where σ2 is the variance assumed to be constant and known and n the size of the series. In Figure 1 below, we have

plotted the contrast function and the penalized contrast function (Lavielle & Moulines, 2000). We clearly see that

the penalized contrast is almost horizontal, thus the minimum value is very fluctuating with respect to the choice

of the parameter β.

5 10 15 20

50
00

60
00

70
00

80
00

90
00

 0 < Kmax < 20

J(
K

,T
^K

,X
)

−
−
−

Q(K) calculated for Dynamical Program method
Penalized contrast function
Optimal contrast function for K change points

Q(K) where Q is the contrast function 

Figure 1. Blue: Q(K) calculated with dynamical program method; red: the penalized contrast function; Green: the

optimal contrast function for K change points
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Let us stress that both time and memory complexity of PLS method is O(n2), see e.g. Lavielle and Moulines

(2000), Lavielle and Teyssière, (2006), and Lebarbier (2005).

Remark 2 In sake of completness, let us remark that penalized least square as in Lavielle and Moulines (2000),

Lavielle and Teyssière, (2006), and Lebarbier (2005) can be replaced by penalized least absolute deviations, see

e.g. Ciuperca (2011b). However both time and memory complexity will be of order at least O(n2).

3.2 Description of the Filtered Derivative With p-Value Method (FDpV) (Bertrand, Fhima, & Guillin, 2011)

This method is a two steps procedure for change detection: Step 1 is based on Filtered Derivative and select a

set of potential change points, whereas Step 2 calculate the p-value associated to each potential change point, for

disentangling right change points and false alarms. More precisely, the method is defined as follows:

1) Step 1: Computation of the filtered derivative function. The filtered derivative function (Bertrand, 2000;

Benveniste & Basseville, 1984; Basseville & Nikirov, 1993) is defined :

FD(t, A) = μ̂(t + 1, t + A) − μ̂(t − A, t), f or A < t < N − A (3)

where

μ̂(t + 1, t + A) := A−1
t+A∑

j=t+1

Xj

denote the empirical mean of the variables Xj on (t + 1, t + A).

Next, remark that quantities A × FD(t, A) can be iteratively calculated by using

A × FD(t + 1, A) = A × FD(t, A) + X(t + 1 + A) − 2X(t + 1) + X(t − A). (4)

Thus, the computation of the whole function t �−→ FD(t) for t ∈ [A, n−A] requires O(n) operations and the storage

of n real numbers.

2) The determination of the potential change points. Let us point that the absolute value of filtered derivative

|FD| presents hats at the vicinity of the change points see Figure 2 below.

t

X
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to1 to2 to3 to4 to5 to6 to7

Observed signal
 Right signal 
Filtered Derivative with A=200

Figure 2. The right signal (red), the noisy signal (blue), and Filtered Derivative function (green)

Potential change points τ∗k, for k = 1, . . . ,K∗, are selected as local maxima of the absolute value of the filtered

derivative |FD(t, A)| where moreover |FD(τ∗k, A)| exceed a given threshold C1. In Bertrand (2000) and Bertrand,
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Fhima, and Guillin (2011), we have given the asymptotic distribution of the maximum |FD| under the null hypoth-

esis. Therefore, we can fix the error type at level p�
1

, and then we can deduce the threshold C1 corresponding to

Pr(max |FD(τk, A)| > C1) = p∗1. We can remark the existence of many local maxima in the vicinity of each right

change point (see Figure 4 and Bertrand, 2000; Bertrand, Fhima, & Guillin, 2011 for theoretical explanation). On

the other hand, if there is no noise that is when σ = 0, we get hats of width 2A and hight μk+1 − μk at each change

point τk, see Figure 3.
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Figure 3. Filtered Derivative function without noise (σ = 0)
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Figure 4. Filtered Derivative function with noise (σ = 1)

For this reason, we select as first potential change point τ∗k the global maximum of the function |FDk(t, A)|, then

we define the function FDk+1 by putting to 0 a vicinity of width 2A of the point τ∗k and we iterate this algorithm

while |FDk(τ∗k, A)| > C1, see Bertrand, Fhima, and Guillin (2011). When there is noise (e.g. σ = 1), we get the

following landscape, see Figure 4.
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3) Step 2: Elimination of false alarm by p-value. A potential change point τ�k can be an estimator of a right

change point or a false alarm. In the first case, there exists an error of estimation on the location of the change.

So we have to cancel a small vicinity of size εk around each point τ�k , Bertrand (2000) and Bertrand, Fhima, and

Guillin (2011). Then, for each segment, we calculate an estimation of the mean

μ̂k := mean(X, τk + εk, τk+1 − εk+1). (5)

Next, we have to eliminate false detection in order to keep (as possible) only the right change points. In Bertrand,

Fhima, and Guillin (2011), we use as Step 2 single hypothesis tests: For each potential change point τ�k , we test

wether the parameter is the same for t ∈ (τ�k−1
+ εk−1, τ

�
k − εk) and t ∈ (τ�k + εk, τ

�
k+1
− εk+1) or not. More formally,

for all 1 ≤ k ≤ K, we apply the following hypothesis testing (H0,k) : μ̂k = μ̂k+1 versus (H1,k) : μ̂k � μ̂k+1

where μ̂k’s are defined by (5). By using this second single hypothesis test, we calculate the p-values p�
1
, . . . , p�K�

associated to each potential change point τ�
1
, . . . , τ�K� .

4) Calculation of p-Value. We choose the statistic Student T. Indeed, under the null hypothesis, t�k has a Student

distribution of degrees of freedom d = Nk + Nk−1 − 2, where

t�k =
μ̂k − μ̂k−1√

S 2
k−1

Nk−1
+

S 2
k

Nk

, (6)

μ̂k’s are given by (5), Nk =
{
(τ∗k+1 − εk+1) − (τ∗k + εk)

}
, and S 2

k =

⎧⎪⎪⎨⎪⎪⎩( 1

Nk

τk+1−εk+1∑
t=τk+εk

X2
t

)
− Xk

2

⎫⎪⎪⎬⎪⎪⎭ . By construction,

d > 2A − (
εk−1 + 2εk + εk+1

)
, thus for A > 30 the distribution of t�k is approximatively Gaussian an we can set

p�k ≈ 2 ×
{
1 − Φ(|tk |)

}
(7)

where Φ is the cumulative distribution function of the zero mean standard Gaussian law. Let us point a slight

difficulty: Since τ∗k maximizes the criterium |FDk(t, A)|, τ∗k is also a random variable. We avoid this drawback by

canceling a small vicinity of size εk for each selected change point, see Formula (5) and Bertrand, Fhima, and

Guillin (2011, Rem. 2.1, pp. 178-179) for details.

In Bertrand, Fhima, and Guillin (2011), we only keep the change points corresponding to a p-value lesser than a

fixed threshold p�
2

. Consequently, Step 2 is much more selective and it allows us to deduce an estimator of the

piecewise constant map t �−→ μ(t), see Figure 5 below.
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Figure 5. Signal reconstruction after Step2 by FDpV method
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4. A New Method for Change Point Analysis: Filtered Derivative With a q False Discovery Rate (FDqV)

We propose a new method derived from the FDpV one: We replace Step 2 of FDpV by False Discovery Rate

method (FDR) and we call this method FDqV.

Step 1. The first step is the same as in FDpV: We compute the filtered derivative function t �→ FD(t, A) and then

select the potential change points as the local maxima of the function t �→ |FD(t, A)| reaching a threshold C1.

Step 2. The novelty of this work is the use of False Discovery Rate thresholding procedure (Benjamini & Hochberg,

1995). The computation of p-value p�k is the same as for Step 2 of FDpV method. However, we then use a

Bonferroni type multiple testing procedure:

(i) We tidy up p- value in the increasing order p∗(1) ≤ . . . ≤ p∗(K∗).

(ii) We choose a threshold q corresponding to the rate of false alarms or FDR.

(iii) We keep only the potential change points τ∗i corresponding to a p-value p∗(i) such that p∗(i) ≤
i

K∗
q.
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Signal estimation after Step2

Signal estimation after Step2 by FDqV method with parameters A=250 and C_1=0.2

Figure 6. Signal reconstruction after Step 2 by FDqV method

Step 3. Let us point that Step 1 of FDpV or FDqV select potential change point as local maxima of the absolute

value of the filtered derivative function, which is the difference of the mean estimated on sliding window of size

A on a box at left and at right of the point t. Then Step 2 select some change points corresponding to a p-value

smaller to a fixed threshold (FDpV) or a linear threshold (qFDR). In both case, the p-value is computed following

the potential change point selected in Step 1. We recall here that these p-values are therefore calculated with

windows larger than A. In other words, we have more information on the mean at Step 2 than at Step 1. This

remark has suggested us to add a third step, which is the same as Step2 but with larger windows. More formally,

Step 2 of FQqV can be seen as a map FDR : (X, τ∗, q) �−→ τ̃, where τ̃ = (̃τ1, . . . , τ̃K̃) with K̃ ≤ K∗. Thus, at Step 3,

we plug τ̃ instead τ∗ as input of Step 2, that is FDR: (X, τ̃, q) �−→ τ̂, where τ̂ = (̂τ1, . . . , τ̂K̂) with K̂ ≤ K̃ ≤ K∗.

To sum up, in Bertrand, Fhima, and Guillin (2011), we have made simple statistics tests and we compare the means

pairwisely. So we choose a threshold of critical probability to eliminate the false alarms. The novelty in this work

is the use of a multiple test (FDR) with FDR fixed at level q. Both time and memory complexity of FDqV remain

of order O(n).
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Figure 7. Signal reconstruction after Step3 by FDqV method

5. Numerical Comparisons

In this section, we compare numerically the FDpV method and the new proposed method FDqV. We use Monte

Carlo simulation and via MISE.

5.1 Simulations Based on one Realization

Firstly, we select the simulation for one realization, which corresponds to Figure 2, and Figures 4–8 above. For

n = 5, 000, we have simulated one replication of a sequence of Gaussian random variables (X1, . . . , Xn) with

variance σ2 = 1 and mean μt = f (t) where f is a piecewise constant function with four change points at times

τ = (1000, 2000, 3500, 4500) with means μ = (2.5, 3, 4.5, 3, 3.5). Both FDpV and FDqV method depend on extra-

parameters, namely the window size A, the threshold C1 corresponding to Step 1, the maximum number changes

Kmax for Step 1, the threshold p∗2 corresponding to step 2 of FDpV, the uncertainties on the location of changes εk,

and the threshold q of False Discovery Rate for Step 2 and Step 3 of FDqV. A brief discussion on the choice of the

extra-parameters is postponed in Section 5. We have made the following choices: A = 100, Kmax = 15, C1 = 0.1,

p∗2 = 2 ×
{
1 − Φ(1.5)

}
= 0.134, q = 0.1.

5.2 Monte-Carlo Simulation

In this subsection, we made M = 1, 000 simulations of independent iterations of sequences of Gaussian random

variables (X j
0
, . . . , X j

n) with variance σ2 = 1 and mean μt = f (t), for j = 1 . . . ,M and t = 1, . . . ,N. On each

sample, we apply the FDpV method and the FDqV method with the extra-parameters given above. The mean

value of (K̂ − K) is 3.38 with standard deviation (std) 1.64 for FDpV against a mean 2.84 with std = 1.59 for

FDqV at Step 2, and mean K̂ − K = 0.65 with std = 1.98 for FDqV at Step 3. Thus we can see that than the

number of false discovery is smaller by FDqV. Note that at Step1, we have mean(K̂ − K) = 12.

5.3 Mean Integrate Square Error (MISE)

For M = 1, 000 Monte Carlo simulations, we obtain the following values of MISE:

(i) for Filtered Derivative MISE=1419.12

(ii) for FDpV MISE=189.59

(iii) for FDqV (Step 2) MISE=148.75

(iv) for FDqV (Step3) MISE=126.97

5.4 Numerical Conclusion

We clearly see that the overestimation of the number of change points is smaller for the method FDqV than the for
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FPpV one. On the other hand, we can note that for the MISE criterion FDqV is better than FDpV, which is still

better than Filtered Derivative.

6. How to Choose the Extra-Parameters?

In this section, we address the question of the choice of extra-parameters for FDpV method. Natural criterions are

the error of type I and error of type II, so-called probability of false alarm (PFA), denoted α, and probability of

non-detection (PND), denoted β.

6.1 Errors of Type I and Type II at Step 1

We stress that error of type II (PND) is more important than error of type I (PFA), at least for the ISE criterion:

Indeed, just one change point missing increases strongly the error. On the other hand, as pointed out in Bertrand

(2000), when there is more than one change, the notion of probability of non detection should be make more

precise: For each right change point τk, we define the local PND as βloc(τk) = P (Bk) where Bk =
{
∀k ∈

[τk − A, τk + A], |D(A, k)| < C1

}
. Next, we can define the global PND as PNDglobal = P

( K⋃
k=1

Bk

)
. Next, we can

obtain an upper bound for PNDglobal. On the one hand, let us denote by δk the size of the change on the mean at

change point τk, more precisely δk = μk − μk−1 for k = 1, . . . ,K. We have Bertrand (2000, Prop. 3.2, p. 222),

P (Bk) ≤ Ψ

⎛⎜⎜⎜⎜⎜⎝δk −C1

σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠ × Φ
⎛⎜⎜⎜⎜⎜⎝C1 − δk/3

σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠
2

(8)

Ψ(x) = 1 − Φ(x). Next, by remarking that the right side of (8) is a decreasing function of δk and setting δ =
infk=1,...,K δk, we can deduce that

P (Bk) ≤ β∗(C1, A) := Ψ

⎛⎜⎜⎜⎜⎜⎝δ −C1

σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠ × Φ
⎛⎜⎜⎜⎜⎜⎝C1 − δ/3
σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠
2

(9)

On the other hand, we obviously have

PNDglobal ≤
K∑

k=1

P
(
Bk)

which combined with (9) gives us

PNDglobal ≤ K × β∗(C1, A).

The right number K is unknown, but fixed. Thus, we will control the quantities β∗(C1, A), for instance we choose

to set β∗(C1, A) = 10−4. This equation can be numerically solved, since the map C1 �−→ β∗(C1, A) is decreasing,

and we find an implicit function A �→ C1(A). After having controlled the error of type II (PND), we can control

the error of type I (PFA). We know Bertrand (2000, Prop. 3.1, p. 221) that for all ε > 0 there exists a constant Mε
such that

α ≤ Mε × α∗(C1, A) := Mε ×
(n − A

A

)
× Ψ

⎛⎜⎜⎜⎜⎜⎝C1

σ

√
A

2 + ε

⎞⎟⎟⎟⎟⎟⎠ . (10)

For instance, we can set ε = 0.1, next we plug the implicit relationship between A and C1 inside (10) and we obtain

a function A �−→ α∗(C1(A), A
)
. The first idea is to make varying the parameter A in order to find the optimal value

corresponding to a minimum of the map A �−→ α∗(C1(A), A
)
. Unfortunately enough, the map A �−→ α∗(C1(A), A

)
is decreasing and reaches no minimum value.

6.1.1 Choice of the Window A

From the preceding subsection, we can get the feeling that the larger the window size A is, the smaller type I and

type II errors will be. This reasoning holds true as long as

2 × A < L0 := inf{|τk+1 − τk |, k = 1, . . . ,K}. (11)

Thus, we have to choose a parameter A < L0/2, even if we do not exactly know the quantity L0. Figures 8-10

below illustrate the necessary condition (11). We consider the case without noise, that is σ = 0, with three change
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point at τ = (2000, 2200, 2600) thus L0 = 200, and we make varying the window size A at A = 100, A = 200, and

A = 600.

In Figure 8, we detect the three right change points. In Figure 9 and Figure 10, we only detect two change points.

This plainly confirm the necessity of condition (11).
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Figure 8. The Filtered Derivative without noise and A=100
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Figure 9. The Filtered Derivative without noise and A=200
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Figure 10. The Filtered Derivative without noise and A=600

6.2 Error of Type I and Type II at Step 2

We can calculate t∗k under both null and alternative assumption.

1) Under null assumption (H0) : μk = μk+1, t∗k approximatively follows a Gaussian law N(0, 1).

2) Under alternative assumption (H1) with μk+1 − μk = δ, then t∗k ∼ N(0, 1) +
δ√

1/Nk + 1/Nk+1

.

Actually, we want to select all the right change points with as few as possible false alarms. So, we want to control

the probability of non detection PND. For a single change point, let us fix a critical level tc, then

βk = PNDk = Pr(|t∗k | < tc)

= Pr(−tc < N(0, 1) +
δ√

1/Nk + 1/Nk+1

< tc)

� 1 − Φ
(

δ√
1/Nk + 1/Nk+1

− tc

)

On the other hand, the probability of one false alarm is

α = PFA = Pr(|N(0, 1)| > tc) = 2 × (
1 − Φ(tc)

)
.

For example, when δ = 0.5, tc = 1.5, Nk = Nk+1 = 100 then βk = 0.0207 and α = 0.1336.

7. Summary and Conclusions

In this work, it clearly appears the power FDqV method than FDpV method. However, the FDqV method is

established by the simulations, in the future we will valid by the real data. The questions not developed in the

literature are:

1) The FDpV and FDqV methods with the random variable weakly or strongly dependent.

2) The Choice of parameters such the window and the threshold, which depend the both methods.

All these questions are very difficult so more detail is needed. We will try to do in forthcoming work.
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