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Abstract

The Qu (2008) test for changing coefficients in quantile regression is analyzed in order to investigate its diagnostic

propensities when appropriately decomposed. The goal is to reveal the diagnostic capabilities of this test: it can

indeed be implemented to detect the location of a break and to pin point its impact on each regression coefficient.

In addition it is possible to analyze the evolution of the impact of a break on a coefficient as the quantile changes.

To implement the Qu test as a diagnostic tool, the original definition is modified. The behavior of the modified test

is investigated using real data and through a Monte Carlo study.

Keywords: structural change, quantile regressions, diagnostic

1. Introduction

There is a vast literature on tests for changing coefficients with unknown break points. A general overview of

this topic is discussed in Perron (2006) while, to cite only some of the most recent contributions, Elliott and

Muller (2007) focus on a single break in time series, Bai and Perron (2003) consider the estimation of multiple

breaks models, Qu and Perron (2007) extend the analysis to systems of equations, Bai (2010) analyses breaks

in panel data. In particular, the present analysis focuses on the works by Qu (2008), Su and Xiao (2008), and

Oka and Qu (2011), where test on parameter stability in quantile regressions are proposed. The Qu test (2008) for

structural breaks in quantile regression is here modified in order to investigate its diagnostic capability. We propose

a transformation in the definition of the test function, in order to use it as a diagnostic tool to signal the position of

a break, and, eventually, its nature. Indeed, in a Monte Carlo study focusing on a simple linear regression model,

we find that a location and/or a scale shift is individually signaled by each coefficient of the equation. Furthermore,

the real datasets here considered show how a break does not have the same impact either on each coefficient or

across quantiles. In a simple linear equation analyzing consumption, the modified test function clearly shows

when the break occurs and at what quantile it has been more effective: an early break affected mostly the median

consumption while a later break caused a marked change in the propensity to consume at the third quartile. A

multivariate regression is then discussed using data related to the international OECD-PISA test, that investigates

students’ scores in a reading proficiency test. The model analyzes the influence of curricula on reading ability. By

appropriately ordering the sample, from north-center regions to southern ones in one case, or from girls to boys in

a different ordering, the modified test function finds the change point. Focusing the analysis on one explanatory

variable, in this example gender or region, makes the graphical patterns very smooth and the identification of the

break point extremely clear.

The diagnostic propensity of the Qu test function is here investigated by computing the test individually for each

regression coefficient (from now on ‘individual Qu test’) in real datasets and in a Monte Carlo study.

The paper is organized as follows: Section 2 describes the test function and the proposed modification, while Sec-

tion 3 considers two real data examples showing how this modification of the Qu test provides relevant information

on the behavior of the regression coefficients. The focus moves then to a small Monte Carlo study, which analyses

the Qu test capability to detect a break in a controlled setting: Section 4 considers the behavior of the standard

Qu test in the presence of shifts in the location of the regression model, while Section 5 looks at experiments with

break in the scale parameter. Section 6 considers the capability of the individual Qu test to locate the breakpoint,
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and the final section draws the conclusions.

2. The Quantile Regression Test Function

Consider the standard linear regression model, yi = β1 + β2xi + ui for i = 1, ..., n. The quantile regression objective

function at the chosen τ is given by:

V (τ) =
∑

yi<β1+β2 xi
(1 − τ) |yi − β1 (τ) − β2 (τ) xi| +∑yi>β1+β2 xi

τ |yi − β1 (τ) − β2 (τ) xi|
=
∑

i ρτ
[
yi − β1 (τ) − β2 (τ)

]
,

Where ρ is the check function ρτ (ui) = ui [1 (ui < 0) − τ] (Koenker & Bassett, 1978) (Note 1). The Qu test function

is given by:

SQτ = supλτ
∥∥∥(τ (1 − τ))−1/2 [Hλ,n (τ) − λH1,n (τ)

]∥∥∥
where 0 ≤ λ ≤ 1 represents the fraction of the analyzed sample, and Hλ,n is the partial sum of the gradient, defined

as:

Hλ,n (τ) =

λn∑
i=1

(
XT X
)−1/2

xiΨτ
(
y − xT

i β̂ (τ)
)

and:

Ψτ
(
yi − xT

i β̂ (τ)
)
= 1 (ui ≤ 0) − τ

SQτ is a fluctuation type test, based on sequentially evaluated sub-gradients Hλ,n. In case of break, the gradient

H1,n will significantly differ from the sub-gradient Hλ,n for some λ. In absence of break, instead, any sub-gradient

is a good proxy of the gradient. The test looks for the maximum value across all regression coefficients and across

all quantiles. In an additional paper, Oka and Qu (2011) implement this same test in subsets of the sample in order

to find multiple breaks.

By searching the maximum difference between Hλ and H1 across all coefficients and all quantiles, SQτ loses

information and disposes of any diagnostic capability. In alternative we propose to implement a fluctuation test

individually for each regression coefficient. The individual fluctuation test allows us to check if the break is partial

or global, that is if the change affects each regression parameter by the same extent, or only some of them in

a relevant way. In addition, by comparing partial versus total gradients for a coefficient computed at different

quantiles, it is possible to find the pattern of a coefficient across quantiles and also the pattern of the impact of a

break on a coefficient at the different quantiles. Indeed a break does not have the same relevance at all quantiles:

for instance a policy measure may have a large impact at lower quantiles and a small one at the higher quantiles,

or vice versa. The knowledge of the effect of a break across quantiles can be a relevant issue for policy makers.

3. Two Real Data Examples

In this section the behavior of the individual Qu test is investigated considering two real datasets. The former is

a small sample of annual data on consumption and gross domestic product (GDP) in Italy and it is used to inves-

tigate the Qu statistics in a univariate regression model. A larger dataset concerning OECD-PISA test on student

performance is taken into account in order to examine a multivariate model. In both the examples, the analysis

of the individual Qu statistic, decomposed with respect to the different coefficients and the different conditional

quantiles, provides interesting and otherwise disregarded results.

3.1 A Univariate Example: The Consumption Function

Time series of GDP and consumption, expressed in euros using the year 2000 chain deflator for the 1970–2009

sample, is here analysed (Note 2).

A univariate quantile regression model, using GDP as regressor and consumption as dependent variable, is esti-

mated at the three conditional quartiles. The estimated regression coefficients, together with their Student-t values,

are:

Consumption = -10434.4 + 0.79 GDP first quartile,

(t= 0.4) (t = 43.4)

Consumption = 8215.7 + 0.78 GDP median,

(t = 1.0) (t = 95.8)

Consumption = -6156.3 + 0.81 GDP third quartile.

(t = -0.4) (t = 43.4)
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The intercepts are not statistically significant, while the three slopes are significant and the Qu statistics, equal to

1.502, leads to reject the null of no break at the 1% level, against a critical value of 0.942 (see Table 2 in Qu, 2008,

for the case of one regressor in the equation). The Qu statistic reaches its highest value in 1980.

However, more details can be obtained through the analysis of the individual Qu statistic decomposed with respect

to the different coefficients and the various quantiles. The value SQ = 1.502 is reached at the median by the slope

coefficient. At the third quartile, the individual Qu test once again rejects the null of constant slope, while at the

first quartile the null is not rejected. Figure 1 presents the patterns of the individual Qu test for the slope coefficient

at the three conditional quartiles here selected. The graphs show the presence of two major breaks, one near 1980

and another around 1993. In particular, the Qu series for the first quartile and the median reaches its maximum in

year 1980 and presents a second peak in 1993. For the third conditional quartile, the strength of the two peaks is

inverted, as the Qu series presents the maximum in 1993 and the second high peak in 1980. Therefore the analysis

of the Qu series, decomposed with respect to each coefficient and to the selected quartiles, reveals a pattern for

the upper part of the conditional distribution differing from the first two quartiles. The first two rows of Table 1

collect the results of the individual Qu test. A possible explanation of the first break can be related to Italy joining

the European Monetary System (EMS) in 1979, with a consequent alteration in the exchange rate management

by the Italian central bank: this had an impact on prices, affecting consumption particularly at the median. In

1992 there was a currency crisis, a sharp devaluation of the national currency and the Government abolished

the automatic indexing system connecting wages and inflation, leading to a less inflationary price regime. The

measures to curb inflation had a larger impact at the higher quartiles than elsewhere. Thus, while the former shock

affects consumption mostly at the median, the second shock, although by a lower extent, is predominant at the

third quartile.

Figure 1. Qu statistics for the slope decomposed with respect to three conditional quartiles (different panels) for

the consumption function. Two major peaks are present in all the panels, corresponding to years 1980 and 1993.

The relevance of the two peaks is inverted at the third quartile with respect to first two quartiles

3.2 A Multivariate Example: The OECD-PISA Dataset

In this section the international OECD-PISA test on student performance is considered (Note 3). In particular,

the score on the reading test of Italian students in 2009 is related to curricula, academic or technical track with

respect to vocational schools. The analysis is carried out using a sample of size n = 29243. The estimated median

regression is:

Reading score = 408.8 + 131.3 academic + 60.2 technical median,

(s.e. =1.8) (s.e.=2.4) (s.e. = 2.6)
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suggesting that technical and academic schools greatly improve the reading performance with respect to the score

of students enrolled in vocational schools. The standard errors in parenthesis show that the above coefficients are

all statistically significant. At the first and the third quartiles the estimated regressions are:

Reading score = 355.1 + 131.6 academic + 57 technical first quartile,

(s.e. = 2.1) (s.e. = 2.8) (s.e. = 2.8)

Reading score = 465.6 + 119.3 academic + 56.4 technical third quartile.

(s.e. = 2.2) (s.e. = 2.6) (s.e. = 2.7)

The Qu test is then computed individually for each coefficient. The second section of Table 1 presents the results

of the individual Qu test and Figure 2 presents the patterns of the individually computed test at the first, second

and third quartile both for the intercept and the two slopes. The graphs show interesting patterns. At the median,

the estimated value of the test is 1.80 for the intercept, 3.12 for academic and 2.78 for technical track, implying

that the academic track coefficient is the one presenting the larger changes across the sample. The null of no break

is rejected at the 1% level, for a critical value of 0.991 in the case of two regressors in the equation (Table 2 in

Qu, 2008). The values of the individual Qu test are 1.87 and 2.28 at the first quartile, while 2.38 and 2.28 at the

third quartile, respectively for academic and technical track. The intercept is the more responsive to the break at

the third quartile, reaching the value of 3.35. The standard Qu test would signal only this last result: a break at the

third quartile with an estimated value of 3.35, and no further hint is available on the behavior of the coefficients at

the other quartiles, nor there is any indication about which one of the regression coefficient is influenced most.

Figure 2. Qu test for the intercept, academic and technical coefficients (rows) respectively at the first, second and

third quartile (columns) in the OECD-PISA estimated equations

However, the analysis on the presence of changing coefficients can offer additional insights. So far the location

of the break did not matter, since the OECD-PISA dataset does not involve time series. But there are additional

country related characteristics that can offer some insights. Italian data are generally affected by a regional dis-

crepancy, linked to an economic lag of the southern regions with respect to the more industrialized north-center

area. Therefore the data can be sorted with respect to a regional variable, where data of the northern regions are at

the beginning of the dataset, followed by data of the southern schools. The individual Qu test with this ordering
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of the sample assumes values of 2.22 for the academic coefficient and 3.42 for the technical one, as computed at

the median. This time is the technical coefficient to be more affected by a regional break. The third section of

Table 1 presents these results. Figure 3 presents the patterns of the individual Qu tests and it is quite evident where

is the turning point. The dashed lines in each panel show the location of the regional change in the dataset. In

these panels the turning point is quite near the shift from northern to southern data. The partial sum of the gradient

increasingly diverges from the total sum when analyzing data from the north-center regions. When the southern

regions start to enter the summation, the discrepancy between the partial and the total sum drops sharply. Figure 3

is very informative, clearly signaling the turning point and the quite larger impact of the regional discrepancy on

all regression coefficients. The southern regions backlog is particularly effective for technical track students. The

turning point is also very evident in the statistic corresponding to the intercept throughout the three quartiles, thus

showing that by some extent the reading score quartile differs between the two regions regardless of the track. The

academic track coefficient instead anticipates the peak with respect to the sample shift, and this may be related to

a different factor.

Figure 3. Qu test for the median regression coefficients (rows) of the OECD-PISA equation, regional break with

north-center data at the beginning of the sample. The three conditional quartiles are depicted on the columns and

the dashed lines show the region change in the ordered sample

Next, the Qu test is implemented splitting the sample by gender, girl scores in the first part of the sample followed

by boy scores. Indeed a prevalence of girls in reading versus a prevalence of boys in math is generally recognized as

a stylized fact. Looking at each coefficient across quartiles, the estimated values of the individual Qu test are 5.79

for the academic coefficient and 3.47 for the technical one (at the third quartile and at the median, respectively),

showing that, in the reading score equation, the academic track is more responsive to changing coefficients linked

to gender. Figure 4 presents the pattern of the individual Qu test while the last section of Table 1 reports the

corresponding numerical results. The gradient for the girl subsample increasingly differs from the total gradient,

until the turning point is reached. The latter is located at the beginning of the boys subset. The dashed vertical lines

show the location of the first boy in the sample. The coincidence of the turning point with the change in gender

is quite evident in the academic coefficient, and also the technical coefficient signals its presence. Once again,

the intercept and the academic track coefficient correctly detect the change point at all quartiles. For the technical

track coefficient, the peak is reached around the changing point of the ordered sample, but it does not present such

a clear cut as in the previous graphs. The highest discrepancy in the individual Qu test is in the intercept, which

tells of a reading score difference between genders not linked to a specific school program.
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Table 1. Estimates of the individual Qu test at the three quartiles, consumption function and OECD-PISA datasets

First quartile Median Third quartile

Macroenomic dataset intercept 0.82 1.42 1.10

GDP 0.77 1.50 1.08

OECD-PISA dataset intercept 1.80 2.80 3.35
(case I, without sorting) academic 1.87 3.12 2.38

technical 2.28 2.78 2.29

OECD-PISA dataset intercept 16.92 21.75 19.44

(case II, sorting by regions) academic 1.88 2.22 1.87

technical 2.85 3.42 2.21

OECD-PISA dataset intercept 9.51 10.74 10.13

(case III, sorting by gender) academic 2.95 5.11 5.79
technical 2.92 3.47 3.20

Note: The critical value at the 1% level with one regressor is 0.942 and with two regressors is 0.991 (Table 2 in

Qu, 2008). In bold are the highest values of the individual Qu test within each row.

The comparison of Figures 2 to 4 is quite informative. Figure 2 presents peaks but we cannot relate these peaks

to any particular source. The ordering of the sample by a variable not included in the set of regressors can be

interpreted like a sort of conditioning. In this example, ordering the sample by region (Figure 3) yields the most

regular pattern in the modified Qu test function, particularly for the technical track coefficient, while the ordering

by gender (Figure 4) seems to better explain the academic track coefficient changes. This would signal a strong

regional component causing changing coefficients in the reading scores of technical track students and a gender

effect in the performance of academic track students. In both cases the intercept has a very regular pattern, clearly

signaling the change point.

Figure 4. Qu test for the median regression coefficients (rows) of the OECD-PISA equation, sample ordered by

gender with girls at the beginning of the sample. The three conditional quartiles are depicted on the columns and

the dashed lines are located the turning point, from girls to boys, in the ordered sample

Of course both region and gender can be introduced as dummy variables in the main equation, yielding the follow-

ing estimates at the three quartiles:
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Reading score = 399.17 + 123.4 academic + 61.9 technical– 45.2 south– 36.9 boys first quartile,

(s.e. = 2.5) (s.e. = 2.7) (s.e. = 2.7) (s.e. = 2.1) (s.e. = 1.9)

Reading score = 445.6 + 124 academic + 61.3 technical – 47.7 south – 30.6 boys median,

(s.e. = 2.3) (s.e. = 2.2) (s.e. = 2.4) (s.e. = 2.1) (s.e. = 1.9)

Reading score = 493.9 + 118.2 academic + 56.4 technical – 45.8 south – 26.2 boys third quartile.

(s.e. = 2.3) (s.e. = 2.4) (s.e. = 2.7) (s.e. = 2.1) (s.e. = 2.1)

The two dummy variables are statistically significant, but this does not say anything about which track is more

responsive to gender and to regional differences, that is how each regression coefficient changes with respect to

region or gender.

4. A Monte Carlo Experiment for the Location Shift

Following Qu (2008), the data generating process to evaluate the behavior of the test in case of a change in location

is here adopted:

yi = 1 + xi + δxi1(i > nb) + (1 + xi)ui

where: ui ∼ i.i.d. N(0, 1) and xi ∼ i.i.d. χ2
3/3; nb is the break point, set to nb = n/4, nb = n/2 and nb = 3n/4;

the sample size is n = 200; and δ = (−2,−1.5,−1,−0.5, 0.5, 1, 1.5, 2) defines the extent of the break. Negative

values of δ are added to the experiments considered in Qu (2008), in order to check the behavior of the test in case

of a decreasing shift in response to a break. All simulation results are computed in 10000 replicates and the SQτ
statistic is computed at the following quantiles τ = (0.15, 0.3, 0.5, 0.7, 0.85).

The first attempt is to analyze whether the standard Qu test can pin point the position of a break. The density of

SQτ in case of a change in location is shown in the plots on the left-hand side of Figure 5, which considers a break

point at nb = n/4 in the top section, at nb = n/2 in the middle section, and at nb = 3n/4 in the bottom section. In

these graphs the densities are generally close together except for the experiments with wider break, in particular

for negative vales of δ, δ = (−2,−1.5), where both skewness and kurtosis diverge markedly. The right-hand side

shows the position of SQτ with respect to the sample in the 10000 replicates, at the three different break points,

nb = n/4, n/2, 3n/4, respectively in the first, second and third section. Each of these graphs presents a spike at,

or close to, the break point, thus suggesting that the statistic SQτ can be used to spot the position of a break. The

spike is less evident for small values of δ, δ = ±0.5 and sometimes at δ = ±1 but is quite clear in the experiments

with a wider break.

Table 2 considers the finite sample power for α = 0.05, in section (a) for nb = n/4, for nb = n/2 in section (b), and

finally for nb = 3n/4 in section (c). The rows consider the selected values of δ, while the columns report the results

at the different quantiles τ. The rejection rates for location changes are comparable to Qu (2008) results when δ is

small, δ = 0.5. In addition, the results show that SQτ performs better at the quantiles away from the median.

5. A Monte Carlo Experiment for the Scale Shift

To evaluate scale changes, as in Qu (2008), the following data generating process is considered:

yi = 1 + xi + (1 + xi + δxi1(i > nb))ui.

The sample size is set to n = 200 and the break points are at nb = n/4, n/2, 3n/4, as for the location shift

experiments.

In a first group of experiments the scale is increasing after the break, and the equation is evaluated at δ = (1, 2, 3, 4).

In addition, a second group of experiments has been introduced with respect to Qu (2008), where the scale de-

creases after the break and the negative shifts assume the values δ = (−1,−2,−3,−4).

The behavior of SQτ in case of a scale change is depicted in Figure 6 which, on the left-hand side, presents the SQτ
densities at the different break points, while on the right-hand side, presents the position of SQτ with respect to the

sample in 10000 replicates. As in the previous figure, the plots refer to nb = n/4, n/2, 3n/4 respectively in the top,

middle and bottom section. The densities are more dissimilar and spread out than in the location shift experiments

of Figure 5, in particular for large breaks, with δ = (±3,±4). The graphs on the right present a spike at, or close to,

the break points. The spike is less pronounced when δ = ±1, but is quite evident for larger values of δ.

The finite sample power is reported in Table 3: the left-hand side section for the break nb set to n/4, the middle

section for nb = n/2, while the results for nb = 3n/4 are in the right section. The rows of the three tables refer to the

selected values of δ, while the columns refer to the different conditional quantile τ implemented to compute SQτ.
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The results in the experiments comparable with Qu (Table 7, 2008) are reported in bold, and they show a sizably

improvement in the rejection rates. As in the location experiments, SQτ shows a better performance away from

the median. These results suggest that, in the simple linear regression model, when the individual Qu test rejects

the null of constant coefficients at the intercept, this can be considered a signal of scale shift. If the value rejecting

the null is provided by the slope coefficient, then the location shift model should be taken into account. A word of

caution has to be added for the multiple regression case, which has not been included in the above experiments.

Table 2. SQτ rejections rates, change in location, nb = n/4, n/2, 3n/4, n = 200, α = 0.05

a) break point at nb= n/4 b) break point at nb= n/2 c) break point at nb= 3n/4

δ SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85

-2.0 0.55 0.21 0.05 0.16 0.45 0.44 0.12 0.02 0.09 0.34 0.56 0.20 0.04 0.16 0.48

-1.5 0.49 0.17 0.04 0.11 0.34 0.37 0.10 0.02 0.07 0.26 0.47 0.17 0.05 0.15 0.39

-1.0 0.10 0.07 0.05 0.05 0.06 0.18 0.08 0.04 0.07 0.13 0.23 0.12 0.06 0.10 0.18

-0.5 0.14 0.10 0.08 0.10 0.13 0.17 0.11 0.07 0.10 0.17 0.13 0.10 0.08 0.09 0.12

0.5 0.11 0.09 0.09 0.08 0.10 0.13 0.10 0.08 0.10 0.12 0.11 0.10 0.09 0.09 0.09
1.0 0.14 0.10 0.08 0.09 0.12 0.17 0.10 0.07 0.10 0.17 0.14 0.10 0.07 0.11 0.14
1.5 0.15 0.10 0.08 0.09 0.14 0.19 0.10 0.06 0.11 0.19 0.15 0.10 0.07 0.11 0.16
2.0 0.17 0.11 0.08 0.10 0.15 0.20 0.10 0.06 0.10 0.20 0.15 0.09 0.06 0.11 0.17

Note: In bold the results of the experiments comparable to those in Qu (Table 6, 2008).

Table 3. SQτ rejection rates in case of a scale shift, nb = n/4, n/2, 3n/4, n = 200, α = 0.05

a) break point at nb= n/4 b) break point at nb= n/2 c) break point at nb= 3n/4

δ SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85

-4.0 0.77 0.33 0.10 0.19 0.53 0.95 0.61 0.12 0.37 0.79 0.78 0.50 0.11 0.27 0.47

-3.0 0.64 0.27 0.10 0.15 0.40 0.88 0.49 0.11 0.28 0.62 0.62 0.38 0.10 0.20 0.33

-2.0 0.45 0.20 0.10 0.12 0.26 0.68 0.34 0.10 0.18 0.40 0.41 0.24 0.10 0.13 0.21

-1.0 0.22 0.13 0.09 0.09 0.13 0.33 0.18 0.10 0.11 0.17 0.20 0.13 0.09 0.10 0.11

1.0 0.19 0.13 0.10 0.13 0.17 0.35 0.18 0.10 0.18 0.33 0.23 0.13 0.09 0.13 0.22
2.0 0.41 0.25 0.10 0.25 0.36 0.71 0.35 0.11 0.35 0.71 0.48 0.20 0.10 0.20 0.47
3.0 0.61 0.40 0.11 0.40 0.56 0.90 0.50 0.12 0.52 0.90 0.67 0.27 0.10 0.27 0.67
4.0 0.75 0.54 0.12 0.54 0.69 0.97 0.62 0.13 0.64 0.97 0.79 0.33 0.10 0.33 0.79

Note: In bold results of the experiments comparable to those in Qu (Table 6, 2008).

Table 4. Percentages of times SQτ falls around the break, range nb ± 10, shift in location at n/4, n/2, 3n/4
a) break point at nb= n/4 b) break point at nb= n/2 c) break point at nb= 3n/4

δ SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85

-2.0 34.63 22.82 10.94 18.98 29.52 23.39 17.19 8.79 15.26 20.90 35.07 23.23 10.04 19.99 31.07

-1.5 35.30 24.77 11.80 19.31 26.63 21.48 15.53 8.13 13.08 17.93 28.18 16.88 7.45 14.93 24.71

-1.0 12.19 10.59 10.02 11.50 14.10 15.45 10.15 6.84 11.70 18.75 13.55 7.63 4.06 7.96 15.87

-0.5 21.10 18.23 17.20 20.42 23.26 23.92 17.38 13.30 18.47 26.43 15.11 9.06 7.04 10.27 17.10

0.5 13.76 10.65 9.47 10.45 14.58 20.41 16.96 15.79 18.41 22.56 16.01 16.52 15.03 16.54 16.69
1.0 15.68 10.10 8.01 9.71 17.88 23.46 16.84 13.74 19.26 26.90 20.98 19.22 16.19 20.03 22.78
1.5 16.59 9.72 7.00 9.73 19.26 25.44 16.03 11.90 18.74 29.29 23.87 19.42 16.35 22.56 27.52
2.0 17.58 8.97 6.59 9.60 19.94 25.72 15.20 10.81 18.04 29.77 24.85 18.74 15.37 22.43 29.44

Note: In bold the results of the experiments comparable to those in Qu (Table 6, 2008).

6. Further Diagnostic Analysis

Two additional tables show how many times the standard SQτ test correctly recognizes the break point. Table 4 and

Table 5 report the results for, respectively, location and scale shift models. For a shift in location at the extreme

quantiles, the rate of detection goes from 20% to 30%. In case of a shift in the scale, the correct detection of

the break point at the extreme quantiles is decidedly higher, going from 20% at the median up to 60-70% at the

extreme quantiles. Of course the detection capability decreases as the shift gets smaller but also as the quantile

approaches the median. This holds for both location and scale shifts.
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Figure 5. SQτ test in case of location shift, n = 200 and nb = n/4, n/2, 3n/4 respectively in the top, middle and

bottom section. To the left the density of SQτ is depicted while to the right the position of SQτ with respect to the

sample in 10000 replicates is reported. The right panels present a spike at the break point, showing that the Qu

test function can indeed be a good indicator of the position of a break in case of a location shift
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Next, the individual Qu test is considered, counting the number of times the maximum is reached by the intercept

and, in turn, by the slope. Figure 7 shows that the slope coefficient prevails in signaling a location change, partic-

ularly in case of negative shifts. Once again, the position of the spikes points out very clearly the position of the

break. In the graphs at the top right block of the figure, the spikes occur at n/4, in the graphs at the bottom left of

the figure the spikes are at n/2, while in the bottom right graphs the peaks are at 3n/4, as expected. In the scale

shift experiments, the position of the break is quite clear with the sole exception of the individual SQτ implemented

at the median regression (see Figure 8). In the analysis of the individual coefficients, the intercept prevails on the

slope in signaling the presence of a break in the scale.

Summarizing, the slope coefficient would signal a location change while the intercept a scale change. In multiple

regressions, however, this distinction could not be so clear.

7. Conclusion

The results of the Monte Carlo experiments, which analyze the behavior of the Qu test in the presence of a break

both in location and scale, show a good capability of this test to signal the position of a break. We consider imple-

menting this test in a different way, in order to use the test function as a diagnostic tool. In the examples considered,

which analyze two real datasets, the Qu test has been modified, and it has been implemented individually on the

regression coefficients and separately at each quantile. This allows to analyze the reaction of the equation to a

break, which is not necessarily the same neither across coefficients nor across quantiles. The multivariate equation

has proved a quite enlightening example. In the equation of student scores at the OECD-PISA test on reading

proficiency, while the standard Qu test would signal a break at the third quartile not particularly related to any ex-

planatory factor, further investigation shows the presence of quite strong elements causing changing coefficients.

The change in technical track coefficient is shown to be related to a geographical factor, where students of southern

schools perform worse than the others. The change in the academic school coefficient is instead mainly related to

gender. These results have been obtained by organizing the sample in a systematic order, and then checking the

reaction of each coefficient to the ordering criterion. For instance when ordering the sample by regions, starting

from the northern ones, the test checks the behavior of the model in moving from northern to southern schools.

Analogously, when boy scores were placed all at the end of the sample, the individual Qu test allows us to check

the change in coefficients as the sample shifts from girls to boys. None of these orderings turns out to be neutral.

The null of no break has been always rejected. This can have different implications for policy issues: if the purpose

is to improve reading scores, the geographical factor can be reduced by investing in technical track schools located

in the southern regions, while the gender factor can be reduced by focusing on boys enrolled in academic track

schools. These results reveal how the analysis of the test individually implemented for each regression coefficient

provides a wealth of information that would be overlooked by the standard Qu test.

The Monte Carlo experiments, implemented in the simple linear regression model, provide additional insights. The

individual Qu test function can spot the position of a break, and tells us something about its nature. If the intercept

presents the larger change, then a scale shift model should be considered. Vice versa if the slope yields the greater

value of the individual test function, then a location shift model is the source of a change in the coefficients.

Table 5. Percentages of times SQτ falls around the break, range nb ± 10, shift in scale at n/4, n/2, 3n/4
a) break point at nb= n/4 b) break point at nb= n/2 c) break point at nb= 3n/4

δ SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85 SQ0.15 SQ0.3 SQ0.5 SQ0.7 SQ0.85

-4.0 61.88 32.93 14.03 24.67 49.74 73.47 51.18 19.53 37.07 59.89 45.23 38.00 13.72 27.80 36.62

-3.0 53.32 28.96 13.62 21.16 41.93 66.27 44.63 18.88 31.54 50.78 40.24 31.64 13.39 23.15 30.74

-2.0 41.99 23.30 13.35 18.18 31.49 54.23 35.45 18.17 24.62 38.89 32.39 23.52 12.90 17.50 23.80

-1.0 25.00 16.72 12.61 15.14 19.91 33.83 24.47 17.35 19.02 25.02 19.81 15.58 12.11 13.68 15.66

1.0 19.28 16.48 12.96 16.57 19.14 34.18 24.30 17.85 24.81 34.47 26.58 16.69 11.92 17.06 27.57
2.0 32.41 24.36 13.43 25.42 31.82 54.78 35.12 18.37 35.14 54.33 43.32 22.57 12.62 23.20 44.49
3.0 40.00 32.10 14.39 34.42 39.34 66.81 44.52 19.32 44.51 66.45 54.90 27.32 13.04 28.78 56.20
4.0 43.86 38.82 14.85 41.21 43.69 74.10 50.89 19.95 51.40 73.26 62.55 31.40 13.22 32.65 63.89

Note: In bold are the results of the experiments comparable to those in Qu (Table 6, 2008).
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Figure 6. SQτ test in case of scale change, n = 200 and nb = n/4, n/2, 3n/4 respectively in the top, middle and

bottom section. The density of SQτ is depicted on the left while to the right the position of SQτ with respect to the

sample in 10000 replicates is reported. The right panels present a spike at the break point, showing that even in

case of a scale shift the Qu statistics can detect the position of a break
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Figure 7. Individual SQτ test with respect to each regression coefficient, n = 200. The graphs show how a location

shift is mostly signaled by the slope coefficient
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Figure 8. Individual SQτ test with respect to each regression coefficient, scale change, nb = n/4, n/2, 3n/4,

n = 200. The graphs show how a scale shift is mostly signaled by the intercept
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Notes

Note 1. A thorough and detailed analysis on quantile regression can be found in Koenker (2005). For further

references see also Hao and Naiman (2007), and Davino, Furno, Vistocco (2013).

Note 2. Source: ISTAT, Italian Historical Statistical Repository section, at http://timeseries.istat.it

Note 3. Source: OECD, at http://www.invalsi.it/invalsi/ric.php?page=tutteRI
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