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Abstract

In this paper, we consider a non-parametric kernel type estimator of the time where a hazard rate function is
maximum in the presence of covariate and right censoring. Via a strong representation of the estimator, we establish
weak convergence and asymptotic normality results.
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1. Introduction

The estimation of the hazard rate and the related topics are important subjects in statistics because of the variety of
their applications.Those subjects may be considered in several manners according to the data and there are many
techniques used in the literature to estimate the hazard functions. In this paper we focus on the investigation of the
maximum hazard rate with covariate. More precisely let 7 be a life time, Z a covariate and C a right censoring
variable independent of 7" conditionally on Z. Assume that 7', Z, and C are continuous and denote by F(#|z) (resp.
G(t|z)) the conditional distribution function of T (resp. C) given Z = z, f(t|z) the conditional probability density of
T and f(z) the marginal density function of Z. Define X = min(7, C) and 6 = I(T < C) where I(A) is the indicator
function of a Borel set A.

The conditional hazard rate function A(t|z) of T’ given Z = z is defined by

PIT<t+AM|T>1,Z=z]  f(tl)
At C1-F()’

Atlz) = lim F(tlz) # 1.

At—0
This function is very useful in statistical applications such as in survival analysis, medical follow up, industrial reli-
ability studies or in earthquake studies. In this setting, knowing how to estimate the maximum of the instantaneous
risk allows to predict the maximum risk when a new seismic series occurs and the knowledge of the maximum may
arise when exploring relationship between responses and potential covariates. Denote by 6 the time in an interval
[a;, b,] of R* corresponding to the maximum of the conditional hazard rate function, that is,

0(z) = Argmax,, o), A(1]2). (1)

Non-parametric estimation of the hazard rate function was first introduced in the statistical literature by Watson
and Leadbetter (1964a, 1964b). The topic was developed by other authors among which Singpurwalla and Wong
(1983), Tanner and Wong (1983) and Gneyou (1991). The conditional case was considered later by Van Keilegom
and Veraverbeke (1997) and (2001).

The problem of estimating the maximum of a conditional hazard rate function is somewhat similar to the problem
of estimating the conditional mode of a random variable. The methods employed here are inspired by the methods
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used to the treatment of the latter problem which has received much attention during the last twenty five years. For
the references, see e.g. Collomb et al. (1987), Samanta and Thavaneswaran (1990), Ould-Said (1993), Quintela-
del-Rio and Vieu (1997), Louani and Ould-Said (1999), Ferraty et al. (2005), Dabo-Niang and Laksaci (2007) and
Ezzahrioui and Ould Said (2008) for uncensored models. In censored data case, see e.g. Ould Said and Cai (2005)
and Khardani et al. (2010, 2011).

Concerning the maximum hazard rate estimation, Quintela-del-Rio (2006) considered a non-parametric estimator
under dependence conditions in uncensored case. Gneyou (2012) considered a kernel-type estimator in the model
of right censored data with covariate and establish strong uniform consistency results. The aim of this paper is
to extend these results to the weak convergence. The paper is organized as follow. In Section 2 we recall the
definitions of the non-parametric estimator of the conditional hazard rate function A(#|z) and the corresponding
estimator 6,(z) of its maximum value 6(z) as given in Gneyou (2012) and state the assumptions under which the
results will be obtained. In Section 3 we establish a basic almost sure asymptotic representation for the estimator
6,(z) which leads to some main results such as weak convergence and asymptotic normality. Detailed proofs are
given in the appendix.

2. Definitions and Assumptions

Let (T}, Z;, C)}_, be a sample of size n of the random variables (T, Z, C). As itis often the case in clinical trials or in-
dustrial life tests, the lifetimes 7', 75, - - - are not completely observable due to the presence of right-censored vari-
ables. In presence of covariates Z; and right-censoring C;, the observable data consist of n observations (X;, 6;, Z;)_ |
Withé‘,‘ = I(T, < C,’), i= 1, , n.

2.1 Definitions
Denote by

Al = f Alsloyds @)
0

the conditional cumulative hazard function of T given Z = z and define H(t|z) = P[X < #|Z = 7] the conditional
distribution function of X given Z = zand H(#|lz) = P[X <t,6 = 1|Z = 7] = fot(l — G(5)2))dF(s|z) the conditional
sub-distribution function of the uncensored observation (X, = 1) given Z = z. Since it is assumed that 7 and C
are independent conditionally on Z, A(#|z) can be written in the form

" dH(s|z)
A(tlz) = _ . 3
o= [ E e 3)
Hence, non-parametric kernel-type estimators of the functions A(#|z), A(t|z) and 6(z) are respectively given by
! dHln(Slz)
Ao = [ )
0 1- Hn(S7|Z)
- "Vt(hn, Z)(S[Na,l(t - Xl)
) = = (5)
P Zj:l Wj(hn,Z)I(Xj > X;)
and
0,(2) = Argmax, ., A,(12) ©)
where
Hy(tl) = > Wihy,DI(X; <1) and  H,,(tlz) = Z Wilhy, I(X; < 1,6; = 1),
i=1 i=1
K, (z=2Z) . . d o
Wi(h,,z) = = 1,---,n are Nadaraya-Watson weights associated to a kernel K on R%, N is a

i A R
i1 Kn, (2= 7))
kernel on R, (h,) and (a,), (n € N) are two sequences of positive non increasing real numbers and where K;, and
N, are defined by Kj(x) = hl,,K(%), N.(s) = éN(g), forallxe R4, h>0,seRanda > 0.

Note that H,(t|z) and H},(t|z) are kernel estimators of H(#|z) and H,(z|z) respectively obtained by regression.

Let 7, = sup{r € R*/F(#|z) < 1}. In applications, 7, is typically not know in advance, but may be chosen such that
the size of the observed risk set is sufficiently large.
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For later use, introduce the Fourier transforms

k() = f " N(x)dx
R
plulz) = f " dA(xlz) = f " A(xlz)dx
R R
j e AH1,(X]2)
w(ulz) = f " dA,(xlz) = f eM——=—, uelR
? . . 1= Hyal)

and for a general conditional (sub-distribution) function L(tz), t € R*, z € R?, denote by L,(¢) the function
0" L(1]z)

Otidz)
of order i + j w.r. to r and z, for all (i, j) € N2, whenever all those derivatives exist. For a sequence of conditionals
L,(tz) denote by LX(zr), L)*(¢), L;*(¢) for L,(t|z), (%Ln(tlz) e L, (t]z) respectively.

> a2

t— L(12); L’Z(t), Lg (1), its first and second derivatives with respect (w.r.) to ¢ and LD (1)7) = its derivative

2.2 Assumptions

The following assumptions are needed throughout the proofs of the main results:

(F1.) (i) the r.v. Z takes values in a compact subset A of R¢ and the variables T and C are independent conditionally
onZ;

(i1) the marginal density function f of Z is a continuous function with bounded derivative at each z € A.
(F2.) There exists an interval [a, b.] C [0, 7] containing a unique € = 6(z) satisfying 1,(6) = max,, <;<p, A(?).

(F3.) The function 7 — A.(¢) is of class C? with respect to ¢ such that
(i) 2(0)=0;
(i) d; =infs <<p, | /(1) > 0.

(F4.) There exists a positive constant 77 such that inf,ea(1 — H(7,|2)) > 1.

(F5.) The conditional sub-distribution functions (z,z) — H(tlz) and (¢,z) — H,(#|z) are of class C? and their first
and second partial derivatives are continuous in (, §) € [a;, b,] X A and are uniformly bounded.

(K1.) K is a symmetric Kernel of bounded variation on R¢ with compact support satisfying

B f K()dz = 1,
]R(/

(ii) 7;K(z)dz=0,¥Vj=1,---d,
]Rzl

(iii) f I K (z)dz = a(K) > 0 where ||z]| is any norm on R,
]Rd

(K2.) N isasymmetric Kernel of bounded variation on R vanishing outside the interval [-M, +M] for some M > 0
and satisfying

@) f N@du = 1,
R

(ii) f uN(u)du = 0,
R

(iii) f W*N(u)du = a(N) > 0,
R
(iv) N is two times derivable, the derivative N’ is of bounded variation and satisfies fR N?(w)du < +0o.

(H.) (hy)nen and (ay)nen are two non increasing sequences of positive real numbers such that as n — +co,

nh?

|loghn|
112
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21.d 4/31d
I

H2) () ay— 0, (i) a"?hd =0, (i) 2" — too, (V) =2 5 4oo,
|logh,,| logn

(H3.) (i) na,hl — +oo, (i) naShi — +co.
(KH) k(u) is absolutely integrable and limsup,, ., f,u* [k(au)g5u)| du < +eo.

The assumptions (F1) — (F5), (K1) — (K2) and (H1) are quite standard. (F'1) — (F5), (K1) and (H1) ensure the
strong uniform convergence of the estimators H,(t|z) and Hy,(f|z) to H(t|z) and H,(t|z) respectively as in Bordes
and Gneyou (2011b) while the assumptions (K2) and (H2) ensure the strong uniform convergence of A,(#|z) and
6,(2) to A(t|z) and 6(z) respectively. Assumptions (H3) and (KH) ensure the asymptotic normality of the estimator
0,(2) to 6(2).

3. Main Results

Gneyou (2012) proved the uniform convergence of the estimators 4, (#|z) and 6,(z). In what follows we establish
weak convergence and asymptotic normality of the estimator 6,(z). For that, we need to consider the process

Z _ IX<t6=D-H() ("IX<s6=1)-H(lk)
F@,X,0) = 1 - H(t"|2) fo (1 — H(s 7)) dH(slz)
"IX < 5) - Hsl)
fo del(SIz) 0<r<t,. o)

I(t,X,0) is a centred random process which plays a major role in our investigations. The following theorem
establishes a strong representation of the maximum hazard rate estimator 6,(z). We apply it to derive a weak
convergence leading to the asymptotic normality of the estimator 6,.

Theorem 1 Under the assumptions (F1)-(F5), (K1)-(K2) and (H1)-(H2), we have, for all z € A

1 n
0,(2) = 02) = ——— > Wilhn, 2)%(0, X;, 6;) + (6 ), a.s. 8
=6 = ey 2, Wil D000 +7,0) + O@). s ®)
where 0, is between 0 and 0,
1
(1, Xi,60) = — f [t = a,u)N" (w)du, )
(,ln R
with I(t) as in (7) and
sup |?;(t)| — 0 as. (10)
t€laz,b.]

The proof of Theorem 1 is given in the next section. Let D[0, 7.] be the standard Skorohod space on [0, 7.]. We
have

Theorem 2 If the assumptions of Theorem I hold then as n — +oo, for all 7 € A, the process

\nahd Y Wilhy, (8, X560, 0<t<1, (11)
i=1

converges weakly in D[0, 1.] to a Gaussian process with covariance function given by
L.t s) =l K |3 A(s) fN’(v)N’(v +t—s5)dv, (12)
R

A(1]z)
1 - H(tlz)’
As a consequence of this theorem in conjunction with the following proposition, we obtain the asymptotic normal-
ity of the maximum conditional hazard rate estimator 6,,.

where (1) = A" (t|z) =

Proposition 1 Assume that assumptions (H3)(iii) and (HK) hold. Then for all z € A A)*(t) converges in probability
to A7 (t) uniformly in t.

The proof of this proposition is postponed to the next section.
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Theorem 3 Assume that the assumptions (F1)-(F5), (K1)-(K2), (H1)-(H3) and (HK) hold. Then

1) If in addition naf,hfld — 0, then

3.d _ £ a2(0)
na, iy (6,(2) — 0(z)) ~ N (O, —(/12,(9))2) (13)

2) If nali>* — y > 0, then,

m(6) (0

3d _ Loy 2
nanhn(en(z) Q(Z)) N( /12’(9) ’ (/12/(9))2

) (14)

where
2 _ (1) 2 1A l12
0 = TTpo KI5 ||V, -
my() = W[f’(Z)L(l,l)(ﬂz) + %f(Z)L(l,Z)(tlz)]f ||)C||2 K(x)dx,
R4
L(t]s) () — @) | (Hls) — H(tlz)hi (12)

—Hr)  A-HeR?E

with hy(tls) = H\""\(t]s) and h(t|s) = H"O(1]s).

4. Appendix: Proofs of the Results

The following lemmas are needed to prove the main results.
Lemma 1 Let £ : RY — R be a function continuous at z. Then

A. Under assumptions (F1)(ii), (K1)(i) and (H1)(i),

f K, (z = )t(s)ds = £(z), asn— +oo.
Rd

B. If € is a function twice continuously differentiable at 7 then, under assumptions (K1) and (H1)(i), we have

f Ky, (z = $)l(s)ds — €(2)| = O(h2Y), asn — +co.
R4

The proof of this lemma is analogue to the proofs of Lemmas 4 and 5 in Bordes and Gneyou (2011a), hence we
omit it.

Lemma 2 Define E;(t) = lef(t —ayu)dN' (u),0 <t <1, Then, forall0 <t < T,

E(E:()Z = 5) = f (¢ = ant, $)AN' ()
R

and if the assumptions (K2) and (H2) — (ii) are satisfied then,

COV(EX1), EX)Z = 5) = ay [/l*ms) f NN (v + a )dv| + o(1)
R

n

where

Qz(t,s)zf d(Hi(vls) = Hi(vz) H(Vls)_H(V|Z)dH(V|Z). (15)
0

1-H(|z) o (1-H( )7
Proof. By Fubini’s Theorem, it is easily seen that
BIESZ = 51 = [ BFG-a,.X.6 94N @
R
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where
I(Xl < t,6,» = 1|Z, = S) - H](t|Z)
1 - H(|2)

f’ I(X; <v,0;,=1|Z; =s)— H{(V]2)
0 (1 - H(v[2))?

f‘ I(X; <vIZ; = 5) — H(v[z)
0 (1 - H(v[2))?

I, X;, 6;, 8) + Q(t, 8), (16)

E(t, X;,0i,8) =

dH(|7)

dH,(v[z)

with
I(X; <1,0; = 1|Z; = 5) — H (1]5)
1-H( |2)

ft I(X, < V,6i = 1|Zl = S) - H](V|S)
0 (1 - H([2)?

f’ I(X; <V|Z; = s) — H(V|s)
0 (1 - H([2))?

It is easy to check that EI**(¢, X;, 6;, s) = 0 and hence EF(t, X;, 8;, s) = Q°(, s). Thus the first part of the lemma is

proved. For the second part, we have by (16),

@t X;,6;,5) =

dH(v|7)

dH,(v|2). a7

G(t,1',s) = cov(E{(D),EN)Z =)
= fR L]E[l*z(t = anu, X;, 6, )I( — av, X;, 6;, $)|dN' (u)dN' (v)
forall t,¢" € [0,7,]. By (17), set
I“(t,X;,6;,8)=A—-B+C and [I“({,X;,6;,5)=A"-B +C". (18)
Then the expectation under the last integral equals
EAA" - EAB + EAC' —EBA’ + EBB' —EBC’ + ECA’ - ECB’ + ECC".

By Fubini’s theorem, we check that the eight last expectations equal respectively to zero while the first one [EAA’
equals to d*(t A t'|z) where

" dH,\(v[z) T Ak)
dtl)= | ———7 = f — (19)
o (L=HM)?  Jo 1-H( o)
Thus integrating by parts under the assumption (K2), we check that
G,(t,1,s) = ff d*(t—anulz)dN'(u)]dN’(v)+ff d*(f' — a,v|z)dN'(u)]dN' (v)
R u>v+% R u<v+%
M
= a, ff A*(t = a,ulz)N' (w)dudN' (v)
R v+%
t—t
= a, fN’(u)N’(v + YA (' — ayviz)dy (20)
R ay

where M is the upper boundary of the support of the kernel N. Developing the function A* (¢ — a,v|z) by Taylor’s
theorem in order one at a neighbourhood of #’ yields

t—t

G, (1,1, s) = a,A"(t|z) fN'(u)N’(v + )dv + o(ay,). 21
R

n
which ends the proof of the Lemma 2. O

Proof of Theorem 1. Notice that by definition of 6 and 6,,, A2(0) = 4;7(6,) = 0, 27(0) < 0 and A;,°(6,) < 0. Hence
by Taylor’s expansion of order one in a neighbourhood of 6 , we have

0 = 47(6) = 470) + (0, — 0)4,°(6,) (22)
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where ¢ is between 6 and 6,. It follows from (22) that

__/1;11(9) . 1 2in

By Assumption (K2) (i) it is easily seen that

A,(112) = A1) = ai 2) (24)

Hence by the derivation theorem and an integration by parts under the assumption (K2) we have

_fM

= = f[An(t — ayu)z) — At — a,ul|2)ldN’ (u) + O(a,%). (25)
n JR

A(tlz) — A (tlz) — A(sl2)) +O(ay)

By Lemma 4.1 in Gneyou (2012)
An(tlz) = A(tlz) = An(112) + Ry (5]2) (26)

where A, (f|z) is a process which can be written in the form
An(tlz) = > Wilhy, DE (1) 27)
i=1

and R,(t]z) is a remainder term which vanishes almost surely under assumptions (H1) and (H2) (see in Gneyou
(2012)). It follows that

A (tlz) = A'(tlz) = ZW(hn,Z)n(t 2,X:,6;) + Fa(t,2) + O(ay) (28)
i=1

where |

n(t,z,X;,6;) = —— f L(t = au)dN' (u), (29)
an R
(1) as in (7) and
Falt,2) = %fRn(t_ ant, 2)AN’ () = Uy,(t,2) + Ua(t,2) (30)
n JR

with

) L (" Hy(sl) - H(slz ,
On(ts) = — f | 0 %d(mnwu)—fll(ﬂz»m (w)

. (sl — HOR)Y: ,
U2 = f Sy TR gy RN

By Assumptions (F4), (F5), (K1) and (H1), we show that SUPye(q. b.] |7.(t,2)] — O almost surely by showing that
SUP/efq. ] |U,-,,(t, z)| — 0 almost surely, for i = 1,2. Since 6, — 0 = /1;1, ](9*)(/1’1(0) A2(6)), Theorem 1 follows
from the representation (28) and (30). O
Proof of Theorem 2. Recall the notations £*(t, X;, 6;) = aiz fR E(t — a,u)dN' (u) and

Ky (z=2Z) Ky (z-2Z)
iz Kn,(z=2) nfn(2)

where f,, is a consistent kernel estimator of the probability density f of the r.v. Z;.

Wi(hy,z) =

For all n large enough, we have

Wilha, (1, Xi, ) = Z) f E(t - anidN' ().

2f(z)
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Thus for all 0 < ¢ < 7, we can write

NnaHEF@) Y Wilha, (1 X, 6) = % D Furle X6, 2,) 3D
i=1 i=1

where

Z—Zi)

1
b~ \a,hd

We show the theorem by applying Theorem 2.11.23 of van der Vaart and Wellner (1996) to the class of function

Jna(z: Xi, 64, Z;) = K( f It = ayu)dN’ (u). (32)
R

Fn={fos:teT;} with T,=][0,7,]. (33)

Let us calculate first the mean and the covariance functions of the process {f,; : t € T,}. It is straightforward that

Efn,t(zs Xi? 51'5 Zl) =

1 =8
Jaid fd K( I YD (s)f(s)ds (34)
where by Lemma 2, ®(s) = E[E}(1)IZ; = 5] = fQZ(t — ayu, s)dN'(u) with ®(z) = 0. Set WP(s) = D (s)f(s).

R
Develop W(s) by Taylor’s theorem in the order two in a neighbourhood of z under the assumption (F5). Since
Y(z) = 0 we get under the assumption (K1)
¥(2) f
R4

b oLw f (s—z)2 )
2 »
= Jveny f P Ko + O (35)
R¢

with W (z) = 2f"(2)®'(z) + f(z)@" (z) and O(s) = D*(s). Hence

2d
Ble X000 2) = =B F QU@+ 3007 @) [ 1P K+ O(—) (36)
ayhd 2 R¢ a,h?
Recalling that
e B Tt d(Hy(vls) - Hi(vlz) et H(vls) — H(v|z) ,
D(s) = D*(s) = Lj; - HOR) dN'(u )+ff (0= Ho o) ——————"dH,(v[z)dN'(u)
= fqﬁ(u, S)N" (u)du
R
where Ty (v]s) = hi(vlz) - (HOVIs) = HR)hi (V)
B " vls) = h(viz v|s) = H|2)h vz
pu) ‘fo [ [—Hol T (-HeR |
an integration by part yields
D(s) = a? f N, (t — X)L (x| s)dx
R
where o
_ _ i+
Lty = 19 = I | (Hl) = B 1y 8L

1 - H(r[z) (1 -H(t 2)? otz

Since by the assumption (F5) the function ¢ +— L!9(z]s) is continuous at 7, apply Lemma 3.1 of Bordes and
Gneyou (2011 b) with the kernel N and have

d(s) = a2 (LM (1]s) + O(1)).
It follows that
Efiz, Xi, 61, Z) = aihf,d[f’(z)L“’”(tIz)Jr%f(z)L“'z)(tlz)] f I4* K(x)dx + O(+Ja;iy®).  (37)
Rd
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Let us check now the covariance function of the process {f,; : t € T.}. Set
FZ(t’ t’) = Cov(ﬁl,t(zv X,’, 61" Zl')’ f;l,t’ (Z’ Xi’ 6[7 Zl))

By (32) and (16) we have for all t,# € T,

1
I.@r)= — f Kﬁ (z = )G, (1,1, 5)f(s)ds 38)
a, JRrd "
where
G.(t,1,5) = cov(E; (1), EX(t)|Z = s).
K
Using the kernel —————, it follows from (38), (21) and Lemma 2 that
Jou K2 (x)dx
(@t = X —K2 fzv' N’
(#,72) an hd (7'l2) f ) hn)
= Kz(x)dx f N (V)N (v 41 )dv +0(—) (39)
ay na, n

It remains to check the three conditions of Theorem 2.11.23 of van der Vaart and Wellner (1996). Set

Fn={fos:1€T) (40)

where f,, is the real function defined on RY x R* x {0, 1} x R? by

oreoyaxes) = f E(t = apit, y, )N’ @1)
R

1
Vaphe

with (¢, y, x) as in (7). Let us check the Lindberg conditions (2.11.21) of Van der Vaart and Wellner (1996).
(i) By the assumption (K2) (i), an integration by parts yield

Z
flz(t —apl,y, )C)dN/(u) Ay fN/(u)ﬂ(t —apl,y, -x)du
R R ot

IA

v

’611 « )
a, sup |[—(y,x .
" tela;,b.] ot Li®

Since

(U(x = 1§, — H"O(t2))(1 - H(tlz)) + HO(tlz)

o
E(tvys x)

(= HaR)?
3 Iy<t,x=1)—H(tz) Iy <t)- H(t]z)
A=Hur AR+ =0 hage 4R

and the derivatives dH and dH,; are bounded under the assumption (F'5), we have under the assumption (F4)

<n2(5+2A+2A) =m

or

— @&y,

‘ 57 (Y: %)
where A and A, are absolute constants. Consequently we have for n large enough,

77— 1 z—9
)<Fn=mOWK(W

K( )

sup U < Ve S

where my = m ”N’” LR®) Since £, N\, 0 and f is continuous at z by assumption (F1)(ii), we apply Lemma 1 with
the kernel K> /1K || L(RY) and get

1
EF; —mof ﬁkz

= m3 1K gy £@) + 0(1) = O(1).
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(ii) Since K is symmetric, bounded and nh¢ — +oc0 as n — +co by assumption (H1)(ii), we have for all & > 0,

{Kz( ) > \nhie}f(s)ds

1
E[F2I(F, > Vne)] my f }71(2
d

m? fR ) KXW {K (1) > \nhielf(z + hyu)du — 0 as n — +oo.

(ii1) Consider the pseudo-distance p defined by

p(t, 1) = max{|H(tlz) — H(t'|2)| , |A(t]z) — A |2)]}-
Fora, <t <t < b,and p(t,1') < p, with p, — 0, set

D(t,1) = El(fuu(z X0 61, Z0) = frur (2. X1, 61, Z)))-

Then we have
’ 1 1 2 —Ss 7 Z 2
D(t,t") = — —K(—) | E[(F( — anu, Xi, 6, ) — F(t — ayu, X;, 6;, )7 1f(s)ds.
ap JRrd I’l% hn R

Let

Wt,t) = E[FE(E - auu, Xi, 65, 5) — F(t — anu, Xi, 61, $))°]
Z(V) = lZ(v — ayl, Xia 6[, S)
l*(V) = l*Z(v — apl, Xi’ 6i’ s)

cv) = Q'(v—auu,s)
and recall that by (16) IF(v, X, 8;, s) = I'*(v, X;, 6;, 8) + O°(v, 5). Then
()= It') =1"(t) = I'(') + [c(t) — c(1)]

furthermore

() = Ut = (I"(t) = I*(1)* + (c(t) = c(t'))* = 2(c(t) = ()T (1) = I'(1')).

Since [**(t — a,u, X;, d;, 5) is a centered random variable, the last term of this last equality has mean zero. It follows
that
W(t,t') = BI("(t = anut, X;, 61, 8) — I°(t = apu, X;, 6, $))°] + [Q¥(t — anut, ) — Q' — ayu, $)1°.

After the development of square in the first brackets, we get by similar computations as in (18),

Wty = d:(t—au) +d.(t' —au) —2d:(t Nt' — ayu)
+  [QNt — anu, s) — Ot — aqu, 5)°
= di(t—agu) = d:(t' — auu) + [Q%(t — ayu, s) — Q¢ — ayu, 5)I*.

Hence we have

puty = L fR | hldKZ (1 = att) — d' (¢ — @)l f(5)dsdN' ()

1 1
M v ant, $) = Q1" = ayu, )1 f()dsdN' (u)
R4
= I +11
with { q
= — h_dK2 f [d:(t — ayu) — d;(" — a,u))dN' (u)
Rz
1 1
n=—1 }71(2 (t — ayu) — Q°(t' = aw))’ f(s)dsdN' (u)
R

119



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 3; 2013

Since by the assumption (F'1)(ii) f is a continuous function with bounded derivative at z, we apply Fubini’s theorem
and Lemma 1 with the kernel K> /1K IIi(Rd) to get

1 . g ,
1= — K1 gy S fR [d2 (¢ — ayu) = d2(¢ — a,u)]dN'(u) + O(1)
and |
1= — [KIE 0 O f [Q°(t ~ @it 2) = Q°(t' — @y, DIAN"(w) + O(1).
n R
But for all v, O%(v,z) = 0 (see in (15)), hence /I = 0. Recalling that

' dH\(R) f T A0) )
o I-HOV 12?2 Jo 1-H(v o) ~

d;(t) =

we have after integrating by parts

R | A —au) A - aul)
1= 11K gy @) fR N(u)[ i s i e L+ 0(1),

Using now the fact that

a d a

b bbb
and that f is bounded on A, we have by assumption (F4)

1
(b-b)+ E(a -d), ad,bb >0

DG =11 < F@UKIR gy n™ sup sup A6 = aule) = At~ aul)] ||V 5,

lul<1 |t—t'|<pp

+ SOIKIE gy T2 s0p sup [H( = ayul2) = H( = add)] V'] z)
[ul<1 |t=t'|<pn

< 2 @BIKIE gay sup sup 1At = auulz) = A V]|

lu|<1 tela,,b,]
+ 2f@BIKI g, lsup sup IH(t = aulz) = HID)| + p(t. 1) [ P
< (M) +p)0(1) — 0 if p, =0,

where 8 = max{~!, 72}
It remains to check the entropy condition. Let us consider the following brackets [ f,,;, ,, fu.,] with
1

va,he

where F(t,y, x) is defined as in (7). After some computations similar to above ones we obtain for n large enough,

fn,t‘(zvys )C, S) = )9

f F(t™ = ayu, y, x)dAN' (u)K(
R h

Z—S
n

El(fnir Kir 61, Zi) = fo,(Xis 61, Z))*] < 2B (2) IKIIF gy | N

L(R) *

Therefore it is straightforward that for n large enough,

2
NiQeBf @) UK oy [V ]y o L) < =

which implies

4B (@) K gy IVl ey

Ny(e, Fn, LA(P)) < ~

(42)
Finally we have by (42),

Op
I T ) = [ og Ny 7o L2 — 0
0

for every 6, \, 0.
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All assumptions of Theorem 2.11.23 of van der Vaart and Wellner (1996) being satisfied we conclude that the
process

1 n
Gn() = — Z Jni(Xi, 61, Zi) — B o(Xi, 61, Zy) (43)
\G=
converges weakly to G where G is a tight centered process on 7, = [0, 7,] with covariance function defined for

t,t' € T, by
EIGOGE)] = lim Elfocfir] = EfarEfur).

By (39) it is straightforward that

E[GHGE)] = /l*(t'lz)f(z)f K?(x)dx fN’(v)N’(v +1t—1")dv (44)
RY R

and the proof of the theorem is complete. (]

Proof of Proposition 1. By Fourier’s inversion theorem, it is easy to check that

1 .
2 [ ¢ k@i = 50
2 R

and also using Lemma 1 we have

L f e k(au)p*()du = (1) + O(a?).
2r R

Applying the derivative theorem under assumption (KH), we have

“55 [ g wan = a7
27'1' R
_L f e M (a,u) wydu = A0 + O(a?).
271' R
It follows that
EY2[ sup A,’;Z(t)—Eu;;Z(t))F] < n)”! f u? |k(a,u)| Var(@’ (u)du (45)
tela;,b,] R
and
[E=(0) - 70| < @m)™! fR u? |k(a,u)| [E(e5 () — ¢*(u)| du + Oa)). (46)
Moreover

B ) — () | fR U (EAAZ(x) — dA* (%))

= ’ f (R (x) — A5(x))dx
R

IA

C
= sup |[EA (1) — (). (47)
|ul refo,r]

where C is a constant. Since A;(f) is a consistent estimator of A%(¢), the last term of the right hand side of the above
inequality tends to 0 as n — +oo for all u # 0. Hence E(¢; (1)) — ¢*(u) — 0 as n — +oo for all u # 0 and this is
also true if u = 0.

Let us evaluate 0(¢%) = Var(¢7). We have

V4 E z _ ius dHTn(S) E dHTn(S)
it - Bigi) = [ (2 - n )
() — E@ () = fR fR G (x, y)dxdy

where

1 -Hi(x) 1-Hyx) )\1-Hiy) ~—1-Hi)
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Hence z Z
de(x) dH1n(Y)

1 - Hy(x)" 1= H;(y)

2@ = Blgiw) - Bl )] = f f F i Cov(
R JR

But by the definitions of H (¢) and H;(f) we have

)dxdy.

S iuX;
() = Z ZCOV(W"(”"’Z) HZ(X) W’(h"’Z)l;’—z(Xi))'

=1 I=1

By independence of (Xj,d;) and (X;, d;) for all & # [ and the almost sure convergence of H,(.|z) to H(.|z) (see
Lemma 4.2 in Gneyou(2012)), the above expression reduces to

n S eiuXk
202 2 k
(g, = Var(Wi (hy, 2) —— )
? kz; I T H (X
< 772 Z Var(W,f(hn, 2)0r) < nan(le(h,,, 7)01), for all n big enough.
Since foralli=1,---,n
- Zi - Z,-
Wi(hy, ) = K( )=(1+0()) K( )
nhifu(z)  ha nhif(z) ~ ha
it readily follows that
IE[Wz(h 2)0;] < Lf lKz(Z G(x|)dF(x|s)f(s)ds
TR w2k £(2) Jre

where C is a positive constant. The middle integral equals to P[Z < +o00,5 = 1]. Hence it is less than one. As a
consequence, we have by Fubini’s Theorem

C 1 Z
E[W2(hy, 2); s—f —K?
[Wi (ha, 2)6i] i 1) Jus 1 (

Since the function f is continuous at z, we apply again Lemma 1 with the kernel K*/ K*(x)dx to have
R4

2
CIIKIZ 2o,

2
EIW; (.20 < — g

It follows that

’

) <2 < “48)

nhg
where C’ is a novel positive constant. Combining now (45), (47) and (48) we prove that

E'2[ sup |50 - 22| < 2 k(t)| dt

A f
" < ——
1€laz.b;] 27 \naShd Jr

and hence E'/?[ sup |/l;’z(t) - /l”z(t))|2] —> 0 as n — +oo by assumption (H3)(ii) where A is a constant. This
1€la..b;]
imply the convergence in probability of A;,*(¢) to A7 (¢) uniformly in z. ]

Proof of Theorem 3. By Theorem 1 it is straightforward that

nayhl f(2) (A (0:))(0n(2) — 0(2) = Uy(2) (49)

and by the proof of Theorem 2, U, (z) is a linear functional of the empirical process G, given in (43) and hence, is
asymptotically Gaussian with asymptotic variance o-f and mean function equal to

a}l‘(\/)_ (fnt)_ \/nanhgdgn(tlz)
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where

gu(tl2) = [f' LM V(tlz) + %f(z)L“’z’(tlz)] f ll4* K(x)dx + O(1).
R4

This mean function converges to zero if na)h)? — 0 and it converges to

m () = NCIf @)LV (dl) + %f(z)L“’”(tlz)] f Il K (odx
R4

5

if na h3? — C. This completes the proof of Theorem 3. O
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