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Abstract

Previous studies investigating survival from colorectal cancer have typically considered potential confounders to

include stage of disease. Stage however may lie on the causal path and statistical adjustment with stage as a

confounder can then introduce bias known as the reversal paradox. Classification of stage may also be imprecise

and incomplete. Modelling using Latent Class Analysis (LCA) may minimise bias by including covariates on the

causal path as ‘class predictors’ and by accommodating uncertainty associated with confounder values explicitly

via the latent class part of the model. We construct multilevel latent class models to allow for the multilevel

structure of the data: patients nested within NHS Trusts. We use a dataset of patients in a large UK regional

population diagnosed with colorectal cancer between 1998 and 2004. Death within three years is the outcome. The

optimum number of latent classes at patient and Trust level is determined with reference to likelihood-based model-

fit criteria. The three-patient five-Trust class multilevel LCA model was chosen. Patient classes were identified as

good, reasonable or poor prognosis groups. The impact of stage differed across the patient classes. Socioeconomic

background and older age were clearly associated with increased odds of death in all patient classes. Females had

significantly decreased odds of death compared with males in the good prognosis class. The five Trust classes

identified outlying Trusts, indicating that the standard multilevel model would not have been sufficient to model

these data.
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1. Introduction

1.1 Background

Many factors influence survival from colorectal cancer, including diagnosis or treatment centre (see Kee et al.,

(1999) on the influence of hospital and clinician workload; McArdle & Hole (2004) on volume and specialisation;

and Borowski et al. (2010) for a volume-outcome analysis), stage at diagnosis (see Woodman, Gibbs, Scott,

Haboubi, & Collins (2001) on differences in stage at presentation; and Ciccolallo et al. (2005) on the role of stage

and surgery), and associated risk factors such as socioeconomic background, age at diagnosis and sex (see Morris

et al. (2011) for thirty-day postoperative mortality; Downing et al. (2013) for early mortality; Smith et al. (2006)

on the impact of social deprivation; Widdison, Barnett, & Betambeau (2011) on age; and Hendifar et al. (2009) on

gender disparities). Findings exploring the potential impact of socioeconomic background (SEB) vary, with some

studies showing an impact of poor SEB on decreased colorectal cancer survival (Downing et al., 2013; Morris

et al., 2011), whilst others do not find this association (Nur et al., 2008; Smith et al., 2006). We investigate the

relationship between survival status from colorectal cancer and SEB, while accounting for other factors that may

affect this relationship using a novel statistical approach that can account for both genuine confounding and what

is effectively mediation, often mistakenly treated as confounding but which may in fact bias the estimated impact

of SEB when adjusted for in standard regression models.

For instance, previous studies may have included stage of disease at diagnosis as a potential confounder to the
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relationship between known potential risk factors and survival from colorectal cancer. However, a higher level

of deprivation may provoke late presentation, perhaps due to the refusal of a screening invitation (Whynes, Frew,

Manghan, Scholefield, & Hardcastle, 2003), which may result in a more advanced stage at diagnosis (Ionescu,

Carey, Tait, & Steele, 1998). SEB therefore causally precedes stage at diagnosis and consequently stage does not

qualify as a genuine confounder; it is a mediating factor. Bias may be introduced by the statistical adjustment

for mediators on the causal path (Kirkwood & Sterne, 2003), termed the reversal paradox (Stigler, 1999), which

may be a serious problem in epidemiology (Hernández-Dı́az, Schisterman, & Hernán, 2006; Tu, West, Ellison, &

Gilthorpe, 2005). Figure 1 shows a theorised diagram of causality using a Directed Acyclic Graph (DAG) (Pearl,

2000) to determine which variables in our study are confounders, proxies for confounding, competing exposures,

or mediating variables that lie on the causal pathway.

Figure 1. Directed Acyclic Graph (DAG) showing the inferred causal relationships amongst all available variables

at the population level

In addition to the question of legitimate confounding, stage typically includes a large proportion of missing data

(24.1% in the Northern and Yorkshire Cancer Registry and Information Service (NYCRIS) in 2008) (United King-

dom Association of Cancer Registries, 2008). Classification may also be imprecise as patients may be classified

incorrectly due to the variable quality of pathology (Quirke & Morris, 2007) or be “understaged” (i.e. incorrectly

assigned a earlier stage at diagnosis due to unidentified lymph node metastases) (Morris, Maughan, Forman, &

Quirke, 2007). Statistical analyses using regression modelling may yield biased results where model covariates

have measurement error (Greenwood, 2012) or missing values (Carroll, Ruppert, Stefanski, & Crainiceanu, 2006;

Fuller, 1987), and this bias is exacerbated when considering product interaction terms (Greenwood, Gilthorpe, &

Cade, 2006). Models that incorporate staging data may therefore introduce bias due to the variable quality and

completeness of pathology.

1.2 Modelling Approaches

Regression modelling (Normand et al., 2005) is often extended to a multilevel framework in order to incorporate

differences across diagnosis or treatment centres (Leyland & Goldstein, 2001; Leyland & Groenewegen, 2003),

such as NHS Trusts. This approach however assumes that a study sample is homogeneous at every level, the

same model would be applied to all members of the sample, and the effects of covariates would thus be the

same throughout. In a multilevel model, variation amongst the intercepts and slopes is assumed to be normally

distributed and independent of the variation in the individual measurements. These assumptions may not be valid

in observational health data; patients or Trusts are unlikely to be homogeneous where patients have not been

randomly selected for inclusion and Trusts have not been randomly distributed geographically. As such, it may be

inappropriate to apply one model to all individuals, and the effect of covariates therefore cannot be assumed to be

the same throughout the sample.

Latent Class Analysis (LCA) could be used, and this also extends to a multilevel framework. Downing, Harrison,

West, Forman and Gilthorpe (2010) incorporated stage at diagnosis as a “class predictor” in the LCA rather than

as a covariate and found improvements in model fit using multilevel LCA (MLLCA) in comparison to single-

level logistic regression modelling when studying risk factors related to breast cancer survival status. MLLCA is

therefore proposed here to illustrate an original application in an area where its utility may be overlooked. It is

important to consider alternative approaches to match the context of the data; we advocate an improved approach

to analysis in cancer research data. We construct multilevel latent class models to identify subtypes of patients and
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NHS Trusts, simultaneously, to model how patients may vary and how NHS Trusts may differ, based on survival

status. We compare the MLLCA approach with standard multilevel models (MLMs) to examine improvements in

model fit and model interpretation and hope to demonstrate the utility of the latent class approach.

2. Methods

2.1 The Colorectal Cancer Dataset

The Northern and Yorkshire Cancer Registry and Information Service (NYCRIS) database was used to identify

cases of colorectal cancer (ICD-10 (World Health Organisation, 2005) codes C18, C19 and C20) diagnosed be-

tween 1998 and 2004, where the patient was resident in the Northern and Yorkshire regions. A description of the

data extraction and exclusions is available in a previously published study (Gilthorpe, Harrison, Downing, Forman,

& West, 2011). The outcome was whether or not the patient survived at three years following diagnosis, as this

is clinically meaningful and facilitates ready comparison with other studies. Following exclusions 24640 records

were available for analysis. Data include information on age at diagnosis, sex and SEB (using the Townsend In-

dex (Townsend, Beattie, & Phillimore, 1987) recorded at the 2001 census, stage at diagnosis (using the Dukes

classification (Dukes, 1949)), the ICD-10 diagnosis code for the tumour, its laterality (position in the body), and

whether or not the patient was treated curatively. The diagnostic centre was defined as the NHS Trust where the

latest staging took place; 19 Trusts were identified in the NYCRIS geographical area.

The colorectal cancer data are hierarchical since different groups of patients attend different diagnostic centres,

dependent on factors such as their area of residence; patients are clustered within NHS Trusts and there will be

variation at both patient and Trust level. A multilevel modelling framework would therefore seem appropriate. It is

also important to account for stage at diagnosis, but this cannot be included as a covariate alongside SEB without

the risk of introducing bias due to the reversal paradox.

2.2 Latent Class Analysis

LCA is also known as discrete latent variable modelling, or mixture modelling (Goodman, 1974; Magidson &

Vermunt, 2004). In LCA, a number of latent classes, or subgroups, are identified, the optimum choice of which

is selected by the researcher (usually informed by log-likelihood statistics). Units of analysis are assigned to a

latent class based on similarities in their characteristics and latent classes are therefore homogeneous, with similar

effects of each covariate on units in the same latent class, though covariate effects may differ across the classes. The

relationship between outcome and associated risk factors can thus be determined within each latent class, rather

than over all observations.

LCA has the utility to model covariates as “class predictors”. This may be either in addition to or instead of

their inclusion as standard covariates along with the main exposure under investigation. For confounders that are

also potential effect modifiers (i.e. they exhibit an interaction with the main exposure), modelling these variables

as class predictors yields an implicit interaction, since the outcome-exposure relationship may vary across latent

classes. This averts the need to include an explicit confounder-exposure product term in the standard part of

the regression model, which would otherwise exacerbate any bias introduced if the confounder is measured with

error or has missing values. Modelling effect modification this way minimises bias; uncertainty associated with

confounder values is explicitly accommodated via the latent class part of the model.

2.3 Confounding and Mediation

If an alleged confounder lies on the causal path between exposure and outcome, it is a mediator, and its statistical

adjustment in the standard regression model introduces bias; it is then wise to discard the mediator as a model

covariate. This does not preclude the mediator becoming a “class predictor”, though one then has to ensure there is

no remaining implicit bias. Modelling a mediator as class predictor yields the potential for implicit interaction, as

before, where the exposure-outcome relationship may vary across latent classes. The exposure may thus cause the

mediator, which in turn part determines the latent class structure, within which the exposure-outcome relationship

may vary. Circularity thus arises in the causal interplay of exposure, mediator and outcome. This can be avoided if

the outcome-exposure relationship is not allowed to vary across latent classes. In such instances, only the intercept

varies across each latent class, not the exposure-outcome slope. Although the causal circularity is avoided, this

may not avoid some degree of residual bias due to the reversal paradox, as the exposure-outcome relationship

is unlikely to be independent of within-class intercepts, which effectively are ‘adjusted’ by the consideration of

the mediator as a class predictor. We nevertheless explore the notion that variables which lie on the causal path

between exposure and outcome may be considered as class predictors instead of being incorrectly adjusted for as
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alleged confounders within the standard regression model.

2.4 Multilevel Latent Class Analysis

MLLCA is an extension of LCA with latent classes determined at more than one level, where classes at the lower

level are based on similarities in characteristics (Skrondal & Rabe-Hesketh, 2005). Latent classes at the lower

level are homogeneous, while those at the upper level can be homogeneous or heterogeneous, dependent on model

specification and research question. An optimum model is sought for all classes at all levels simultaneously.

Covariates can be included at any level and, as with single-level LCA, their effect is the same within each latent

class but may differ across the classes (if deemed appropriate). If intercepts and slopes are fixed within classes at all

upper levels, no distributional assumptions are required. As within single-level LCA, covariates can be modelled

separately to the main association under investigation, as ‘class predictors’.

We use MLLCA to analyse the colorectal cancer data. Ultimately, no assumption of normality is made at the

upper level, though initially a continuous latent variable for the upper level is adopted (as an approximation)

while the latent class structure is explored for the lower level. Once the lower-level optimum number of classes

is determined, the upper level latent variable is switched to categorical and the optimum upper-level latent class

structure is determined. Stage at diagnosis is considered as a class predictor with the SEB-survival relationship

held constant across the patient-level latent classes, thereby minimising the effect of the reversal paradox and

potential bias introduced due to measurement error in the stage variable. Trust classes are homogeneous with

respect to both patient outcome and its relationship with model covariates. This places the focus on patients and

allows us to determine what kind of patient is potentially susceptible to the adverse impact of SEB in terms of their

cancer survival status (i.e. we determine patient casemix characteristics in relation to outcome). An alternative

approach of grouping Trusts according to differences in characteristics is discussed by Gilthorpe et al. (2011),

where differences in survival at the Trust level may be as a result of underlying differences in Trust performance,

rather than patient casemix.

2.5 The Modelling

We use both likelihood-based model-fit criteria and a graphical method to determine the optimum number of latent

classes at each level; we consider both the Bayesian Information Criterion (BIC) (Schwarz, 1978) (for reasons of

parsimony) and the change in log likelihood (LL). We also examine and report classification error (CE), but do not

use it to inform our model choice. CE reflects the proportion of misclassified observations (at each level separately)

when comparing the modal and probabilistic assignment to classes; a lower CE signifies that the latent classes are

more “real”, i.e. observations are almost entirely assigned to single classes. Models include adjustment for age at

diagnosis, sex and SEB. An age-squared term is also included as age was found to have a non-linear relationship

with survival; the inclusion of age-squared allows for an adjustment to the linear effect of age. Stage at diagnosis is

a ‘class predictor’, and the ICD-10 diagnosis code, laterality and whether treatment is curative or not are ‘inactive’

covariates at the patient level, i.e. not used to estimate the model, though used to partition the findings by these

variables for descriptive purposes. We generate 200 bootstrapped datasets and analyse each similarly in order to

generate 95% confidence intervals (CIs). The software Stata (StataCorp, 2011) was used for data manipulation,

summary statistics, tabulation and charts, while the statistical software LatentGOLD (Vermunt & Magidson, 2005)

was used for the latent class analyses.

3. Results

3.1 MLM Analysis and LCA Approach

Table 1. Results from MLM analysis (multilevel logistic regression): odds of death within 3 years

Model Statistics Prevalence

Overall 51.6%

Reference Group 49.3%

Model Covariates OR (95% CI)

SEB (per SD more) 1.18 (1.15, 1.21)

Female 0.87 (0.83, 0.92)

Age (per 5 years older) 1.31 (1.30, 1.33)

Age squared (per 5 years older) 1.006 (1.005, 1.007)

OR–Odds Ratio, CI–Confidence Interval, SD–Standard Deviation; the reference group consisted of males of mean

age, diagnosed with Stage A colorectal cancer and with a zero Townsend score; LL = -11 985.

88



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 3; 2013

Table 1 shows the results of the MLM analysis. Overall, 12 708 patients (51.6%) died within three years. The

reference group comprised males aged 71.5 years (the mean age), diagnosed with Stage A colorectal cancer and

with a zero Townsend score. Substantial and statistically significant associations were found between increasing

deprivation and increased odds of death (OR = 1.18, 95% CI = 1.15 to 1.21 per SD increase in Townsend score);

between female gender and decreased odds of death (OR = 0.87, 95% CI = 0.83 to 0.92); between increasing age

and increased odds of death (OR = 1.31, 95% CI = 1.30 to 1.33 per 5-year increase in age); and between increasing

age squared and increased odds of death (OR = 1.006, 95% CI = 1.005 to 1.007).

With a continuous latent variable at the upper level, the MLLCA approach suggests that three patient classes are

optimum by both the BIC and change in LL. Table 2 summarises the model-fit criteria for the multilevel latent-class

models on switching the upper level latent variable to a categorical to determine the optimum upper-level latent

class structure, and shows the optimum models identified by each criterion.

Table 2. Model-fit criteria for the three-patient multilevel latent-class models with a categorical upper level latent

variable

Trust Classes LL BIC Number of Parameters Patient CE Trust CE

1 class -11 988 24 209 23 22.7% 0.0%

2 classes -11 983 24 240 27 23.2% 10.6%

3 classes -11 981 24 275 31 23.1% 10.1%

4 classes -11 980 24 313 35 23.9% 12.9%

5 classes -11 978 24 351 39 23.2% 17.8%

6 classes -11 978 24 390 43 24.1% 21.4%

7 classes -11 978 24 431 47 24.1% 30.5%

8 classes -11 978 24 471 51 24.1% 36.5%

LL–Log likelihood; BIC–Bayesian Information Criterion; CE–Classification Error.

Table 2 shows that one Trust class is optimum by the BIC. More than one class at the Trust level is required

to explain Trust differences however, therefore we consider also the -2LL plot shown in Figure 2, which shows

model fit improving as the number of Trust classes increases. The standard MLM showed a LL of -11 985 which is

surpassed by using two Trust classes. In order to model fully Trust variability and to improve patient class estimates

we choose the model with five Trust classes, which lies at the point where there is little further improvement in

model fit.

Figure 2. -2LL plot used to determine the optimum number of Trust classes in the MLLCA approach
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3.2 Patient Classes

Table 3. Results for the patient classes in the three-patient, five-Trust-class multilevel latent-class model

Model Summary Statistics by class

Good

Prognosis

Reasonable

Prognosis

Poor

Prognosis

% patients (bootstrapped 95% CI)

Class Size 38.2 (30.0, 48.9) 27.6 (20.8, 38.2) 34.2 (23.7,37.0)

Overall Prevalence 9.4 (2.2,17.4) 58.3 (49.3,72.9) 93.2 (92.0, 99.6)

Reference Group Prevalence 8.0 (0.1, 16.5) 57.8 (36.7, 78.6) 94.1 (90.8,100.0)

Model Class Profiles % patients (bootstrapped 95% CI)

Stage A 23.2 (21.2, 25.1) 9.9 (0.2, 12.9) 0.0 (0.0, 2.1)

Stage B 47.6 (44.8, 50.0) 26.4 (8.0, 31.1) 6.0 (4.2, 11.0)

Stage C 26.5 (23.8, 28.4) 32.6 (26.9, 37.4) 17.2 (8.2, 19.7)

Stage D 0.7 (0.0, 2.2) 0.5 (0.1, 17.0) 65.4 (55.9, 81.9)

Missing Stage 1.9 (0.0, 4.1) 30.5 (20.6, 47.1) 11.4 (0.2, 15.3)

Patients receiving treatment 98.8 (97.6, 99.4) 81.4 (68.2, 86.7) 68.3 (65.9, 72.6)

ICD-10 C18 (colon) 58.5 (57.5, 59.6) 56.0 (54.7, 58.0) 61.7 (60.6, 63.9)

ICD-10 C19 (rectosigmoid junction) 10.8 (10.2, 11.6) 9.7 (9.2, 10.5) 10.8 (9.9, 11.6)

ICD-10 C20 (rectum) 30.7 (29.7, 31.5) 34.3 (32.2, 35.7) 27.5 (25.3, 28.5)

Tumour on left side 68.7 (68.0, 69.5) 68.2 (65.2, 69.0) 61.2 (59.4, 62.4)

Tumour on right side 28.0 (27.1, 28.7) 25.2 (23.7, 26.7) 28.2 (27.0, 29.6)

Tumour across both sides 3.3 (2.9, 3.7) 6.6 (5.6, 9.8) 10.6 (9.5, 11.6)

Model Covariates

Good

Prognosis

Reasonable

Prognosis

Poor

Prognosis p-value

OR of death within three years (95% CI)

SEB (per SD more)
1.33

(1.26, 1.41)

1.33

(1.26, 1.41)

1.33

(1.26, 1.41)
N/A

Female
0.59

(0.40, 0.87)

0.88

(0.64, 1.21)

1.05

(0.83, 1.32)
0.031

Age (per 5 years older)
1.46

(1.33, 1.60)

2.13

(1.69, 2.67)

1.46

(1.32, 1.62)
0.018

Age squared (per 5 years older)
1.011

(1.007,1.015)

1.009

(1.003,1.015)

1.009

(1.005,1.012)
0.710

OR–Odds Ratio, CI–Confidence Interval, SD–Standard Deviation; the reference group comprised males, aged

71.5 years, classified as Stage A at diagnosis and attributed a Townsend score of zero; the Wald p-value indicates

levels of statistical significance for differences in effect across the classes. CIs from bootstrapping calculated using

percentiles.

Table 3 summarises the patient classes from the chosen three-patient five-Trust-class MLLCA model, where pa-

tients were apportioned into one of three groups, labeled post-hoc as: good prognosis, reasonable prognosis, or

poor prognosis. The good prognosis class contained 38.2% of cases of which 9.4% died within three years, com-

pared with the reasonable prognosis class with 27.6% of cases of which 58.3% died within three years, and the

poor prognosis class with 34.2% of cases of which 93.2% died within three years.

The profile of stage differed across the patient classes. The good prognosis class corresponds to early-stage diag-

nosis with 70.8% of the stage A/B patients. The reasonable prognosis class corresponds to mid-stage diagnosis

with 59.1% of the stage B/C patients, and a large proportion of patients with missing values for stage (30.5%). The

poor prognosis class corresponds to late-stage diagnosis with 82.6% of the stage C/D patients. The good prognosis

class contains the highest proportion of patients treated curatively (98.8%), which may be partly due to their stage

at diagnosis as early-stage patients commonly receive curative, instead of palliative, treatment (National Institute

for Clinical Excellence, 2004). There is little indication that either the type or position of the tumour is associated

with survival status, as the proportions are broadly similar across the patient classes.

Across all patient classes, SEB was clearly associated with increased odds of death (OR = 1.33, 95% CI = 1.26 to

1.41). In the good prognosis patient class, females had significantly decreased odds of death compared with males

(OR = 0.59, 95% CI = 0.40 to 0.87); in the reasonable and poor prognosis classes the association was less clear
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(reasonable prognosis OR = 0.88, 95% CI = 0.64 to 1.21; poor prognosis OR = 1.05, 95% CI = 0.83 to 1.32). This

indicates that women may fare better than men for early-stage disease, with diminishing differentiation for mid- to

late-stage disease. Across all classes, older age was substantially and significantly associated with increased odds

of death (good prognosis OR = 1.46, 95% CI = 1.33 to 1.60; reasonable prognosis OR = 2.13, 95% CI = 1.69 to

2.67; poor prognosis OR = 1.46, 95% CI = 1.32 to 1.62 per 5-year increase in age). Also across all classes, the

age-squared term was substantially and significantly associated with increased odds of death (good prognosis OR

= 1.011, 95% CI = 1.007 to 1.015; reasonable prognosis OR = 1.009, 95% CI = 1.003 to 1.015; poor prognosis

OR=1.009, 95% CI=1.005 to 1.012 per 5-year increase in age).

The results do not differ markedly from those obtained when different numbers of Trust classes were considered.

We also investigated models with three patient classes and one to six Trust classes. Stage remained an important

predictor of survival status in every model with similar proportions of early-, mid- and late- stage diagnoses in the

good, reasonable and poor prognosis groups respectively. SEB remained clearly associated with increased odds

of death across all classes and in all models. Females maintained decreased odds of death in the good prognosis

classes, although this did not reach statistical significance when considering four or six Trust classes. Finally, older

age remained substantially and significantly associated with increased odds of death across all classes in models

containing three or more Trust classes; when considering one or two Trust classes the association was less clear in

the good and poor prognosis classes.

3.3 Trust Classes

Table 4. Results for the Trust classes in the three-patient, five-Trust-class multilevel latent-class model

Model Summary Trust class 1 Trust class 2 Trust class 3 Trust class 4 Trust class 5

Statistics by Class % patients (bootstrapped 95% CI)

Class Size 37.3 (26.3, 64.4) 26.9 (15.7, 36.6) 14.3 (6.1, 24.9) 11.1 (3.7, 17.9) 10.4 (3.5, 14.7)

Prevalence 52.1 (50.0, 53.7) 50.9 (49.0, 54.2) 50.7 (48.2, 55.4) 49.6 (47.5, 57.5) 54.5 (47.2, 59.6)

Model Class Profiles mean (bootstrapped 95% CI)

Mean SEB 0.05 (-0.38,

0.41)

-0.05 (-0.60, 0.66) 0.38 (-0.99, 1.14) -0.39 (-1.33, 1.26) -0.45 (-1.82, 1.47)

Mean Age (years) 71.5 (71.2, 71.8) 71.8 (71.1, 72.1) 71.6 (70.9, 72.2) 71.2 (70.7, 72.6) 71.4 (70.8, 73.2)

Model Class Profiles % patients (bootstrapped 95% CI)

% Female 44.0 (42.8, 45.1) 44.3 (42.6, 45.5) 44.1 (41.4, 47.1) 43.4 (41.2, 47.6) 44.6 (41.2, 49.7)

Stage A 11.6 (10.7, 12.8) 11.6 (10.1, 13.3) 11.6 (9.6, 13.6) 12.2 (9.0, 13.7) 10.8 (9.0, 14.9)

Stage B 28.0 (26.3, 28.8) 27.1 (25.4, 28.9) 26.9 (25.1, 30.5) 26.9 (24.5, 31.0) 28.6 (24.0, 34.3)

Stage C 24.7 (23.5, 26.6) 26.6 (22.8, 27.9) 24.0 (21.8, 28.4) 25.3 (21.1, 29.4) 22.9 (18.6, 32.2)

Stage D 22.5 (21.7, 23.9) 23.0 (21.3, 24.5) 23.7 (20.6, 24.5) 22.7 (19.7, 25.0) 22.0 (17.8, 25.4)

Missing Stage 13.2 (11.8, 14.5) 11.7 (10.9, 15.1) 13.8 (10.5, 15.8) 12.9 (10.5, 16.9) 15.7 (8.8, 18.7)

Patients receiving treatment 83.0 (82.1, 84.8) 84.7 (81.9, 85.7) 82.7 (81.2, 86.5) 84.5 (80.0, 87.2) 81.7 (78.8, 89.1)

ICD-10 C18 (colon) 58.5 (27.2, 60.1) 58.9 (56.4, 60.9) 57.3 (55.0, 63.2) 59.1 (55.3, 63.4) 61.8 (55.3, 64.8)

ICD-10 C19

(rectosigmoid junction)
10.9 (9.2, 11.8) 10.2 (7.7, 12.0) 10.9 (7.4, 12.6) 11.1 (5.5, 13.0) 8.9 (5.2, 13.0)

ICD-10 C20 (rectum) 30.7 (29.4, 32.0) 30.9 (28.8, 32.9) 31.8 (27.1, 34.0) 29.8 (25.3, 34.5) 29.2 (24.4, 35.6)

Tumour on left side 65.7 (64.3, 67.6) 67.1 (64.0, 68.5) 67.2 (62.9, 69.2) 64.8 (62.2, 69.4) 63.9 (60.4, 70.3)

Tumour on right side 27.7 (26.3, 28.6) 27.7 (25.5, 29.0) 26.7 (25.2, 29.2) 27.3 (24.3, 29.8) 25.3 (23.1, 30.2)

Tumour across both sides 6.6 (5.1, 8.0) 5.2 (4.6, 9.0) 6.1 (4.3, 11.0) 7.9 (4.2, 11.4) 10.8 (4.1, 11.5)

CI–Confidence Interval; mean Townsend score over all classes -0.04; mean age over all classes 71.5 years. CIs

from bootstrapping calculated using percentiles.

Table 4 summarises the chosen model for the Trust classes, where Trusts were apportioned into one of five groups.

According to modal assignment, class 1 contained seven Trusts (37.3% of patients); class 2 contained five Trusts

(26.9% of patients); class 3 contained three Trusts (14.3% of patients); and classes 4 and 5 contained two Trusts

each (11.1% and 10.4% of patients respectively). According to probabilistic assignment, the prevalence rates

ranged from 49.6% of patients dying within three years (in class 4) to 54.5% (in class 5).

The remainder of the results pertain to probabilistic assignment. SEB differed somewhat across the Trust classes,

with the highest value seen in class 3 (mean SEB = 0.38), indicating that Trusts in this class receive patients on

average from more deprived areas. In contrast, the lowest values of mean SEB are seen in classes 4 and 5 (mean

SEB = -0.39 and -0.45 respectively), indicating that Trusts in these classes receive patients on average from more

affluent areas. The mean age of patients remains fairly constant across the classes, ranging from 71.2 years (in class

4) to 71.8 years (in class 2). The proportion of females also remains fairly constant across the classes, ranging from

43.4% (in class 4) to 44.6% (in class 5). No substantial trend is seen across the Trust classes by stage, although
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class 5 contains slightly more patients with missing values for stage (15.7%) compared with the other classes. The

fewest patients received curative treatment in Trust class 5 (81.7% compared with 84.7%, the highest proportion,

in class 2), which perhaps indicates that the two Trusts in this class are not treating as many early-stage patients

as other Trusts. There are some modest differences seen across the Trust classes in type of tumour: class 5 has the

highest proportion of colon tumours (61.8%) and the lowest proportion of rectosigmoid junction tumours (8.9%);

while class 3 has the highest proportion of rectum tumours (31.8%). There are also some small differences seen in

the laterality of the tumour: class 3 has the highest proportion of tumours on the left side (67.2%); classes 1 and 2

have the highest proportion of tumours on the right side (27.7%); and class 5 has the highest proportion of tumours

across both sides (10.8%).

4. Discussion

4.1 Findings

The MLM analysis found sizeable and significant associations between increasing deprivation and increased odds

of death, between being female and decreased odds of death, and between older age and increased odds of death.

The MLLCA categorised patients into three latent classes, labelled as good, poor and reasonable prognosis (relating

to stage at diagnosis) and in all classes, the impact of the covariates was found to agree with that seen in the MLM

analysis. There were some differences across the prognosis groups, with the good prognosis group showing clearly

decreased odds of death for females compared with males; and the reasonable prognosis group showing a greater

impact of older age. The association between SEB and survival status was clear, with higher deprivation associated

with increased odds of death in all patient classes (as the impact of SEB was deliberately held constant across the

classes, i.e. there was no stage-SEB interaction, because this would otherwise have introduced circularity in

the causal relationships amongst SEB, stage at diagnosis, and the latent classes within which the SEB-survival

relationship varied). As discussed, previous findings into the association of SEB with survival from colorectal

cancer have been seen to vary and this may in part depend upon whether these studies have undertaken appropriate

statistical adjustment for alleged confounders, or introduced bias due to the reversal paradox.

MLLCA has considerable utility to account for issues of structure, non-homogeneity, inferred causality, missing

values and measurement error, while improving upon the MLM approach by producing models that are better

fitting to the data and provide an enhanced interpretation of the data. It allows for the hierarchical structure of the

data without imposing any distributional assumptions. It accounts for non-homogeneity at all levels by categorising

both patients and Trusts into latent classes and allowing the relationship between survival status and associated risk

factors to vary across these classes (where appropriate), rather than modelling the relationship over all patients and

across all Trusts. By modelling stage at diagnosis as a class predictor, bias due to the reversal paradox is minimised.

As patient classes depend on stage, we investigate covariate-outcome associations within sub-categories of stage

without introducing product interaction terms, thereby minimising bias due to measurement error. We take account

of incomplete data within stage by categorising missing values and the modelling assigns patients with missing

stage values to the most appropriate patient class according to similarities in their other characteristics compared

with other patients.

The determination of Trust classes in the MLLCA was not straightforward. The best fit according to the more

parsimonious measure of the BIC was one Trust class but this would not be sufficient to describe fully the natural

structure of the data. Model fit according to the LL improved as the number of Trust classes increased, surpassing

the fit of the standard multilevel model when considering only two Trust classes; the -2LL plot showed that the

model fit continued to improve up to around five Trust classes (Figure 2). These five classes identified outlying

Trusts, with predominantly three Trusts in Trust class 3 and two Trusts in each of Trust classes 4 and 5, indicating

that the normal approximation at the upper level would not be ideal. This confirms our suspicion that the standard

multilevel model would not be the most appropriate to model these data.

The five Trust classes differ only due to patient survival status and the relationship between survival and the co-

variates, potentially enabling us to highlight differences in patient care (e.g. treatment pathways or hospital char-

acteristics, such as size or speciality) that might explain the differences and so be worthy of further investigation. It

should be noted that the differences seen across the Trust classes are not statistically significant. Nevertheless, their

inclusion was necessary in order to account for variability at the Trust level and so to model best the corresponding

patient classes. No Trust level covariates were available for inclusion in the modelling, meaning that this potential

aspect of investigation could not be addressed in this study.
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4.2 Limitations

Although we minimise any potential bias that arises due to the reversal paradox by including stage at diagnosis as a

class predictor, and by holding constant the SEB-survival relationship across classes, this bias may not be entirely

eradicated and it is unclear how much bias could remain. No methodology can completely eliminate all bias and

the use of MLLCA will have reduced the risk of bias in comparison with standard MLM techniques.

Although interest may lie in establishing treatment centre characteristics that may have an impact on survival from

colorectal cancer, we have modelled diagnostic centre at the upper level. This allowed us to include all patients

regardless of whether or not they received treatment. We modelled Trust of diagnosis at this level to minimise

error that could be introduced by patients receiving treatment at different hospitals during their care, as a higher

proportion of patients receiving treatment were treated within the same Trust at diagnosis (90.2%), than within the

same hospital at diagnosis (81.7%).

We have included SEB at the patient level to simplify the analysis, though it is derived at the small area level. In-

dividual measures of deprivation are rarely available, especially when using routine data. Extrapolating area-based

findings to individuals, however, can lead to the ecological fallacy (Robinson, 1950). An additional upper level

could be introduced relating to patients’ area of residence and this would be cross-classified with Trusts, since

patients attending hospitals in one Trust may be resident of different areas. We could also consider survival as a

continuous measure, as within Cox proportional hazard modelling. Both these extensions could be accommodated

within a MLLCA framework, though alternative software such as WinBUGS (Lunn, Thomas, Best, & Spiegelhal-

ter, 2000) or MPlus (L. K. Muthén & B. O. Muthén, 1998-2011) would then be required (although cross-classified

extensions are still under development for MPlus). For simplicity of illustration of the methodology, however, we

did not pursue these options within this study.

For this paper, we chose to focus on the utility and interpretability of an alternative modelling approach that

has the potential to model appropriately both confounders and mediators while preserving the clinical message.

Simulation studies may be beneficial to gain insight into the sensitivity of the data to model choice, and these could

be considered as an extension to this study.

5. Conclusion

The MLLCA modelling approach illustrated a better fit to the data and showed new insights that were not previ-

ously apparent using the MLM approach. The impact of covariates on survival status differed across latent classes

defined by stage at diagnosis. By tailoring treatments and pathways according to patients’ profiles, there might be

opportunities in the future to optimise patient care. This analytical strategy has prognostic utility to inform health

service providers of disparities within patient care.
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