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Abstract

To distinguish between two or more than two models one can use the T-optimality criterion. Another criterion

using for discrimination between two or more than two models is KL-criterion, which depend on the Kullback-

Leibler distance. KL-criterion can be used to discriminate between two non-normal models and a generalized

of the KL-criterion was studied to discriminate more than two non-normal models. In this paper, more than

two semiparametric models can be distinguished using generalized KL-criterion. An application was applied to

illustrate the proposed technique by using three proportional hazard models via real data.

Keywords: optimal experimental design, semiparametric model, Kullback-Leibler distance, KL-optimality, T-

oprimality

1. Introduction

Optimal designs are experimental designs that are generated, based on a optimality criterion and are generally

optimal only for a specified statistical model. An optimality criterion showed how good a design is, based on some

mathematical properties. One of these optimality criteria is T-optimality, which was proposed by Atkinson and

Fedorov (1975a, 1975b). This criterion is used to distinguish between two or more than two models with normal

errors. Ponce de Leon and Atkinson (1992) proposed a generalized T-optimality between two generalized linear

models, which called generalized T-optimality criterion. Uciński and Bogacka (2005) introduced a generalization

of this criterion for multi response models. A generalized T-optimality composed of maximizing the deviance from

the model 2 when data are generated by model 1.

Recently, López-Fidalgo et al. (2005, 2007) extended the conventional T-optimality criterion, to handle any dis-

tribution for the random errors and introduced a new criterion depend on the Kullback-Leibler divergence, called

KL-optimality criterion. A design which maximizes this criterion is called KL-optimal design. One of the most

applicable distance for statistical distributions is Kullback-Liebler distance is proposed see, Burnham and Ander-

son (1998). The KL-criterion function includes the T-optimality criterion as a special case and is applicable to

any parametric regression models. López-Fidalgo et al. (2007) applied KL-optimality criterion under non-normal

distributions, as the lognormal and gamma distributions. When the discrimination between two binary response

models then the KL-criterion and generalized T-criterion are identical, see López-Fidalgo et al. (2007). Otsu

(2008) proposed the KL-optimal criterion by using López-Fidalgo et al. (2007) to a semiparametric setup to dis-

criminate two regression models. Tomasi (2007) used a generalized KL-criterion to discriminate more than two

non-normal models.

In this paper, more than two semiparametric models can be discriminated using generalized KL-criterion. In Sec-

tion 2, Cox’s proportional hazard model is introduced. In Section 3, a generalized KL-criterion for discriminating

among several Cox models is considered. In Section 4, a real data is illustrated where three Cox-proportional

hazards models are given. A conclusion is proposed in Section 5.

2. Cox’s Proportional Hazards Model

The proportional hazard model was firstly introduced by Cox (1972), and this is the most common model in

biostatistics. The advantages using this model are:

• The hazard ratio is an essay constant.

• The Cox model avoids making assumptions about the hazard.
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Proportional hazards models are considered by Becker et al. (1989) who find D-optimal designs for models with

one or two parameters and completely specified baseline hazard. They use geometric arguments and empirical

values for the hazard rate to investigate how censoring affects the D-optimal designs for different shapes of the

design region.

Survival analysis is a collection of statistical techniques used to examine and model the time it takes for events to

occur. In survival analysis, when the event occur we use the term failure and survival time is the time taken for

event failure to occur.

The Cox proportional hazards model is a semiparametric model which is given by:

hi(t) = h0(t) exp (β1xi1 + β2xi2 + · · · + βk xik)

where

βi’s are the parameters;

t is the time;

h0(t) is the baseline hazard function;

xi’s are covariates.

If all of the x’s are zero the exponential part of the previous equation equals 1, hi (t) = ho (t), so ho (t) is called

the baseline hazard function (when predictor variables all have a value of zero). Even though the baseline hazard

function is unspecified, it is still possible to estimate the parameter estimates in the exponential part of the model.

Cox (1972) showed how to derive a valid parameter estimate that does not require the estimate of the baseline

hazard function.

The hazard function is the probability that an individual will experience an event (for example, death) within a

small time interval, given that the individual has survived up to the beginning of that interval. It can therefore be

interpreted as the risk of dying at time t. If the hazard function does not depend on time and its value is completely

determined by the covariate and the unknown parameters, it means that the risk of failure is the same no matter

how long the subject has been followed. The hazard function, denoted by h(t), can be proposed as follows:

h (t) =
number o f individuals experiencing an event in interval beginning at t

(number o f individuals surviving at time t) × (interval width)

Assumptions of the Cox model are as follows:

• The ratio of the hazard function does not depend on time.

• Time is measured on a continuous scale.

There are three different tests to assess the significance of the coefficients: the partial likelihood ratio test, the score

test, and Wald test.

3. Generalized KL-Criterion for Discriminating Among Several Cox Models

A statistical model is a collection of probability distribution functions or probability density functions. Let the

statistical model can be written as fi(y, x, θi), i = 1, . . . , k where y is the dependent variable, x is a vector of

experimental conditions and θi ∈ Ωi ⊂ R
mi is the unknown parameter vector.

In order to discriminate these k rival models; an prolonged model which includes them is considered by Atkinson

and Cox (1974). The k models are entrenched in a more general model, fk+1(y, x, θk+1). KL-criterion is used to

discriminate between the i-th model and fk+1(y, x, θk+1). In this paper, the parameters of the extended model are

supposed to be known.

The i-th KL–optimality criterion function is

Ii,k+1 (ξ) = min
θi∈Ωi

∫
χ

I
[
fk+1 (y, x, θk+1) , fi (y, x, θi)

]
ξ (dx) , (1)

where

I
[
fk+1 (y, x, θk+1) , fi (y, x, θi)

]
=

∫
fk+1 (y, x, θk+1) log

[
fk+1 (y, x, θk+1)

fi (y, x, θi)

]
dy
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is the Kullback–Leibler distance between the true model fk+1 (y, x, θk+1) and the alternative model fi (y, x, θi).

If ξ is any design, the efficiency of ξ is the ratio of the criterion function (1) at ξ to its maximum value, i.e.

E f f i, k+1 (ξ) =
Ii,k+1 (ξ)

Ii,k+1 (ξ∗i )
, i = 1, . . . , k

where

ξ∗i = arg max
ξ

yi,k+1 (ξ)

is the KL-optimum design for discriminating model i from the general model.

Suppose that

Iα (ξ) =

k∑
i=1

αi · E f f i,k+1(ξ) (2)

be the generalized KL-criterion function which used to compare more than two models, and α is the k × 1 vector

of the coefficients αi, which are such that 0 ≤ αi ≤ 1 for i = 1, . . . , k and
∫ k

i=1
αi = 1.

The following design

Ωi (ξ) =

{̂
θi : θ̂i (ξ) = arg min

θi∈Ωi

∫
χ

I
[
fk+1 (y, x, θk+1) , fi (y, x, θi)

]
ξ (dx)

}
, i = 1, . . . , k (3)

is called a regular design, otherwise it is called singular design.

In this section, we will apply the KL-optimality criterion to discriminate more than two semiparametric models.

One of the popular semiparametric models is Cox proportional hazards model given by:

hi (t) = h0 (t) exp (X1β1 + · · · + Xiβi) , i = 1, . . . , k

= h0 (t) exp
(∑k

i=1 Xiβi

)
This model is based on two parts: h0 (t) is called the baseline hazard function and depend on time only and the

second part includes the covariates and does not conclude a time variable. So, the ratio of the hazards of two

individuals does not depend on time, i.e. h0(t).

To find KL-optimum design for discriminating model i from the general model we first need to determine the i-th
KL-criterion function given by (1).

Where

fk+1 (y, x, βk+1) =
∂ηk+1

∂x j
= h0 (t)

k+1∏
j=1

β j exp

⎛⎜⎜⎜⎜⎜⎜⎝
k+1∑
j=1

Xjβ j

⎞⎟⎟⎟⎟⎟⎟⎠ , j = 1, 2, . . . , k + 1

In our case, consider the following rival models:

η1 = h0 (t) exp(X1β1+ X2β2)

η2 = h0 (t) exp(X2β2+ X3β3)

η3 = h0 (t) exp(X1β1+ X3β3)

and the combined model

η4 = h0 (t) exp(X1β1+ X2β2 + X3β3)

In this paper, the parameters of the prolonged model are supposed to be identified. thus the optimal designs can be

determined, so we let β1 = β2 = β3 = 1.

f1 =
∂2η1

∂x1∂x2

= h0 (t) exp(X1+ X2)

f2 =
∂2η2

∂x2∂x3

= h0 (t) exp(X2+ X3)
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f3 =
∂2η3

∂x1∂x3

= h0 (t) exp(X1+ X3)

f4 =
∂3η4

∂x1∂x2∂x3

= h0 (t) exp(X1+ X2 + X3)

The criterion function (2) becomes

Iα (ξ) = α1

I1,4(ξ)

I1,4(ξ∗
1
)
+ α2

I2,4(ξ)

I2,4(ξ∗
2
)
+ (1 − α1 − α2)

I3,4(ξ)

I3,4(ξ∗
3
)

where the numerator is KL-optimality criterion function and given by:

I1,4 (ξ) =

∫ ∫ ∫ ∫
h0 (t) exp(X1+ X2 + X3) X3 dt dX1dX2dX3

I2,4 (ξ) =

∫ ∫ ∫ ∫
h0 (t) exp(X1+ X2 + X3) X1 dt dX1dX2dX3

I3,4 (ξ) =

∫ ∫ ∫ ∫
h0 (t) exp(X1+ X2 + X3) X2 dt dX1dX2dX3

A design ξ∗i which maximizing Ii,4(ξ), i = 1, 2, 3 is a KL-optimum design.

According to evaluate a KL-optimum design numerically the Kullback-Leibler used in the expression of the direc-

tional derivative.

Atkinson (1970) investigated a method for discriminating between models. It is desired to verify which of several

alternative models adequately describe the data, the properties of a combined distribution containing the component

models as special cases. Using this distribution, statistics are developed for testing for departures from one model

in the direction of another and for testing the hypothesis that all models fit the data equally well.

4. An Application

In this section, a real data taken from Lee and Wang (2003) is applied in order to illustrate the proposed theoretical

results. A sample of 200 cardiac patients was collected, and they were asked about some demographic variables

then some clinical examinations were recorded. These patients were followed for ten years and the following

variables were collected: age, SBP, LACR and LTG. The proportional hazards model used to identify which risk

factors is the most important.

The event time of interest is CVD-free time, which is defined as the time in years. The covariates which used in

this application are given by: systolic blood pressure (SBP), logarithm of ratio of urinary albumin and creatinine

(LACR) and logarithm of triglycerides (LTG).

After computations KL-optimality criterion function becomes:

Iα (ξ) = α1

I1,4(ξ)

0.42384
+ α2

I2,4(ξ)

0.66369
+ (1 − α1 − α2)

I3,4(ξ)

0.39291

with corresponding efficiencies 0.51367, 0.92001 and 0.65716, according to these efficiencies we get that the

second model is more efficient than the first and third models.

5. Conclusion

In this paper, a generalization of the KL-optimality criterion was introduced to discriminate among several semi-

parametric models. The main core of the generalized KL-optimality criterion was applied to one of the most

important semiparametric models, namely the Cox’s proportional hazards model. A real data set was used to illus-

trate the new theoretical results. The generalized KL-optimality criterion enabled us to discriminate among four

different Cox models and select the model with high efficiency.
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