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Abstract

We define a family of distributions, named the Libby-Novick beta family of distributions, which includes the

classical beta generalized and exponentiated generators. The new family offers much more flexibility for modeling

real data than these two generators and the Kumaraswamy family of distributions (Cordeiro & de Castro, 2011).

The extended family provides reasonable parametric fits to real data in several areas because the additional shape

parameters can control the skewness and kurtosis simultaneously, vary tail weights and provide more entropy for

the generated distribution. For any given distribution, we can construct a wider distribution with three additional

shape parameters which has much more flexibility than the original one. The family density function is a linear

combination of exponentiated densities defined from the same baseline distribution. The proposed family also has

tractable mathematical properties including moments, generating function, mean deviations and order statistics.

The parameters are estimated by maximum likelihood and the observed information matrix is determined. The

importance of the family is very well illustrated. By means of two real data sets we demonstrate that this family

can give better fits than those ones using the McDonald, beta generalized and Kumaraswamy generalized classes

of distributions.

Keywords: generalized distribution, Libby-Novick beta family, likelihood ratio, moment, order statistic, Weibull

distribution

1. Introduction

It is important to have extended forms of classic distributions in many applied areas such as lifetime modelling.

Beta generalized (BG) distributions pioneered by Eugene, Lee, and Famoye (2002) are very versatile to analyze

different types of data and these authors extended some special models based on this generator. Eugene et al.

(2002) defined the beta normal (BN), Nadarajah and Kotz (2004) introduced the beta Gumbel (BGu) and Nadarajah

and Kotz (2006) proposed the beta exponential (BE) distributions. More recently, Pescim, Demério, Cordeiro,

Ortega, and Urbano (2010), Paranaı́a, Ortega, Cordeiro, and Pescim (2011) and Cordeiro and Lemonte (2011)

studied important structural properties of the beta generalized half-normal (BGHN), beta Burr XII (BBXII) and

beta Birnbaum-Saunders (BBS) distributions, respectively. However, the beta, Kumaraswamy and exponentiated

generators do not provide flexibility to the extremes (right and left) of the probability density functions (pdf’s) and

for this reason, they are not suitable for analyzing real data with high levels of asymmetry.

For an arbitrary baseline distribution G(x; ξ) with parameter vector ξ, the exponentiated-G (“exp-G” for short)

model or Lehmann type I class with power parameter d > 0, say exp-G(d), is defined by the cumulative distribution

function (cdf) and pdf given by

Hd(x; ξ) = G(x; ξ)d and hd(x) = d g(x; ξ) G(x; ξ)d−1,

respectively. Hereafter, we consider the random variable Y ∼exp-G(d). For some special cases of Y taking for

G the exponential, Weibull, inverse Gaussian and gamma distributions, see Nadarajah and Kotz (2006). A very

known exponentiated model is the exponentiated Weibull (EW) (Mudholkar et al., 1995; Mudholkar et al., 1996)

distribution.

Libby and Novick (1982) pioneered the Libby-Novick beta (LNB) distribution defined on the unit interval (0, 1).
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Its cdf and pdf are given by

FLNB(x) = K
∫ x

0

ta−1 (1 − t)b−1

{1 − (1 − c) t}a+b dt

and

fLNB(x) =
K xa−1 (1 − x)b−1

{1 − (1 − c) x}a+b , (1)

where a > 0, b > 0 and c > 0 are positive parameters, K = ca/B(a, b) and B(·, ·) is the beta function. For c = 1, the

LNB distribution becomes the standard beta with parameters a and b.

Let Z be a random variable having the LNB density function with positive parameters a, b and c and consider that

a = b = k (for k > 0). The dependence of the density function (1) on the shape parameter c > 0 is studied in the

following two cases: (i) 0 < c < 1 and (ii) c > 1. For case (i), the parameter c gives tail weights of the pdf to

extreme right and the skewness and kurtosis increase when c approaches to zero. On the other hand, the pdf (1)

becomes more symmetric when c approaches one. For case (ii), the parameter c gives tail weights of the pdf to the

extreme left when c tends to∞. Similarly as (i), the skewness and kurtosis increase when c tends to infinity.

Table 1. The variance, skewness and kurtosis values for the LNB model when a = b = 3.5

Measure c = 0.1 c = 0.2 c = 0.6 c = 1

Variance 3.8765 1.8541 0.6433 0.5332

Skewness 2.1819 1.2497 0.1937 0.0227

Kurtosis 6.5764 3.1134 1.5065 1.4824

c = 1.5 c = 3 c = 6 c = 10

Variance 0.6020 1.0836 2.2530 3.8765

Skewness 0.1330 0.6874 1.4744 2.1819

Kurtosis 1.4903 1.9481 3.7741 6.5764

Table 1 provides the values of the variance, skewness and kurtosis of the LNB distribution for a = b = 3.5 for the

cases (i) and (ii). Plots of the LNB density function (1) are displayed in Figure 1 for selected parameter values.
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Figure 1. Some plots of the LNB density function

For an arbitrary baseline cdf G(x; ξ), we can construct the Libby-Novick beta-G (denoted by “LNB-G”) family of

distributions based on the LNB cdf above. The cdf of the LNB-G family is defined by

FLNBG(x; a, b, c, ξ) = K
∫ G(x;ξ)

0

ta−1 (1 − t)b−1

{1 − (1 − c) t}a+b dt, (2)
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where a > 0, b > 0 and c > 0 are three extra shape parameters to those of the G distribution, in order to control the

skewness and kurtosis, the variation of the extremes of the generated distribution and add more flexibility.

The LNB-G density function corresponding to (2) can be expressed as

fLNBG(x; a, b, c, ξ) =
K g(x; ξ) G(x; ξ)a−1 {1 −G(x; ξ)}b−1

{1 − (1 − c) G(x; ξ)}a+b . (3)

Hereafter, we denote by X ∼ LNB-G(a, b, c, ξ) a random variable with pdf (3). For each continuous baseline

distribution G, we can associate the LNB-G model with these positive parameters a, b and c defined by Equation

(3).

The family (3) extends two well-known families of distributions (BG and exponentiated distributions) and offers

more flexibility for modeling data than these two families and the Kumaraswamy family (Cordeiro & de Castro,

2011). The new family usually provides a reasonable parametric fit to real data in engineering, biology, psychology,

agriculture, lifetime and reliability studies. Equation (3) would also be of great interest to researchers interested in

regression models with presence or absence of censored data.

Several LNB-G models can be easily generated from Equation (3). The LNB-normal (LNBN) distribution fol-

lows by taking as baseline the normal cdf. Analogously, the LNB-Weibull (LNBW), LNB-gamma (LNBGa),

LNB-Gumbel (LNBGu) and LNB-inverse Gaussian (LNBIG) distributions are obtained from the Weibull, gamma,

Gumbel and inverse Gaussian cumulative distributions, respectively. Hence, each new LNB-G model can be gen-

erated from a special G distribution. The LNB distribution is clearly a basic exemplar of the LNB-G family when

G is the uniform distribution on [0, 1]. Equation (3) reduces to the basic exemplar G when a = b = c = 1,

which is a positive point for the proposed generator. For c = 1, the LNB-G generator reduces to the beta-G

generator (Eugene et al., 2002). Further, for c = 1 and b = 1, we obtain the classical exp-G family given by

FLNBG(x; a, 1, 1, ξ) = G(x; ξ)a, which is also called the Lehmann type I class. However, we emphasize that some

exponentiated distributions belong in fact to the Lehmann type II class defined by F(x;α, ξ) = 1 − [1 −G(x; ξ)]α,
where α > 0. These are the cases of the exponentiated Fréhet and exponentiated Gumbel distributions (Nadarajah

& Kotz, 2006).

In this paper, we investigate some structural properties of the LNB-G family. Section 2 defines some special

models. In Section 3, the LNB-G pdf is given as a linear combination of exp-G densities. This expansion is used to

obtain some of its structural properties. In Sections 4 and 5, we obtain the moments, generating function and Rénvy

entropy. The mean deviations and order statistics are investigated in Sections 6 and 7. In Section 8, we address

maximum likelihood estimation. In Section 9, we fit special distributions to two real data sets to illustrate their

performances. We conclude that they can yield better fits than some other widely-known distributions generated

from other families. Section 10 ends with some concluding remarks.

2. Special Libby-Novick Beta Distributions

Equation (3) is most tractable when the baseline cdf and pdf have simple forms. We now provide a few generated

cases which can arise of the LNB-G family.

2.1 The Libby-Novick Beta-Normal (LNBN) Distribution

The LNBN pdf is obtained from (3) by taking the normal N(μ, σ) as the parent distribution, where ξ = (μ, σ), so

that

fLNBN (x) =
K φ( x−μ

σ
)
[
Φ

(
x−μ
σ

)]a−1 [
1 − Φ

(
x−μ
σ

)]b−1

σ
{
1 − (1 − c)Φ

(
x−μ
σ

)}a+b , (4)

where x ∈ R, μ ∈ R is a location parameter, σ > 0 is a scale parameter, and φ(·) and Φ(·) are the pdf and cdf of the

standard normal distribution, respectively. If the extra shape parameters are integers, the moments of (4) are given

in terms of the Lauricella functions of type A (Exton, 1978) as shown by Nadarajah (2008). The random variable

X ∼ LNBN(a, b, c, μ, σ) represents the density above. The standard LNBN density comes when μ = 0 and σ = 1.

For a = b = c = 1, it reduces to the normal density. For c = 1, we obtain the beta-standard normal (Eugene et al.,

2002). Finally, if c = 1 in addition to b = 1, it reduces to the exponentiated-normal (EN) density. Plots of (4) for

some parameter values are displayed in Figure 2.

65



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 2; 2014

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

x

f(
x
)

a=0.5; b=3.5 
a=1.5; b=2.5 
a=2.5; b=1.5 
a=3.5; b=0.5 
a=4.5; b=0.1 

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

x

f(
x
)

a=0.5; c=3.5 
a=1.5; c=2.5 
a=2.5; c=1.5 
a=3.5; c=0.5 
a=4.5; c=0.1 

−2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

x

f(
x
)

b=1.5; c=0.9 
b=2.5; c=0.7 
b=3.5; c=0.5 
b=4.5; c=0.3 
b=5.5; c=0.1 

(a) (b) (c)

Figure 2. The LNBN pdf: (a) For c = 2, μ = 0 and σ = 1. (b) For b = 0.5, μ = 0 and σ = 1. (c) For a = 1.5, μ = 0

and σ = 1

2.2 The Libby-Novick Beta-Weibull (LNBW) Distribution

Let G(x; ξ) = 1−e−(βx)α be the Weibull cdf with scale parameter β > 0 and shape parameter α > 0, where ξ = (α, β).
The LNBW pdf (for x > 0) follows as

fLNBW(x) =
K α βα xα−1 exp{−(βx)α} [1 − exp {−(βx)α}]a−1

exp {−(b − 1)(βx)α}{
1 − (1 − c)

[
1 − exp {−(βx)α}]}a+b . (5)

The Weibull pdf (with parameters β and α) is a special case for a = b = c = 1. Other special cases include the beta

Weibull (BW) (Lee, Famoye, & Olumolade, 2007) for c = 1, exponentiated Weibull (EW) (Mudholkar, Srivastava,

& Friemer, 1995; Mudholkar, Srivastava, & Kollia, 1996) and exponentiated exponential (EE) (Gupta & Kundu,

2001) densities for b = c = 1 and b = c = β = 1, respectively.

The cdf and hazard rate function (hrf) corresponding to (5) are

FLNBW(x) = K
∫ 1−exp{−(βx)α}

0

ωa−1(1 − ω)b−1

{1 − (1 − c)ω}a+b dω

and

hLNBW(x) =
Kαβαxα−1 exp[−(βx)α][1 − exp{−(βx)α}]a−1{exp[−(βx)α]}b−1

{1 − FLNW(x)} {1 − (1 − c)[1 − exp{−(βx)α}]}a+b , (6)

respectively. here, the hrf can be monotonically increasing or decreasing, bathtub shaped and upside-down bathtub.

Some possible shapes of the LNBW pdf are given in Figure 3.
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Figure 3. The LNBW pdf: (a) For b = 0.5, c = 0.5 and β = 1. (b) For α = 1.5 and β = 1.5. (c) For a =, c = and

β = 1.5

2.3 The Libby-Novick Beta-Gamma (LNBGa) Distribution

Let G(x; ξ) = γ1(α, βx) = γ(α, βx)/Γ(α) be the gamma cdf, where α is the shape parameter and β > 0 is the scale

parameter, ξ = (α, β), Γ(·) is the gamma function and γ(α, z) =
∫ z

0
tα−1 e−tdt is the incomplete gamma function.

The LNBGa pdf (for x > 0) becomes

fLNBGa(x) =
K βα xα−1 e−βx [γ1(α, βx)]a−1 [1 − γ1(α, βx)]b−1

Γ(α) [1 − (1 − c)γ1(α, βx)]a+b .

For α = 1, we obtain the Libby-Novick beta exponential (LNBE) distribution. The beta gamma (BGa) and

exponentiated gamma (EGa) distributions correspond to c = 1 and c = b = 1, respectively. In Figure 4, we provide

some possible forms of the LNBGa pdf.
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Figure 4. The LNBGa pdf: (a) For b = 0.5, c = 0.5 and β = 1.5; (b) For b = 0.5 and β = 0.5; (c) For a = 1.5 and

α = 1.5
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3. A Useful Expansion

The hypergeometric function is given by

2F1(c, d; e; x) =

∞∑
k=0

(c)k (d)k

(e)k

xk

k!
, (7)

where (a)k = a(a+ 1) . . . (a+ k − 1) is the ascending factorial. Clearly, (a)0 = 1. It can be computed from MATHE-
MATICA as HypergeometricPFQ[{c,d},{e},x] and from MAPLE as Hypergeometric([c,d],[e],x). Some

properties of (7) can be found in Prudnikov, Brychkov, and Marichev (1986) and Gradshteyn and Ryzhik (2000).

For any real b and | t |< 1, we use throughout the power series (Nadarajah & Kotz, 2004, Equation (1.7))

[1 − t]b−1 =

∞∑
i=0

(−1)i
(
b − 1

i

)
ti, (8)

where the binomial coefficient is defined by
(

b−1
i

)
= (b − 1)(b − 2) . . . (b − i). The index i stops at b − 1 when b is

an integer.

From Equations (2) and (8), we can write the LNB-G cdf as

FLNBG(x) = K
∞∑

i=0

(−1)i
(
b − 1

i

) ∫ G(x;ξ)

0

ta+i−1

[1 − (1 − c) t](a+b)
dt.

Using Equation (3.194.1) in Gradshteyn and Ryzhik (2000),∫ u

0

xμ−1

[1 + βx]ν
dx =

uμ

μ
2F1(ν, μ, 1 + μ,−βu),

where |arg(1 + βu)| < π and Re(μ) > 0, we obtain

FLNBG(x) = K
∞∑

i=0

pi G(x; ξ)a+i
2F1(a + b, a + i; a + i + 1; (c − 1) G(x; ξ)), (9)

where pi = (−1)i (a + i)−1

(
b − 1

i

)
for i ≥ 0.

Alternatively, using (7) in Equation (9), we can write

FLNBG(x) =

∞∑
i, j=0

wi, j G(x; ξ)a+i+ j, (10)

where

wi, j =
(−1)i K (c − 1) j (a + b) j

(a + i) j! (a + i + j)
.

If a is a positive integer, Equation (10) shows that the LNB-G cdf is an infinite power series of the G cdf. Otherwise,

in the general case, when a is positive real, G(x; ξ)a+i+ j can be expanded as

G(x; ξ)a+i+ j =

∞∑
k=0

k∑
r=0

(−1)k+r
(
a + i + j

k

) (
k
r

)
G(x; ξ)r.

Further, we can express (2) as

FLNBG(x) =

∞∑
i, j,k=0

k∑
r=0

ti, j,k,r G(x; ξ)r, (11)

where

ti, j,k,r = (−1)k+r
(
a + i + j

k

) (
k
r

)
wi, j
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and wi, j is given in (10). Changing
∑∞

k=0

∑k
r=0 by

∑∞
r=0

∑∞
k=r in Equation (11), we obtain

FLNBG(x) =

∞∑
r=0

dr G(x; ξ)r =

∞∑
r=0

dr Hr(x; ξ), (12)

where the coefficient dr =
∑∞

i, j=0

∑∞
k=r ti, j,k,r is a sum of constants and Hr(x; ξ) = G(x; ξ)r is the exp-G cdf with

power parameter r. Expansion (12) holds for any positive real a.

The corresponding LNB-G density function is obtained by differentiating (12)

fLNBG(x) = g(x; ξ)
∞∑

r=0

d
r G(x; ξ)r =

∞∑
r=0

er hr+1(x; ξ), (13)

where d
r = (r + 1) dr+1 and er = dr+1 (for r = 0, 1 . . .) and hr+1(x; ξ) = (r + 1) g(x; ξ) G(x; ξ)r denotes the exp-G

density function with power parameter r + 1, say exp-G(r + 1).

We note from (13) that the LNB-G pdf is a mixture of exp-G densities. This result is important to obtain some

measures of X from those of exponentiated distributions. This result plays an important role in the paper. Based

on this equation, we can obtain, for example, the moments, generating function and mean deviations of X. The

structural measures derived here for the new family even those of formidable complexity can be easily handled

in most software platforms such as Maple, Mathematica and Matlab. Established explicit expressions to compute

these mathematical measures can be simpler than using numerical integration. The infinity limit in the sums can

be substituted by a large positive integer such as 20 or 30 for most practical purpose. The computations for fitting

the proposed family to real data in practical problems can be easily performed using the script AdequacyModel in

software R.

4. Moments

Consider that the random variable Y follows the baseline G distribution. The sth moment of X depends on the

(s, q)th probability weighted moments (PWMs) of Y , say τs,q = E[Y s G(Y)q] (for q = 0, 1, . . .) defined in Green-

wood et al. (1979). The quantities τs,q are usually calculated numerically since they are available in closed-form

for a few distributions. We can write from (13)

μ′s =
∞∑

r=0

d∗r τs,r. (14)

Then, the moments of any LNB-G distribution can be determined from the PWMs of the baseline distribution.

Next, we provide an alternative expression for μ′s from Equation (13) as functions of exp-G moments. From now

on, let Yr+1 has the exp-G distribution with power parameter r + 1, i.e. Yr+1 ∼ exp-G(r + 1). We also can write

from (13)

μ′s =
∞∑

r=0

er E(Y s
r+1). (15)

Equations (14) and (15) are the basic results to be used to derive several LNB-G moments. As a first example,

consider the Weibull baseline distribution with scale parameter α > 0 and shape parameter β > 0. If Yr+1 has the

EW distribution with power parameter r + 1, its sth moment is

E(Y s
r+1) =

r + 1

αs Γ

(
s
β
+ 1

) ∞∑
p=0

(−r)p

p! (p + 1)(s+β)/β .

where (−r)p was defined before. From (13) and the last equation, the sth moment of the LNBW distribution

reduces to

μ′s = α
−s Γ

(
s
β
+ 1

) ∞∑
r,p=0

(r + 1) er (−r)p

p! (p + 1)(s+β)/β .
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For a second example, we take the standard logistic cdf G(x) = (1 + e−x)−1. We can easily obtain the sth moment

of the LNB-logistic (LNBL) distribution (for t < 1) as

μ′s =
∞∑

r=0

er

(
∂

∂t

)s

B (t + (r + 1), 1 − t)
∣∣∣∣∣
t=0
.

The central moments (μs) and cumulants (κs) of X can be obtained from (14) or (15) as

μs =

p∑
k=0

(−1)k
(
s
k

)
μ′s1 μ

′
s−k and κs = μ

′
s −

s−1∑
k=1

(
s − 1

k − 1

)
κk μ

′
s−k,

respectively, where κ1 = μ
′
1. The skewness γ1 = κ3/κ

3/2
2

and kurtosis γ2 = κ4/κ
2
2 can be calculated from the third

and fourth standardized cumulants.

Some plots of the skewness and kurtosis for the LNBN distribution (c fixed) as functions of a are displayed in

Figure 5.
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Figure 5. For the LNBN distribution. (a) Skewness of X as function of a for some values of c, by taking

μ = 100.0, σ = 50.0 and b = 0.5. (b) Kurtosis of X as function of a for some values of c, by taking μ = 10.0,

σ = 5.0 and b = 2.5

Some plots of the skewness and kurtosis for the LNBW distribution (c fixed) as functions of a are displayed in

Figure 6.
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Figure 6. For the LNBW distribution. (a) Skewness of X as function of a for some values of c, by taking α = 0.5,

β = 1.5 and b = 2.5. (b) Kurtosis of X as function of a for some values of c, by taking α = 1.5, β = 0.5 and

b = 0.5

5. Generating Function and Entropy

We provide two representations for the moment generating function (mgf) MLNBG(t) = E
(
etX

)
of X. The first

representation for M(t) is obtained from (13)

MLNBG(t) =
∞∑

r=0

er Mr+1(t),

where Mr+1(t) is the mgf of Yr+1. Hence, MLNBG(t) can be immediately determined from the exp-G generating

function.

A second representation for MLNBG(t) is derived from (13) as

MLNBG(t) =
∞∑

r=0

d∗r ρ(t, r), (16)

where the function ρ(t, r) is a function of the baseline quantile function (qf) QG(u) as

ρ(t, a) =

∫ ∞

−∞
etx g(x; ξ) G(x; ξ)adx =

∫ 1

0

ua exp [t QG(u)] du. (17)

We can obtain the mgf’s of several LNB-G distributions from Equations (16) and (17). For example, the mgf’s

of the LNB-exponencial (LNBE) (with parameter λ and for t > λ) and LNBL (for t < 1) distributions are easily

determined from these equations as

MLNBE(t) =
∞∑

r=0

d∗r B
(
r + 1, 1 − λ t−1

)
and MLNBL(t) =

∞∑
r=0

d∗r B (r + 1, 1 − t) ,

respectively.

The characteristic function (chf) has many useful and important properties which gives it a central role in statistical

theory. Its approach is particularly useful in analysis of linear combination of independent random variables.
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Clearly, a simple representation for the chf φ(t) = M(it) of X, where i =
√−1, is given by

φ(t) =
∫ ∞

0

cos(tx) fLNBG(x)dx + i

∫ ∞

0

sin(tx) fLNBG(x)dx.

From the expansions cos(tx) =
∑∞

r=0
(−1)r

(2r)!
(tx)2r and sin(tx) =

∑∞
r=0

(−1)r

(2r+1)!
(tx)2r+1, we obtain

φ(t) =
∞∑

r=0

(−1)r t2r

(2r)!
μ′2r + i

∞∑
r=0

(−1)r t2r+1

(2r + 1)!
μ′2r+1.

For a continuous random variable with density function given by (3), the Rényi entropy of order ρ is defined as

JR(ρ) = (1−ρ)−1 log
[∫

f ρ(x)dx
]

for ρ � 1 and ρ > 0. If we consider G(x; ξ) as the baseline Weibull cdf, we obtain

the LNBW distribution with α, β, a, b and c positive parameters. Figure 7 displays plots of the Rényi entropy of

order ρ of X as a function of c for some values of ρ for α = 2, β = 1.5, a = 3 and b = 2. The Figures 7a and 7b

indicate that the additional parameter c promotes very different values of entropy.
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Figure 7. Plots of the Rényi entropy for the LNBW distribution

6. Mean Deviations

The mean deviations about the mean (δ1) and about the median (δ2) of the random variable X are given by

δ1 = E
(∣∣∣X − μ′1∣∣∣) = 2μ′1F

(
μ′1

) − 2T
(
μ′1

)
and δ2 = E (|X − M|) = μ′1 − 2T (M), (18)

respectively, where μ′1 = E(X), F(μ′1) comes from (2), M = Median(X) denotes the median computed from the

nonlinear equation F(M) = 1/2, and T (z) =
∫ z
−∞ x f (x)dx is the basic quantity to determine δ1(X) and δ2(X) in

Equations (18). Setting u = G(x; ξ) in (13) gives

T (z) =

∞∑
r=0

d∗r Tr(z), (19)

where

Tr(z) =

∫ G(z;ξ)

0

ur QG(u) du. (20)

The mean deviations of any LNB-G distribution can be computed from Equations (18)-(20). For example, using

the generalized binomial expansion, the mean deviations of the LNBE (with parameter λ), LNBL and LNBPa (with
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parameter ν > 0) distributions are calculated using the generalized binomial expansion from the functions

Tr(z) = λ−1
∞∑
j=0

(−1) j [
1 − exp (− jλz)

]
( j + 1)

(
r + 1

j

)
,

Tr(z) =
1

Γ(z)

∞∑
j=0

(−1) j Γ(r + j + 1)
[
1 − exp(− jz)

]
( j + 1)!

and

Tr(z) =

∞∑
j=0

j∑
k=0

(−1) j
(

r+1
j

) (
j
k

)
(1 − kν)

z1−kν,

respectively.

An alternative representation for T (z) can be derived from (13) as

T (z) =

∫ z

−∞
x f (x)dx =

∞∑
r=0

er Jr+1(z), (21)

where

Jr+1(z) =

∫ z

−∞
x hr+1(x)dx. (22)

Equation (22) is the basic quantity to compute the mean deviations of the exp-G distributions. The LNB-G mean

deviations depend only on the quantity Jr+1(z). So, alternative representations for δ1 and δ2 are given by

δ1 = 2μ′1F
(
μ′1

) − 2

∞∑
r=0

er Jr+1

(
μ′1

)
and δ2 = μ

′
1 − 2

∞∑
r=0

er Jr+1(M).

A simple application refers to the LNBW distribution. The EW pdf with parameter r + 1 is given by (for x > 0)

hr+1(x) = (r + 1)α βα xα−1 exp
[−(βx)α

] {
1 − exp

[−(βx)α
]}r

and then

Jr+1(z) = (r + 1)α βα
∫ z

0

xα exp {−(βx)α} {1 − exp
[−(βx)α

]}r dx

= r α βα
∞∑

k=0

(−1)k
(
r
k

) ∫ z

0

xα exp
[−(k + 1)(βx)α

]
dx.

We can calculate the last integral using the incomplete gamma function γ(α, x) =
∫ x

0
wα−1 e−wdw (for α > 0) and

then

Jr+1(z) = (r + 1) β−1
∞∑

k=0

(−1)k
(

r
k

)
(k + 1)1+α−1

γ
(
1 + α−1, (k + 1)(βz)α

)
.

Equations (19) and (21) are useful to obtain the Bonferroni and Lorenz curves defined (for a given probability π)
by B(π) = T (q)/(πμ′1) and L(π) = T (q)/μ′1, respectively, where μ′1 = E(X) and q = F−1(π).

7. Order Statistics

Consider a random sample X1, . . . , Xn from a continuous distribution and let X1:n < · · · < Xi:n denote the corre-

sponding order statistics. It is well-known that

fi:n(x) =
fLNBG(x)

B(i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i

j

)
FLNBG(x)i+ j−1, (23)
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where B(·, ·) denotes the beta function.

Replacing (12) in Equation (23), we have

FLNBG(x)i+ j−1 =

⎛⎜⎜⎜⎜⎜⎝ ∞∑
r=0

dr G(x; ξ)r

⎞⎟⎟⎟⎟⎟⎠
i+ j−1

. (24)

Now, using the identity (see Gradshteyn & Ryzhik, 2000), we can write

FLNBG(x)i+ j−1 =

⎛⎜⎜⎜⎜⎜⎝ ∞∑
r=0

dr G(x; ξ)r

⎞⎟⎟⎟⎟⎟⎠
i+ j−1

=

∞∑
r=0

cr,i+ j−1 G(x; ξ)r, (25)

where

c0,i+ j−1 = di+k−1
0 and cr,i+ j−1 = (k d0)−1

r∑
m=1

[(i + j)m − r] dm cr−m,i+ j−1.

Combining (13) and (25), we can rewrite fi:n(x) as

fi:n(x) =

∞∑
r=0

pr hr+1(x), (26)

where hr+1(x) was defined in Section 1 and

pr =
1

B(i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i

j

)
cr,i+ j−1.

The density function of the LNB-G order statistics can be obtained from (26) as a simple linear combinations of

exp-G densities. So, the ordinary and incomplete moments, mean deviations, mgf and other measures of these

order statistics can be obtained immediately from those exp-G quantities.

8. Inference and Estimation

A random sample of size n from the random variable X ∼ LNG(a, b, c, ξ), where ξ is a p×1 vector of unknown pa-

rameters of the baseline distribution G(x; ξ) is denoted by x1, . . . , xn. The log-likelihood function for θ = (a, b, c, ξ)
can be expressed as

l(θ) = na log(c) − n log[B(a, b)] +

n∑
i=1

log[g(xi; ξ)] + (a − 1)

n∑
i=1

log[G(xi; ξ)]

+(b − 1)

n∑
i=1

log[1 −G(xi; ξ)] − (a + b)

n∑
i=1

log[1 − (1 − c)G(xi; ξ)]. (27)

Equation (27) can be maximized using the Ox sub-routine MaxBFGS (Doornik, 2007) or SAS Proc NLMixed or

from the nonlinear likelihood equations for the score vector. Initial estimates for the extra shape parameters may

be inferred from the estimates in ξ. The components of the score vector U(θ) are given by

Ua(θ) = n log(c) − n
[
ψ(a) − ψ(a + b)

]
+

n∑
i=1

log[G(xi; ξ)] −
n∑

i=1

log[1 − (1 − c)G(xi; ξ)],

Ub(θ) = −n
[
ψ(b) − ψ(a + b)

]
+

n∑
i=1

log[1 −G(xi; ξ)] −
n∑

i=1

log[1 − (1 − c)G(xi; ξ)],

Uc(θ) =
na
c
− (a + b)

n∑
i=1

G(xi; ξ)

[1 − (1 − c)G(xi; ξ)]
,

Uξ(θ) =

n∑
i=1

[ġ(xi; ξ)]ξ

g(xi; ξ)
+ (a − 1)

n∑
i=1

[Ġ(xi; ξ)]ξ

G(xi; ξ)
− (b − 1)

n∑
i=1

[Ġ(xi; ξ)]ξ

[1 −G(xi; ξ)]

+(a + b)(1 − c)

n∑
i=1

[Ġ(xi; ξ)]ξ

[1 − (1 − c)G(xi; ξ)]
,
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where ψ(·) is the digamma function and ġ(xi)ξ = ∂g(xi; ξ)/∂ξ and Ġ(xi)ξ = ∂G(xi; ξ)/∂ξ are p × 1 vectors.

We easily evaluate the (p + 3) × (p + 3) observed information matrix J = J(θ), whose elements can be requested

from the authors. The multivariate normal Np+3(0, J(̂θ)−1) distribution, where J(̂θ) is J evaluated at θ̂, can be

used to construct approximate regions for the model parameters. Further, we can compute the maximum values of

the unrestricted and restricted log-likelihoods to compute likelihood ratio (LR) statistics for testing some LNB-G

special models.

9. Applications

Here, we illustrate the importance of the LNB-G family in two applications to real data. We compare the fits of

the LNBN and LNBW distributions with those of other known models: the McDonald normal (McN), beta normal

(BN), Kumaraswamy normal (KwN), McDonald Weibull (McW), beta Weibull (BW), Kumaraswamy Weibull

(KwW) and their baselines distributions themselves.

9.1 Application for the LNBN Distribution

First, consider the data discussed by Weisberg (2005, Section 6.4) which represent 102 male and 100 female

athletes collected at the Australian Institute of Sport. The variable evaluated in this study is the Plasma ferritin

concentration (Plasma). These data were analyzed recently by Cordeiro et al.(2012) using the McN density func-

tion given by

f (x) =
c

B (a, b)
φ

( x − μ
σ

) {
Φ

( x − μ
σ

)}ac−1 {
1 − Φ

( x − μ
σ

)c}b−1

, (28)

where σ > 0 is a scale parameter, −∞ < μ < ∞ is a location parameter, and a, b and c are positive shape

parameters. Let W ∼ McN(a, b, c, μ, σ2) be a random variable with the pdf (28). For μ = 0 and σ = 1, we obtain

the standard McN distribution. Equation (28) includes as sub-models the beta normal (BN) (Eugene et al., 2002)

(for c = 1), Kumaraswamy normal (KwN) (Cordeiro & de Castro, 2011) (for c = 1) and the exponentiated normal

(EN) (for b = c = 1) distributions.

A natural distribution for modeling these data is the normal distribution which belongs to the class of symmetric

best known distributions due to its various theoretical properties and applicability achieved over the years. Further,

the skew-normal (SN) (Azzalini, 1985) distribution can also be used to model the behavior of these data since

it is a distribution with tails heavier than normal, thus reducing the influence of aberrant observations. The SN

distribution is given by

f (x) =
2

σ
φ

(y − μ
σ

)
Φ

[
λ
(y − μ
σ

)]
, −∞ < y < ∞, (29)

where λ ∈ R is the skewness . The density (29) is symmetric if λ = 0 (Azzalini, 1985).

Table 2. MLEs and some statistics

Plasma a b c μ σ AIC CAIC BIC

LNBN 63.1398 0.1769 0.1357 -90.5140 39.4431 2069.9 2070.2 2086.4

(3.1253) (0.0143) (0.0935) (13.4098) (1.8887)

McN 261.74 0.2112 0.0032 -93.9830 43.7127 2071.4 2071.8 2088.0

(5.6963) (0.0263) (0.00007) (8.2467) (0.8559)

BN 8.6410 0.1879 1 -13.9549 30.1440 2084.0 2084.2 2097.3

(1.6566) (0.0204) - (2.2809) (0.2597)

KwN 8.5874 0.1860 - -11.2929 30.1908 2083.1 2083.3 2096.4

(2.0640) (0.0142) - (4.8990) (0.7101)

EN 30694 1 1 -526.65 146.23 2081.8 2081.9 2091.7

(19.5596) - - (32.1783) (8.1636)

Normal 1 1 1 76.8762 47.3835 2136.0 2136.1 2142.7

- - - (3.3339) (2.3574)

λ μ σ
SN 0.000165 76.87 47.3835 2138.0 2138.2 2148.0
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Table 2 lists the MLEs and their standard errors (in parentheses) for some fitted models to the current data and the

Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC) and Bayesian Information

Criterion (BIC). The lower the values of these criteria, the better the fit. The computations were performed using the

subroutine NLMIXED in SAS. Since the values of these statistics are smaller for the LNBN distribution compared

to those values of the other models, this distribution is a better model to explain these data.

Formal tests for the extra shape parameters in the LNBN distribution can be performed based on LR statistics. The

results for comparing the models to the current data are displayed in Table 3. The rejection of the null models is

extremely highly significant for the three LR tests. So, we have a clear evidence of the potential need for the three

parameters of the LNBN distribution when modeling real data of this type.

Table 3. LR tests

Plasma Hypotheses Statistic w p-value

LNBN vs BN H0: c = 1 vs H1: H0 is false 16.10 0.00006

LNBN vs EN H0: b = c = 1 vs H1: H0 is false 15.90 0.00040

LNBN vs Normal H0: a = b = c = 1 vs H1: H0 is false 72.10 <0.0001
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Figure 8. Fitted densities for the plasma data. (a) Fitted LNBN vs McN models. (b) Fitted LNBN vs BN models.

(c) Fitted LNBN vs KwN models. (d) Fitted LNBN vs SN models

The plots of the fitted LNBN pdf and of pdfs of the four distributions discussed before are displayed in Figures
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8(a)-8(d). These plots indicate that the LNBN distribution provides a better fit to these data compared to the other

models. Finally, this distribution can be considered a very competitive model to the McN and SN distributions.

9.2 Application for the LNBW Distribution

Here, we compare the fit of the LNBW distribution to the data studied by Meeker and Escobar (1998, p. 383).

They give the times of failure and running for a sample of devices from a field-tracking study of a larger system.

We fit this distribution to these data. Recently, Alexander et al. (2012) analyzed them using the generalized beta

Weibull (GBW) distribution since it extends various distributions previously considered in the lifetime literature.

Its cdf and hrf are given by

FGBW(x) = I[{1−exp[−(βx)α]c (a, b) =
1

B(a, b)

∫ {1−exp[−(βx)α]}c

0

ωa−1 (1 − ω)b−1dω (30)

and

hGBW(x) =
cα βα xα−1 exp{−(β x)α} {1 − exp[−(βx)α]

}ac−1 {
1 − [1 − exp{−(βx)α}]c}b−1

B(a, b)
{
1 − I

({1 − exp[−(βx)α]}c; a, b
) } , (31)

respectively, where Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio and By(a, b) =
∫ y

0
wa−1(1 −

w)b−1dw is the incomplete beta function.

Several special models follow from Equation (30). The McDonald exponential (McE) distribution corresponds to

the choice α = 1. Other sub-models, apart from the Weibull distribution itself, are described before: BW (Lee et

al., 2007) (for c = 1), KwW (Cordeiro et al., 2010) (for a = 1), exponentiated Weibull (EW) (Mudholkar et al.,

1995, 1996) (for b = c = 1), exponentiated exponential (EE) (Gupta and Kundu (2001) (for b = c = β = 1) and

beta exponential (BE) (Nadarajah & Kotz, 2006) (for b = c = α = 1) distributions.

A characteristic of the GBG distribution is that its hrf can be monotonically increasing or decreasing, bathtub

shaped and upside-down bathtub depending on the parameters. This distribution was also studied by Cordeiro et al.

(2014), which derived several of their structural properties. Now, we compare the LNBW and McW distributions

and some of their sub-models.

Table 4 lists the MLEs and their standard errors (in parentheses) of the parameters from the fitted LNBW, McW,

BW, EW and Weibull models and the AIC, CAIC and BIC values. The computations were performed using the

subroutine NLMixed in SAS. These results indicate that the LNBW model has the lowest values for these statistics

among the fitted models, and therefore it could be chosen as the best model.

Table 4. MLEs and statistics

Voltage a b c β α AIC CAIC BIC

LNBW 0.0649 5.0041 1.464E-7 0.0046 7.7964 336.0 338.5 343.0

(0.0118) (0.0007) (0.000) (0.00003) (0.1815)

McW 0.0727 0.0625 1.0613 0.0050 7.9634 349.9 352.4 356.9

(0.0168) (0.0137) (0.0521) (0.00006) (0.2336)

BW 0.0879 0.0987 1 0.0047 7.8425 348.3 349.9 353.9

(0.0261) (0.0707) - (0.0004) (0.2461)

KwW 1 0.2269 0.0484 0.0043 7.7495 352.7 354.3 358.3

- (0.0966) (0.0236) (0.0003) (0.2387)

EW 0.1300 1 1 0.0031 7.1144 360.1 361.1 364.3

(0.0247) - - (0.0002) (0.2349)

Weibull 1 1 1 0.0053 1.2650 372.6 373.1 375.4

- - - (0.00079) (0.2044)

Formal tests for other sub-models of the LNBW distribution are conducted using LR statistics as described before.

Applying these statistics to the voltage data, the results are given in Table 5. Clearly, we reject the null hypotheses

for the three LR tests in favor of the LNBW model
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Table 5. LR tests

Voltage Hypotheses Statistic w p-value

LNBW vs BW H0 : c = 1 vs H1 : H0 is false 14.30 0.0002

LNBW vs EW H0 : b = c = 1 vs H1 : H0 is false 28.10 <0.0001

LNBW vs Weibull H0 : a = b = c = 1 vs H1 : H0 is false 42.60 <0.0001

In order to assess if the LNBW model is really appropriate, the plots of the fitted LNBW, GBW, BW, KwW and

Weibull density functions are displayed in Figure 9. Based on these plots, we conclude that the LNBW distribution

provides the best fit to the voltage data.
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Figure 9. Fitted density functions for the voltage data. (a) Fitted LNBW vs McW models. (b) Fitted LNBW vs

BW models. (c) Fitted LNBW vs KwW models. (d) Fitted LNBW vs Weibull models

10. Conclusions

We propose and study a new family of distributions called the Libby-Novick beta-G (LNB-G) family, which in-

cludes as special cases two classical generators of distributions: the beta-generalized and exponentiated generators.

We can define the LNB-G model from any parent G distribution. Following this idea, we can add three shape pa-

rameters to extend widely-known distributions such as the normal, Weibull, log-normal, Laplace, gamma and
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Gumbel distributions. In fact, for any parent G distribution, we can define the corresponding LNB-G distribution

which provides more flexibility. Some characteristics of the new family including moments, generating function

and mean deviations, have tractable mathematical properties. The role of the generator parameters is related to the

skewness and kurtosis of the new family. We estimate the parameters using maximum likelihood and determine

the observed information matrix. We test nested models based on likelihood ratio statistics. Two applications of

the new family to real data demonstrate the importance of this family.
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