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Abstract

This article proposes a new approach for testing the equality of nonparametric quantile regression functions based

on marked empirical processes. We develop test statistics that posses better Type I and power properties in com-

parison to all available procedures in the literature. Simulation results also indicate that our tests have superior

local power properties over existing tests. A data analysis is given which highlights the usefulness of the proposed

methodology.
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1. Introduction

Comparing groups based on independent samples has been a fundamental problem in statistics. In the context

of regression analysis, this is typically done by comparing the conditional means of the groups. In parametric

regression, comparison of model parameters of a predefined parametric model provides information about differ-

ences among the groups. When a parametric specification is not appropriate, one compares nonparametric mean

regression functions to detect any differences between groups (Hall & Hart, 1990; King, Hart, & Wehrly, 1991; Ku-

lasekera, 1995; Neumeyer & Dette, 2003). The above mentioned procedures rely on the assumption that the errors

of the assumed model have finite variance. In practice this assumption may not hold, especially with heavy tailed

error distributions. Furthermore, these procedures are highly sensitive to extreme observations which can lead to

spurious results. To overcome these difficulties in mean regression procedures, Koenker and Basset (1978) in their

pioneering work proposed the quantile regression framework where, one regresses the conditional quantiles of a

response on covariates rather than regressing the conditional mean. In this article we develop a flexible and robust

testing procedure to compare groups within the quantile regression framework. Our method uses nonparametric

quantile regression functions to construct test statistics that can detect differences at targeted quantiles in two or

more conditional distributions.

Suppose we observe data from k independent groups in the form (Xi j,Yi j), i = 1, . . . , k, j = 1, . . . , ni, where X is

a continuous covariate supported on [0, 1] and Y is a continuous response. For τ ∈ (0, 1), let gτ(X) denote the τth

conditional quantile function of Y given X (i.e., P[Y ≤ gτ(X)|X] = τ). We model gτ(·) nonparametrically with the

following nonparametric quantile regression model:

Yi j = gτ,i(Xi j) + εi j, i = 1, . . . , k, j = 1, . . . , ni (1)

where gτ,i is the τth conditional quantile function of Y given X for the ith group and εi j is a sequence of independent

random variables assumed to be identically distributed within each group. We further assume that the τth condi-

tional quantile of εi j given Xi j is zero. We are interested in testing whether the conditional quantile curves are the

same across the k groups or not for a fixed τ ∈ (0, 1) . That is, testing

H0 : gτ,i, . . . , gτ,k = gτ vs H1 : gτ,i � gτ,i′ for some i � i′

over the support of the covariate X.
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Sun (2006) and Dette, Wagner, and Volgushev (2011) have compared nonparametric quantile regression functions

in the form of the above hypothesis. The former propose a test based on an orthogonal moment condition of

residuals which holds under the null hypothesis and the latter uses a test derived from the L2 distance of the

estimated quantile regression curves. Both methods have non-trivial power against local alternatives that converge

to the null at a rate (
√

nh1/4)−1 with a scalar covariate. Here n =
∑k

i=1 ni is the total sample size and h is the

bandwidth (converging to 0) that is used to estimate the nonparametric quantile regression functions assuming the

null hypothesis is true. In contrast, we propose a new test procedure that can detect alternatives converging to the

null at n−1/2 rate. Our method is based on a marked empirical process of residuals. We note that marked empirical

processes based on residuals have been used in the context of testing the equality of mean regression functions by

Delgado (1993), Kulasekera (1995), and Neumeyer and Dette (2003).

The remainder of this article is organized as follows. Section 2 describes the test procedure and presents the

bootstrap method that we use to determine the critical values of our test statistics. Section 3 presents the results of

the simulation study that investigates the finite sample performance of our method along with a real data example.

Concluding remarks are given in Section 4.

2. Construction of Test Statistics

For fixed τ ∈ (0, 1) consider the nonparametric quantile regression model in (1). Let ηi j = I
{
Yi j < gτ,i(Xi j)

}
− τ and

Ui j = I
{
Yi j < gτ(Xi j)

}
− τ. Here I(·) denotes the indicator function and gτ is a weighted average of gτ,is defined as

gτ(t) =
k∑

i=1

λi(t)gτ,i(t) (2)

with λi(t) ∈ (0, 1) and
∑k

i=1 λi(t) = 1 (Sun, 2006). Under H0, we see that Ui j = ηi j and are independent mean zero

random variables. Now consider the process

Ri(t) =
1

n

ni∑
j=1

Ui jI(Xi j ≤ t) (3)

for t ∈ (0, 1). Under H0, Ri(·) is a mean zero random process. If the null hypothesis is false, Ri(·) will have a

non-zero mean function which can be used as a basis to detect departures from H0. To construct test statistics

based on process (3), we need an efficient estimator of Ri(t) under H0. Estimation of Ri(t) under H0 solely de-

pends on estimating the quantile regression functions gτ,i(·). If H0 is true, all gτ,i(·)’s are the same across the k
groups. Therefore, an efficient nonparametric estimator of the common quantile regression function gτ(·) can be

constructed by pooling the data from all groups. For independent data, several nonparametric quantile regression

function estimators are available in the literature (Yu & Jones, 1998; Takeuchi, Le, Sears, & Smola, 2006; Dette

& Volgushev, 2008; Bondell, Reich, & Wang, 2010). In this paper we use the local linear nonparametric quantile

regression function estimator proposed by Yu and Jones (1998). Local linear estimators are popular in practice

due to good finite sample performance at boundaries of the support (Fan & Gijbels, 1996). The later estimators

are proposed to eliminate the ‘quantile crossing’ problem in estimating quantile regression functions at multiple

quantiles. Since our testing problem targets a fixed τ ∈ (0, 1), this problem does not affect our method.

Let ĝτ(·) be the local linear nonparametric quantile regression function estimator of the common quantile regression

function gτ(·). We define ĝτ(x) = â where â and b̂ minimize

k∑
i=1

ni∑
j=1

ρτ
(
Yi j − a − b(Xi j − x)

)
K
(

Xi j − x
h

)
. (4)

Here ρτ(u) = u{τ− I(u ≤ 0)} is called the “check function” and h is a smoothing parameter and K(·) is a symmetric

density function on [−1, 1]. For i = 1, . . . , k, define the marked empirical process

R̂i(t) =
1

n

ni∑
j=1

Ûi jI(Xi j ≤ t) (5)

where Ûi j = I[Yi j ≤ ĝτ(Xi j)] − τ. The process R̂i(·) in (5) is the building block of our test statistics. Based on these

processes, many test statistics can be constructed to test the equality of quantile regression curves. For example,

we can define for i, j = 1, . . . , k,
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1) Ti = sup
0≤t≤1

| √nR̂i(t)|,

2) TM = max
{

sup
0≤t≤1

| √nR̂1(t)|, . . . , sup
0≤t≤1

| √nR̂k(t)|
}
.

3) Ti j = sup
0≤t≤1

| √nR̂i(t) −
√

nR̂ j(t)| i � j.

For a size α test, we can reject H0 for values of the above statistics exceeding the (1 − α) quantiles of their

respective null distribution. To improve finite sample performance of our test statistics we will use a bootstrap

method to compute critical values for our tests.

2.1 Bandwidth Selection

Bandwidth selection is an essential part of any nonparametric smoothing procedure. In particular, any testing

method that involves nonparametric estimation of functions requires careful attention on bandwidth selection. For

local linear nonparametric quantile regression function estimation (the one we have used in our tests), Yu and

Jones (1998) have developed a useful rule-of-thumb bandwidth by minimizing the asymptotic mean squared error

(AMSE). This bandwidth, hτ, is calculated as follows:

hτ = hmean

{
τ(1 − τ)
φ(Φ−1(τ))2

}1/5

(6)

where φ(·) and Φ(·) are the probability density function and the distribution function of the standard normal distri-

bution and hmean is the optimal bandwidth for local linear nonparametric mean regression estimation. This is a com-

putationally easy way to calculate AMSE optimal bandwidths. For example, at τ = 0.25, hτ = hmean(1.13) which

can be easily obtained using the statistical package R (R Development Core Team, 2010) by hτ = dpill(x, y)(1.13).

However, we note that this bandwidth selection method is based on several key assumptions such as the conditional

density function of the dependent variable can be approximated by normal densities (Yu & Jones, 1998). Band-

width selection using other criteria such as power optimization is still an open problem in the quantile regression

setting.

2.2 Computing Critical Values

Since the exact null distribution is difficult to find analytically, we used a bootstrap method to compute critical val-

ues for our test statistics. For quantile regression, the classical bootstrap method do not work since the assumption

of zero conditional mean is not true in quantile regression models. To overcome this difficulty Sun (2006) proposed

a bootstrap method using a two point wild bootstrap. This method is a modified version of the wild bootstrap of

Härdle and Mammen (1993). Since we are comparing our test procedure with that od Sun (2006) we used the

bootstrap procedure outlined in Sun (2006) in our simulation study. This method ensures that the τth conditional

quantile of the bootstrap residuals given the data is zero, while the second and the third moments are matched with

that of the true residuals.

Let ε̂i j = Yi j − ĝτ(Xi j) denotes the estimated residuals. Here ĝτ(·) is the estimated common quantile regression

function using (4). Let εbi j denotes the bootstrap resamples of ε̂i j constructed according to the procedure in Sun

(2006). Then we create the bootstrap samples {Xi j,Yb
i j}, where

Yb
i j = ĝτ(Xi j) + ε

b
i j, i = 1, . . . , k, j = 1, . . . , ni.

Using these bootstrap samples we then construct B bootstrap replicates of our test statistics. For example,

{TMax,b}Bb=1
. Then these bootstrap replicates were used to obtain (1 − α) quantiles of the null distributions of

the respective test statistics.

3. Simulation Results

In this section we discuss the results of our simulation study. We generated data from the following heteroscedastic

error model

Yi j = gi(Xi j) + σ(Xi j)εi j i = 1, . . . , k, j = 1, . . . , ni (7)

with X ∼ U[0, 1] and ε ∼ N(0, 1). We conducted our simulations for the case of comparing three groups (k = 3).

All simulations were repeated 1000 times and we used equal sample sizes for each group. Three sample sizes

ni = 25, 50, 100 were considered and five quantiles τ = .05, .25, .5, .75, .95 were examined. It is easy to see that the
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τth conditional quantile function for model (7) is of the form gτ,i(·) = g(·) + σ(·)Zτ where Zτ is the τth conditional

quantile of ε given X. By choosing variety of functions for gi(·) and σ(·) one can create quantile curves having

various degrees of smoothness. For example, with g(x) = x and σ(x) = cos(2πx), we get the median being linear

and more curvature at extreme quantiles as shown in Figure 1.

Figure 1. Quantile regression curves correspond to the heteroscedastic model in (7) with g(t) = t and

σ(t) = cos(2πt). Solid line(τ = 0.5), dotted lines(τ = 0.25, 0.75) and dashed lines(τ = 0.05, 0.95)

We have focused mainly on the test statistic TMax (defined in section 2) in our simulation study as it is the natural

choice when comparing more than two groups. However, for comparison purposes we present results for two other

statistics, namely, T1 and T12. The simulation study consists of three parts:

1) Investigate the Type 1 error and power properties of our test statistics in comparison to Sun (2006).

2) Investigate how our test procedure can be used as an alternative to nonparametric mean regression procedures

in comparing groups, especially in the presence of extreme observations. We compared our approach at τ =
0.5(conditional median) with the nonparametric mean regression test proposed by Neumeyer and Dette (2003).

Both Type 1 error and power of the two methods were studied with 100% normal errors and with a mixture of 80%

normal and 20% Cauchy errors.

3) Examine local power properties of our test statistics in comparison to Sun (2006).

3.1 Analysis of Type I Error and Power

In this section we compare the Type 1 error of our test statistics with Sun (2006). We present two cases: Case 1

represents a situation of heteroscedastic error variation where the variability increases linearly; Case 2 represents

a situation where the variability increases non-linearly. The critical values are computed for a α-level test with

α = 0.05. As shown in Table 1, the Type I errors of our test statistic TMax underestimate the level of the test for

small sample sizes but gets to the nominal 5% level as the sample size increases. In comparison, the test statistic

proposed in Sun (2006) (denoted by S UN), underestimate the level at upper quantiles even for large sample sizes.

This pattern is more prominent in Case 2, where the error variance is nonlinear.
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Table 1. Type I error based on 1000 simulated samples

Functions n τ TMax T1 T12 S UN

Case 1

g1 = g2 = g3 = exp(t) 25 0.05 0.045 0.033 0.034 0.039

σ1(t) = σ2(t) = σ3(t) = 1 + t 0.25 0.042 0.044 0.057 0.042

0.50 0.044 0.054 0.062 0.048

0.75 0.038 0.041 0.058 0.040

0.95 0.033 0.026 0.028 0.042

50 0.05 0.045 0.042 0.042 0.055

0.25 0.051 0.050 0.069 0.037

0.50 0.036 0.034 0.048 0.036

0.75 0.044 0.039 0.047 0.030

0.95 0.040 0.017 0.040 0.042

100 0.05 0.050 0.050 0.043 0.047

0.25 0.044 0.052 0.064 0.041

0.50 0.032 0.043 0.053 0.032

0.75 0.041 0.036 0.057 0.027

0.95 0.050 0.043 0.051 0.032

Case 2

g1 = g2 = g3 = exp(t) 25 0.05 0.060 0.043 0.042 0.055

σ1(t) = σ2(t) = σ3(t) = 1 + t + cos(2πt) 0.25 0.049 0.037 0.062 0.037

0.50 0.032 0.044 0.056 0.048

0.75 0.030 0.037 0.051 0.027

0.95 0.032 0.011 0.024 0.041

50 0.05 0.054 0.031 0.050 0.046

0.25 0.040 0.033 0.078 0.027

0.50 0.030 0.033 0.042 0.030

0.75 0.023 0.022 0.065 0.016

0.95 0.017 0.009 0.043 0.048

100 0.05 0.033 0.030 0.063 0.024

0.25 0.023 0.026 0.067 0.021

0.50 0.033 0.040 0.055 0.022

0.75 0.012 0.018 0.052 0.008

0.95 0.035 0.037 0.067 0.027

Next we examine the power of our test statistics and compare it with the test statistic proposed in Sun (2006).

To minimize the complexity of the experiment we used a constant variance function for this example. Table 2

summarizes the results. Both our test statistic and Sun’s method have reasonable power even with small sample

sizes as shown in Table 2. As sample size grows both methods approach 100% power in for mid quantiles. At

extreme quantiles, our TMax statistics performs better compared to Sun’s procedure. For example, at the 95th

percentile, the difference in power is about 14% in favor of our TMax statistics.
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Table 2. Empirical Power based on 1000 simulated samples

Functions n τ TMax T1 T12 S UN

g1(t) = t 25 0.05 0.043 0.014 0.010 0.144

g2(t) = et 0.25 0.783 0.204 0.496 0.881

g3(t) = sin(2πt) 0.50 0.975 0.398 0.948 0.979

σ1(t) = σ2(t) = σ3(t) = 0.1 0.75 0.937 0.630 0.979 0.911

0.95 0.078 0.000 0.101 0.145

50 0.05 0.153 0.025 0.022 0.142

0.25 0.996 0.396 0.856 1.000

0.50 1.000 0.756 1.000 1.000

0.75 1.000 0.963 1.000 1.000

0.95 0.371 0.002 0.574 0.289

100 0.05 0.548 0.037 0.058 0.473

0.25 1.000 0.704 0.993 1.000

0.50 1.000 0.972 1.000 1.000

0.75 1.000 0.999 1.000 1.000

0.95 0.847 0.683 0.956 0.696

3.2 Comparison With Nonparametric Mean Regression

As described in section 1, the mean regression approach, although quite popular in comparing groups, will have

severe drawbacks in the presence of extreme observations. Therefore, we examine how our test procedure can be

used as an alternative for mean regression testing methods when the data is contaminated with extreme values.

To this end, we compare our testing procedure at τ = 0.5 (conditional median) with the non parametric mean

regression test proposed by Neumeyer and Dette (2003) under two error structures. We used model (7) with

ε ∼ N(0, 1) and ε ∼ 0.8N(0, 1) + 0.2Cauchy. The first error structure mimics the classical regression setup and the

second error structure creates outliers by having 20% of the errors come from the standard Cauchy distribution.

The choice of the contamination error distribution as Cauchy was motivated by its well-known heavy tail structure.

Although any other heavy tail distribution could also be used, we feel that the Cauchy case will serve as a “lower

bound” for the power properties of our tests. The weights of the mixture (0.8 and 0.2) was chosen to provide a

reasonable balance between the level of contamination and the data. In order to be compatible with the simulation

study of Neumeyer and Dette(2003) we used the same functions in their study and focused on comparing two

groups (k = 2 case) with σ(t) = 0.5.

Table 3 summarizes the results of the experiment with normal errors. Both quantile regression approach (TMax

and S UN) and mean regression approach (ND) performed quite well under the normal error structure. The Type

1 error of ND is closer to the 0.05 nominal level than the other two procedures. With linear alternatives (3rd and

4th examples in Table 3), TMax performed as good as the mean regression method in large samples. The power

of the quantile regression methods is slightly lower than the mean regression method when dealing with high

frequency alternatives (last two examples in Table 3). This is not surprising because the mean regression approach

is designed under the normal error assumption with its power properties optimized based on moment conditions of

normal errors.

Next we examine the Type 1 error and power properties of these methods under a mixture error structure (ε ∼
0.8N(0, 1) + 0.2Cauchy.). We used the same examples as in Table 3. The results are summarized in Table 4. In

contrast, the values in Table 4 clearly shows that the mean regression method breaks down, especially the power

of detecting the difference in the two regression functions. For example, in testing g1(t) = sin(2πt), g2(t) =
sin(2πt) + t, with a sample size n = 100, the power of the mean regression method drops dramatically from 100%

(with normal errors) to 28% (with a mixture of normal and Cauchy errors). In comparison, the power of the

proposed method TMax in particular, remains very stable (97% to 93%).
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Table 3. Type I error and power with 100% normal errors

Functions n TMax T1 T12 S UN ND

Type 1 error

g1(t) = g2(t) = et 25 0.032 0.036 0.059 0.028 0.053

50 0.028 0.034 0.053 0.022 0.067

100 0.035 0.044 0.062 0.033 0.059

g1(t) = g2(t) = sin(2πt) 25 0.029 0.029 0.040 0.014 0.055

50 0.028 0.029 0.060 0.003 0.056

100 0.013 0.019 0.076 0.001 0.040

Power

g1(t) = et , g2(t) = g1(t) + t 25 0.502 0.557 0.625 0.500 0.915

50 0.869 0.902 0.942 0.852 0.995

100 0.997 0.990 0.999 0.999 1.000

g1(t) = sin(2πt) , g2(t) = g1(t) + t 25 0.435 0.433 0.592 0.350 0.754

50 0.759 0.721 0.903 0.558 0.970

100 0.974 0.952 0.996 0.814 1.000

g1(t) = et, g2(t) = g1(t) + sin(2πt) 25 0.156 0.134 0.264 0.679 0.385

50 0.473 0.321 0.623 0.946 0.840

100 0.928 0.778 0.970 1.000 0.997

g1(t) = sin(2πt), g2(t) = 2sin(2πt) 25 0.212 0.038 0.203 0.433 0.211

50 0.533 0.042 0.526 0.652 0.536

100 0.878 0.099 0.912 0.880 0.951
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Table 4. Type I error and power with 80% normal and 20% Cauchy errors

Functions n TMax T1 T12 S UN ND

Type 1 error

g1(t) = g2(t) = et 25 0.030 0.033 0.045 0.041 0.033

50 0.035 0.030 0.053 0.040 0.039

100 0.032 0.042 0.063 0.021 0.027

g1(t) = g2(t) = sin(2πt) 25 0.041 0.037 0.050 0.021 0.030

50 0.024 0.041 0.056 0.009 0.033

100 0.009 0.020 0.057 0.000 0.031

Power

g1(t) = et , g2(t) = g1(t) + t 25 0.385 0.446 0.505 0.345 0.261

50 0.753 0.791 0.848 0.697 0.280

100 0.971 0.979 0.989 0.961 0.271

g1(t) = sin(2πt) , g2(t) = g1(t) + t 25 0.343 0.362 0.454 0.241 0.229

50 0.651 0.617 0.802 0.429 0.272

100 0.927 0.889 0.990 0.647 0.279

g1(t) = et g2(t) = g1(t) + sin(2πt) 25 0.109 0.109 0.198 0.488 0.084

50 0.354 0.243 0.473 0.840 0.112

100 0.807 0.597 0.881 0.994 0.135

g1(t) = sin(2πt) g2(t) = 2sin(2πt) 25 0.136 0.043 0.177 0.284 0.061

50 0.403 0.041 0.411 0.493 0.092

100 0.769 0.074 0.811 0.748 0.120

3.3 Local Power Properties

The goal of this experiment is to provide evidence that our proposed method has a faster rate of convergence

than the test statistic proposed by Sun(2006). We examine the power properties of our test procedure with local

alternatives converging to the null at (
√

n)−1 rate. We compare our results to that of Sun (2006) . We restricted out

simulation to the k = 2 case to save computational time. We used model (7) with g1(t) = et, g2(t) = g1(t) + δ/
√

n
and σ(t) = 0.1 (homosedastic errors). Here δ is a constant that controls the separation of the two functions and

we chose δ = 0.3 in our simulation. The sample sizes for each group were chosen large enough to make the

testing problem difficult. Three sample sizes n1 = n2 = 500, 2500, 5000 were considered and three quantiles

τ = .05, .50, .75 were examined. All simulations were repeated 1000 times and the results are given in Table 5.

Table 5. Comparison of power with local alternatives with α = 0.05

τ N TMax T1 T12 S UN

0.05 1000 0.244 0.285 0.285 0.072

5000 0.258 0.287 0.292 0.050

10000 0.273 0.308 0.312 0.050

0.50 1000 0.431 0.532 0.635 0.153

5000 0.301 0.425 0.662 0.077

10000 0.242 0.358 0.669 0.032

0.75 1000 0.417 0.519 0.588 0.134

5000 0.299 0.415 0.584 0.073

10000 0.266 0.384 0.618 0.050
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As shown in Table 5, our test statistics have much better local power properties compared to Sun (2006). Our tests

remain well above the nominal α = 5% level whereas the power of Sun’s test converge down to α. As suggested

by one of the referees, in order to get a more general conclusion we repeated the experiment under another setting.

We used different functions: g1(t) = sin(2πt), g2(t) = g1(t) + δ/
√

n and σ(t) = 0.1 and used α = 0.01. As above,

all simulations were repeated 1000 times and the results are given in Table 6.

Table 6. Comparison of power with local alternatives with α = 0.01

τ N TMax T1 T12 S UN

0.05 1000 0.081 0.091 0.096 0.021

5000 0.150 0.093 0.084 0.027

10000 0.187 0.102 0.099 0.019

0.50 1000 0.098 0.211 0.246 0.044

5000 0.145 0.204 0.275 0.031

10000 0.196 0.212 0.284 0.028

0.75 1000 0.126 0.131 0.261 0.031

5000 0.131 0.146 0.215 0.026

10000 0.173 0.182 0.278 0.020

As expected, when the α value is low (0.01), the power goes down in both methods, but our method exhibits

higher power than the nominal α level. Since the alternative hypotheses that we used in these two experiments are

converging at (
√

n)−1 rate, these results clearly demonstrate that our test statistics have a faster convergence rate

than Sun (2006).

4. Data Analyses

We now present two applications of our test procedure to real data:

1) Analysis of maximum wind speed of tropical cyclones in the Atlantic basin.

2) Analysis of managerial expenses of Japanese chemical firms.

4.1 Example 1: Tropical Cyclones in the Atlantic Basin

As an application of our proposed methodology we consider a data analysis on Atlantic basin tropical cyclones

in the HURDAT data set, which is available on the National Oceanic Atmospheric Administration’s website

(www.aoml.noaa.gov/hrd/hurdat). The current data contain information on storms between 1851 and 2010. A

changepoint analysis of the data through 2008 conducted in Robbins, Lund, Gallagher, and Lu (2011) found

changepoints in several measured variables in the early to mid 1960’s. Satellites were fully implemented for cy-

clone surveying in the mid 1960 s, and their introduction also likely improved the accuracy of measured wind

speeds. For the above reasons we consider only data from 1968-2010. A changepoint test in Robbins, Lund, Gal-

lagher, and Lu (2011) indicated a significant change in the frequency of storms around 1995. We therefore divide

storms into two groups 1968-1994 (n1 = 258) and 1995-2010 (n2 = 236).

There has been much interest in whether storms have become stronger in recent years. There are many measures

of storm strength considered in the literature (Emanuel, 2005; Briggs, 2008). Here we simply measure storm

intensity as the maximum observed wind speed of the cyclone. We investigate the behavior of the 0.9 quantile of

maximum windspeed as a function of position within the hurricane season. In particular let X = (storm number in

ith year)/(total number of storms in year i), e.g., the fourth storm in a year with 11 storms would have an associated

X value of 4/11. Figure 2 contains a plot of the data. The overlay of the nonparametric estimates of the quantile

curves indicates that the basic shape of the quantile curve is the same for the two groups, with the strongest storms

tending to occur near the middle of the season and relatively fewer strong storms occurring at the beginning of the

season. Applying the test statistic TMax to the data indicates a significant difference between the two curves at the

0.05 significance level (test stat = 6.813, cutoff = 6.416). Since the curve for the more recent storms (1995-2010)

is systematically above that of the storms from 1968-1994, this provides some evidence that the .9 quantile of

maximum wind speed has increased in recent years. We note that the procedure of Sun (2006) did not detect a

significant difference between the two curves (test stat = 0.095, cutoff = 0.166). Furthermore, the nonparametric
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mean regression test of Neumeyer and Dette (2003) also did not detect a difference between the two groups. Our

test provides different conclusions than either of those techniques.

Figure 2. Plot of hurricane data from 1968-2010. Circles represent before 1995, triangles represent after 1995

data. 90th percentile curves: —– before 1995, - - - after 1995

4.2 Example 2: Managerial Expenses of Japanese Chemical Firms

We analyzed the Japanese chemical industry data (Yafeh & Yosha, 2003) which is publicly available at the Econo-
metric Journal website at http://www.res.org.uk. Data consists of various economic factors collected on 185 chem-

ical firms listed in the Japanese stock market. The dependent variable is a measure of expenses on managerial

private benefits. The study was focused on investigating the hypothesis that “concentrated shareholding is asso-

ciated with lower expenditure on managerial private benefits”. Ownership concentration of the firm is measured

by the variable TOPTEN, which gives the percentage of ownership that belongs to the top 10 shareholders. Our

investigation was to check whether this association is different among firms that has high/low leverage (the ratio

of debt to debt plus equity). We divided our data into two groups based on the leverage measurements of the firms.

Firms with leverage values above the sample median are categorized in to ‘high’ and the rest are into ‘low’ groups.

Figure 3 depicts how managerial expenses (Y) change with ownership concentration (TOPTEN) in the two groups.

As shown in Figure 3, there is a negative association between expenditure on managerial private benefits and the

ownership concentration in both groups. The nonparametric mean regression estimates (solid and dotted lines)

suggest that the two groups are different. A hypothesis test (Neumeyer & Dette, 2003) revealed that the two

mean regression curves are in fact significantly different at .05 level. We then used our test procedure and the one

proposed by Sun (2006) at τ = 0.5 to check whether the conditional medians of the two groups are the same or not.

All of our test statistics were able to capture a difference between the two conditional medians. However, the test

proposed in Sun (2006) did not reject the null hypothesis of equality of conditional median curves. We used the

bandwidth selection methods which we adopted in our simulations. For computing bootstrap critical values, we

used B = 1000 repetitions to increase accuracy. Table 7 summarizes the results of our testing at several conditional

quantiles. This analysis suggests that the differences between two conditional distributions exists at mid to upper

quantiles. No differences was observed at quantiles below the median. It provides a more elaborate picture of the

actual differences in the two groups compared to the nonparametric mean regression approach of Neumeyer and
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Dette (2003).

Figure 3. Plot of managerial expenses vs shareholder concentration of Japanese Chemical firms. Circles-low

leverage, triangles-high leverage. The plotted lines are the nonparametric mean and median regression estimates

for the two groups. — mean reg (low), · · · mean reg (high), - - - q- reg (low) , · - · q-reg (high)

Table 7. Test results of the Japanese chemical industry data α = 0.05

τ TMax T1 T12 S UN

0.05 N N N N

0.25 N N N N

0.50 R R R N

0.75 R R R R

0.95 R R R R

Note: R-Rejected , N-did not reject.

5. Conclusion

We have proposed a robust nonparametric test of detecting the differences in conditional quantile functions for

multiple populations. The proposed method demonstrates a desirable
√

n property in contrast to the slower rates of

Sun (2006). Bandwidth selection for nonparametric quantile estimation and for tests based on such estimators is an

open problem. In this article we have used a plug in rule that is readily available. A detailed study of bandwidths

that optimize power while preserving size is highly warranted.
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