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Abstract

A major characteristic of the threshold-free approach to the investigation of the structure of binary data is the step

from binary to continuous by computing probabilities instead of estimating thresholds. Another characteristic is the

consideration of the shift from the distribution of the binary data to the normal distribution of the latent variables

at the level of variances and covariances. Two ways of relating the distributions are considered: standardization

and modifying the assumed model of measurement accordingly. Furthermore, there is the consideration of the

change in the proportion of true variance. A method for estimating the effect on the completely standardized factor

loadings is proposed. In an example the various steps of this threshold-free approach of investigating the structure

of binary data are demonstrated. A major advantage of this approach is the avoidance of estimating thresholds that

requires especially large samples.

Keywords: binary data, structural equation modeling, generalized linear model, link function, probability-based

covariance

1. Introduction

The investigation of binary data by means of factor-analytic methods means relating binary variables following a

binomial distribution to continuous variables showing a normal distribution. The preferred way of bridging the

gap between binary and continuous variables requires the estimation of latent thresholds (Muthen, 1984; Raykov

& Mels, 2009). It is denoted threshold approach in this paper. An investigation of the relationship between

binary and continuous variables, as it is established as part of factor-analytic methods, revealed the equivalence

of this relationship and the relationship established as part of methods based on item response theory (Takane &

de Leeuve, 1987). An unfortunate characteristic of methods requiring the estimation of latent parameter serving

as thresholds is the need for very large samples. The threshold-free approach is proposed in order to overcome

this need. Instead of estimating thresholds probabilities are computed that are achievable on the basis of a smaller

sample.

The threshold-free approach includes three steps for bridging the gap between binary and continuous variables in

confirmatory factor analysis. The first step is concerning the scale level. The switch from binary to continuous

is achieved by computing probabilities that are subsequently transformed into probability-based covariances and

probability-based correlations. Probabilities also play a major role in switching the levels in item response theory

(Hambleton, Swaminathan, & Rogers, 1991) although they contribute in a different way. The second step is

regarding the difference between the distributions since binary variables show a binomial distribution and the

latent continuous variables included in factor-analytic methods follow a normal distribution. Variables following

different distributions need to be related to each other by means of a link function (McCullagh & Nelder, 1985;

Nelder & Wedderburn, 1972). In the third step the focus is on the proportion of true variance. Binary variables can

be thought of as the result of dichotomizing continuous variables which means a loss of information respectively a

diminution of the proportion of true variance. Such variables can be assumed to show a smaller proportion of true

variance than corresponding continuous variables.

In the following sections the threshold-free approach is described by considering the three steps. Furthermore, it

is applied to an example in order to demonstrate its usefulness and to provide instruction for users.

67



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 2; 2013

2. The Step from Ordered Categories to the Continuous Scale

This section presents the method of transforming binary data into covariances that is in agreement with three

requirements: first, the transformation does not include assumptions concerning the number of underlying di-

mensions. Second, the mathematical operations are in agreement with the characteristics of the data. Third,

probabilities provide the outset.

The definition of the covariance considered in this paper can be found in old textbooks on statistics. It was proposed

in order to have an economic way of computing covariances during a time when computer-capacities were rather

limited. Presenting the definition requires the assumption of the real-valued random variables R and S . Given these

random variables and also the expected values E() of R and S and of their product the definition of the covariance

cov(R, S ) is provided by

cov(R, S ) = E(R · S ) − E(R)E(S ) (1)

By adding weights this covariance is transformed into a covariance corresponding to the covariance based on cross-

products. This definition was developed for continuous variables and can easily be transformed into a definition

for binary variables.

The definition of the probability-based covariance omits weights. Furthermore, the continuous variables are re-

stricted to binary variables where the two possible events are coded as 0 and 1. In this case the expected values

correspond to the probabilities of the selected values. Let R be a binary random variable with 0 and 1 as values,

Pr(R = 0) and Pr(R = 1) the corresponding probabilities and 1 the selected value. In this case the expected value is

defined as the sum of the values assigned to the events that are weighted by the probabilities:

E(R) = 1 · Pr(R = 1) + 0 · Pr(R = 0) = 1 · Pr(R = 1) + 0 · [1 − Pr(R = 1)] = Pr(R = 1) (2)

Consequently, for the binary random variables R and S Equation (1) can be rewritten as

cov(R, S ) = Pr(R = 1 ∧ S = 1) − Pr(R = 1)Pr(S = 1) (3)

where the computation of probabilities precedes subtraction and multiplication. This definition of the probability-

based covariance also applies to the variance of R (and also of S ) since

cov(R,R) = Pr(R = 1 ∧ R = 1) − Pr(R = 1)Pr(R = 1) = Pr(R = 1) − Pr(R = 1)2 (4)

The rearrangement of the components of this equation leads to the well-known formula for the computation of the

variances of binary variables var(R):

var(R) = cov(R,R) = Pr(R = 1)[1 − Pr(R = 1)] (5)

Equation (3) can be used for computing the elements of the empirical q × q covariance matrix S. In the q binary

random variables X1, ..., Xq with 0 and 1 as values it is given by

S = [cov(Xi, Xj)]q×q (6)

3. The Step from Binomial to Normal

The generalized linear model (McCullagh & Nelder, 1985; Nelder & Wedderburn, 1972) provides the framework

for establishing a relationship between random variables following different distributions. This model assumes two

random latent variables η and μ. They serve as linear predictor showing a normal distribution and as criterion that

is to be perceived as expected value following a distribution of the exponential family in corresponding order. The

relationship between these variables is established by the link function g() such that

η = g(μ) (7)

(McCullagh & Nelder, 1985, pp. 19-20). Various link functions have been considered for this purpose, as for

example the logit, the complementary log-log function, the inverse normal function and the inverse Cauchy.

Structural equation modeling is at its core a method for the investigation of covariance matrices (Jöreskog, 1970).

Therefore this paper concentrates not on relating predictor and criterion variables but on relating the corresponding

variances and covariances. In the following the focus is on variances. So in this paper the possibilities of estab-

lishing a relationship between variances by means of a link function are considered. Starting from Equation (7) a
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relationship between the variance of the linear predictor and the variance of the criterion has to be established. The

question is whether it is possible to specify g() in such a way that the following equation holds:

var(η) = g[var(μ)] (8)

The variance of μ originates from binary data and the variance of η from continuous data with a normal distribution.

There are two major characteristics of distributions that need to be considered: shape and size. However, shape is

only of importance as far as it influences the size of the variance. As illustrated by Equation (5), the size of the

variance of the criterion variable depends on the probability of the selected event. Furthermore, it varies between 0

and 0.25. In the case of a probability of 0.5 the shape is symmetric and the variance is at its maximum. In contrast,

the variance of the linear predictor is a property of the assumed model. It is mostly assumed to be one or one

multiplied by a parameter. Consequently, the variances differ in two ways as a result of the difference between the

distributions: there is a specific difference because of the deviation from symmetry and there is a general difference

in size.

Two ways of bridging the specific difference are considered. The first means the standardization of the variances

and covariances of the various criterion variables. They can be thought of as being associated with the binary

variables of a dataset. Since these variances and covariances are based on probabilities serving as expected values,

standardization is to be conducted with respect to these variances and covariances. The variance of the jth binary

random variable Xj var(Xj) computed according to Equation (5) can provide the outset for the computation of the

weight wj:

wj = { 1

Pr(Xj)[1 − Pr(Xj)]
}1/2 (9)

The weight serves as a multiplier in the standardization of the covariances of Xj with the other random variables.

The variances are standardized in a similar way. The standardization of the empirical q × q covariance matrix S of

Equation (6) by means of such weights leads to a correlation matrix: the empirical q×q matrix of probability-based

correlations R . This way is denoted the criterion-based way.

A possible disadvantage of the criterion-based way is that it applies equally to true and error components of the

model of measurement. However, according to McCullagh and Nelder (1985, pp. 19-20) μ as expected value does

not include an error component. Therefore, a second way that concentrates on the linear predictor is considered.

This change of perspective requires that the inverse function f () of g(), which in this case is a weight, is considered

and Equation (8) is changed accordingly:

var(μ) = f[var(η)] (10)

In Equation (10) the variance of the linear predictor is adapted to the variance of the criterion.

This change of perspective enables the consideration of the model of the covariance matrix that is closely associated

with the model of measurement. According to the model of the covariance matrix (e.g., Bollen, 1989, p. 18) the

variance of the jth criterion variable σ j is composed of a true component which is the product of the jth factor

loading λ j and the variance of the latent variable φ and of the jth error variance θ j:

σ j = λ jφλ j + θ j (11)

The first summand of the right-hand part represents the true component of variance. The second way requires that

this component is adapted adequately. Such an adaptation can be achieved by constraining the factor loadings to

specific numbers, for example to the number 1, and adding a weight that reflects the probability. The weighted

version of the tau-equivalent model (Schweizer, 2012a) includes such a weight:

λτ| j = {Pr(Xj)[1 − Pr(Xj)]

0.25
}1/2λτ (12)

The factor loading λτ refers to the original tau-equivalent model and is usually a constant and λτ| j the factor loading

of the weighted tau-equivalent model that is expected to reflect the effect of the deviation from symmetry on the

variance of the jth manifest variable Xj. This way is denoted the predictor-based way. It is in line with methods

considered in previous research on the effect of the item position (Schweizer, 2012b; Schweizer, Schreiner, &

Gold, 2009).

Furthermore, there is the general difference in the sizes of the variances associated with the criterion and predictor

variables. Fortunately, there is no need for an additional link function because as part of the estimation process
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of confirmatory factor analysis the model of the covariance matrix is adjusted to the empirical covariance matrix.

The difference between the variances and covariances of the empirical and theoretical matrices is minimized by

estimating either the factor loadings (e.g. λ j) or the variance of the latent variable (φ) as well as the error variance

accordingly. Consequently, the estimates can be expected to reflect the general difference in the size of variances.

Therefore the model fit which serves the evaluation of the appropriateness of the model is not influenced by this

general difference, and no further modification is necessary.

4. The Disattenuation of the Completely Standardized Factor Loadings

Another important issue is the effect of the switch from binary to continuous on the proportion of true variance. The

concept of reliability of classical test theory (Lord & Novick, 1968) suggests that increasing test length changes the

relationship of true and error variance. It was proposed with tests composed of binary items in mind. According to

this concept the switch from binary to continuous can be assumed to be associated with the disproportional increase

of the types of variance. The true variance should increase faster than the error variance. This disproportional

increase is reflected by the completely standardized factor loadings since the square of a completely standardized

factor loading is interpreted as the proportion of true variance (Brown, 2006, p. 133).

The formula developed for the variance of the sum of two random variables provides the basis for the reasoning.

Let R and S be two random variables. Then the variance of the sum var(R + S ) is given by

var(R + S ) = var(R) + var(S ) + rRSvar(R)1/2var(S )1/2 (13)

The correlation of R and S is represented by rRS. For reasons of simplicity it is assumed that the variances of the

two random variables correspond. It is obvious that in the case of uncorrelated variables there is a doubling of the

original variance characterizing both variables whereas in the case of perfectly correlated variables the variance

of the sum is four times the original variance. So, in the case of true variance that can be assumed to be due to

perfectly correlated random variables the multiplier must be four while it must be only two in the case of error

variance.

The change in the proportion of true variance becomes especially apparent in the completely standardized factor

loading that is obtained in relating the true variance, for example as it is defined in Equation (11), to the complete

variance, as it is also given by Equation (11). In order to highlight the change resulting from doubling the length,

multipliers are added to the various parts of the ratio with respect to the jth random variable Xj in the left-hand

part of the following Equation:
4 · λ jφλ j

4 · λ jφλ j + 2 · θ j
=

(21/2 · λ j)φ(2
1/2 · λ j)

2 · λ jφλ j + θ j
(14)

The multipliers added to the true and error components are 4 and 2 in corresponding order. The right-hand part of

Equation (14) is achieved by simple transformations and reordering.

We assume that the shift from the variance of the binary variable showing a symmetric distribution that is 0.25

to the variance of the predictor variable of 1.0 is achieved by doubling the measurement. In this case Equa-

tion (14) provides the opportunity to estimate the effect on the completely standardized factor loading. Since

φ is usually set equal to one, Equation (14) suggests that the disattenuated and completely standardized factor

loading λdisattentuated-completely standardized| j can be estimated from the original completely standardized factor loading

λcompletely standardized| j (= λ j) in the following way:

λdisattentuated-completely standardized| j = 21/2λcompletely standardized| j (15)

However, since the assumption suggesting the doubling of the measure can only be true if there is no error variance,

this way of estimating disattenuated and completely standardized factor loadings may be regarded as a lower limit

in disattenutation.

5. Demonstration

Random data were generated according to a specific population pattern. This pattern was a 9 × 9 correlation

matrix. All the correlations showed the same size: .25. The upper half of Table 1 includes the lower triangle of this

population pattern. The next step served the generation of a 400 × 9 matrix of random data. The numbers of the

columns of this matrix were distributed normally with a mean of zero and a variance of one. In order to generate

an internal structure according to the population pattern, this matrix was re-computed in using weights achieved by

means of a procedure proposed by Jöreskog and Sörbom (2001). The result was a 400 × 9 matrix of simulated data.
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In the following step a covariance matrix was computed in order to illustrate the deviations from the population

pattern resulting from the use of random data. It is provided in the lower half of Table 1. This covariance matrix

computed from simulated data provided the outset for the investigation of structure. It also served as a comparison

level since it was based on continuous data that could be assumed to be normally distributed and structural equation

modeling of such data was undisputed.

Table 1. Population pattern used for data generation (upper half) and covariances computed from simulated data

before dichotomization (lower half)

Population pattern

1.000

.250 1.000

.250 .250 1.000

.250 .250 .250 1.000

.250 .250 .250 .250 1.000

.250 .250 .250 .250 .250 1.000

.250 .250 .250 .250 .250 .250 1.000

.250 .250 .250 .250 .250 .250 .250 1.000

.250 .250 .250 .250 .250 .250 .250 .250 1.000

Covariances based on simulated data

1.071

0.361 1.086

0.304 0.351 0.979

0.291 0.367 0.217 0.998

0.286 0.302 0.203 0.201 0.967

0.293 0.218 0.253 0.171 0.211 0.960

0.271 0.373 0.292 0.251 0.237 0.282 1.021

0.310 0.399 0.261 0.287 0.235 0.219 0.276 1.077

0.283 0.248 0.291 0.249 0.234 0.252 0.300 0.285 0.927

In the next step the numbers of the columns of the re-computed matrix were dichotomized by transforming them

into zeros and ones. Nine proportions were selected for the splits: .10, .20, .30, .40, .50, .60, .70, .80 and .90.

In the first column the 40 smallest numbers (10 percent) were transformed into zeros and the remaining numbers

into ones. In the second column the 80 smallest numbers (20 percent) were replaced by zeros and the remaining

numbers by ones. Columns three to nine were processed accordingly. These data were used for computing proba-

bilities as expected values and probability-based covariances. The upper half of Table 2 provides the probabilities

serving as expected values for the pairs of columns of the matrix of simulated data. The main diagonal includes

the probabilities for individual columns. It can be seen that in two cases there is no exact correspondence between

the expected value and the split. These deviations were due to the fact that in some cases the generation of random

data yielded the same number repeatedly so that it was not possible to automatically split them exactly according

to the given proportion. The probabilities of the combination of columns varied between .035 and .735.

The transformation of the expected values according to Equation (3) led to the probability-based covariances that

are presented in the lower part of Table 2. The main diagonal of this lower triangle matrix includes the variances.

They varied between 0.09 and 0.25. Furthermore, the covariances varied between 0.005 and 0.042.

5.1 The Confirmatory Factor Models

All confirmatory factor models for investigating the data included one latent variable and nine manifest variables

since they represented the assumption that there should be one underlying source of systematic variation. These

models were designed according to the proposed ways of investigating binary data. They were used to investi-

gate the population pattern and the covariance matrix based on continuous data in order to conduct comparisons.

Confirmatory factor analysis was originally proposed as a method for the investigation of covariances (Jöreskog,

1970). Therefore, preference was given to the investigation of covariance matrices. However, there were also cases

demanding the investigation of a correlation matrix.

The first model was constructed according to the criterion-based way. This included a simple congeneric model

(Jöreskog, 1971) comprising one latent and nine manifest variables. It was to be applied to probability-based
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correlations. The other model served the realization of the predictor-based way. It was constructed according

to the weighted version of the tau-equivalent model (Schweizer, 2012a) that also including one latent and nine

manifest variables. The factor loadings were set to one and multiplied by a weight, as shown in Equation (12).

This model had to be applied to probability-based covariances.

Table 2. Probabilities as expected values obtained for the dichotomized data (upper half) and probability-based

covariances (lower half)

Probabilities serving as expected values

.900

.735 .797

.642 .590 .697

.560 .520 .445 .600

.470 .422 .385 .332 .500

.385 .347 .305 .260 .235 .400

.285 .270 .235 .222 .170 .155 .300

.192 .187 .172 .160 .125 .107 .090 .200

.095 .085 .082 .077 .060 .065 .047 .035 .100

Probability-based covariances

0.090

0.017 0.161

0.014 0.033 0.211

0.020 0.041 0.026 0.240

0.020 0.023 0.036 0.032 0.250

0.025 0.028 0.026 0.020 0.035 0.240

0.015 0.030 0.025 0.042 0.020 0.035 0.210

0.012 0.028 0.033 0.040 0.025 0.027 0.030 0.160

0.005 0.005 0.012 0.017 0.010 0.025 0.017 0.015 0.090

The models for investigating the population pattern and the convariance matrix based on continuous data were

congeneric models. Since the congeneric model most often characterized confirmatory factor analysis, it was

considered as the standard model and is addressed accordingly in this paper. Each one of these models included

one latent and nine manifest variables. In order to investigate the population pattern it was necessary to specify the

sample size although there was no sample. It was set to the same number as in all the other models.

Some of the columns of the matrix of dichotomized data showed considerable deviations from symmetry, i. e.

equal numbers of zeros and ones. This lack of symmetry in a way meant nonnormality and was considered as a

major problem for the investigation of model fit (Curran, West, & Finch, 1996; Fan & Hancock, 2012). Therefore

a specific estimation method had to be applied in combination with the criterion-based and preditor-based ways of

investigating binary data. It was the robust estimation method proposed by Satorra and Bentler (1994; Bryant &

Satorra, 2012).

The investigations were conducted by means of LISREL (Jöreskog & Sörbom, 2006). Fit results and completely

standardized factor loading were considered in the evaluation. The report of the results of investigating model fit

includes the following statistics: chi-squares, degrees of freedom, normed chi-squares, RMS EA, S RMR, CFI, T LI
and AIC. Cut-offs provided by Hu and Bentler (1999) served the evaluation of the results (RMS EA .06, S RMR
.08, CFI .95, T LI .95). Furthermore, following Bollen (1989) normed chi-squares below 2 were considered as an

indication of a good model fit while values of below 3 were considered acceptable. The remaining statistics were

not associated with a cut-off.

5.2 The Results

The fit results observed in investigating the covariances and correlations are presented in Table 3. The first and

second row were based on continuous data and constituted the comparison level for the results presented in the

other rows. As is obvious from the first row, the investigation of the population pattern yielded incomplete results

probably because of the lack of variability. All the statistics indicated a good model fit. RMS EA and CFI even

signified a perfect degree of model fit for all investigations of models. The other fit statistics showed minor

variations that did not exceed the selected cut-offs. The difference in chi-squares between the standard model

72



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 2; 2013

applied to continuous data and the models according to the threshold-free approach was surprisingly large. It could

be explained by the difference between the estimation methods: normal ML estimation versus robust estimation.

Since the models were not nested, it was not possible to apply the chi-square difference test. The comparison

by means of AIC revealed that the predictor-based way led to the best model fit and that the criterion-based way

ranked second in the absence of a result for the population pattern. The good model fit for the predictor-based way

was partly due to the high number of degrees of freedom resulting from the constraint of the factor loadings.

Most interesting was the observation that the various ways did not differ according to the CFI results. This was a

crucial observation since according to the work of Cheung and Rensvold (2002) CFI differences larger than 0.01

would have indicated a substantial difference between the models. Apparently, the various ways of investigating

the structure of binary data and corresponding continuous data did not differ substantially according to model

fit. Since all models showed the same structure and the binary data were derived from the continuous data, this

outcome suggested that the two ways of the threshold-free approach of investigating binary data did reasonably

well.

Table 3. Results of investigating model fit by means of the standard model and models according to the threshold-

free approach

Way Data χ2 df Normed SRMR TLI

type χ2 RMSEA CFI AIC

Continuous data as basis

Standard Pattern 0.00 27 0.00 - - - - -

Standard Covariances 25.04 27 0.93 0.000 0.027 1.00 1.00 61.0

Binary data as basis

Criterion-based1 PCor2 4.15 27 0.15 0.000 0.027 1.00 1.08 40.1

Predictor-based1 PCov3 0.12 35 0.01 0.000 0.036 1.00 1.08 20.1
1 Parameter estimation with robust method.
2 Probability-based correlations.
3 Probability-based covariances.

Next, the completely standardized factor loadings were considered. Table 4 provides these factor loadings. Again

the results obtained for continuous data are presented first and for binary data subsequently. As expected, investi-

gating the population pattern by the standard model led to a uniform loading pattern. All factor loadings were .50

and reached the level of significance. The investigation of the covariance matrix computed from continuous data

by means of the standard model revealed factor loadings that varied between .45 and .62. The mean of these factor

loadings was .52 which slightly surmounted the mean for the population pattern. As expected, there was no need

for disattentuation of the factor loadings achieved in continuous data.

Table 4. Completely standardized factor loadings obtained by means of the standard model and models according

to the threshold-free approach

Way Data Number of manifest variables

type 1 2 3 4 5 6 7 8 9

Continuous data as basis

Standard Pattern 0.50	 0.50	 0.50	 0.50	 0.50	 0.50	 0.50	 0.50	 0.50	

Standard Covariances 0.56	 0.62	 0.53	 0.49	 0.46	 0.45	 0.54	 0.53	 0.52	

Binary data as basis

Criterion-based1 PCor2 0.32	 0.42	 0.37	 0.42	 0.32	 0.36	 0.39	 0.43	 0.26

disattentuated 0.45 0.59 0.52 0.59 0.45 0.51 0.55 0.61 0.37

Predictor-based1 PCov3 0.36∗ 0.37∗ 0.37∗ 0.37∗ 0.36∗ 0.37∗ 0.37∗ 0.37∗ 0.36∗
disattentuated 0.51 0.52 0.52 0.52 0.51 0.52 0.52 0.52 0.51

1 Parameter estimation with robust method.
2 Probability-based correlations.
3 Probability-based covariances.
	 p <.05 (concerning factor loading).
∗ p <.05 (concerning variance of the corresponding latent variable).
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In contrast, two factor loadings were computed for each manifest variable by applying the criterion-based and

predictor-based ways of the threshold-free approach: one without disattentuation and one with disattentuation.

In the criterion-based way the range of factor loadings was between .26 and .42 with a mean factor loading of

.36. All factor loadings with the exception of the last one reached the level of significance. After disattenuation

these loadings varied between 0.37 and .59. The mean of disattenuated factor loadings was .51. The completely

standardized factor loadings of the predictor-based way that were modified constraints varied between .36 and .37

without disattenuation and between .51 and .52 with disattenuation. The means were .37 and .52 in corresponding

order. It was also important to inspect these constraints since the weights according to Equation (12) could have

caused a systematic deviation from equal sizes after standardization.

Obviously, disattenuation was necessary in order to achieve means in investigating binary data, which were close

to the means observed in investigating the population pattern and continuous data. It was interesting to find that

the disattenuated factor loadings of the predictor-based way showed the lowest overall deviations from the factor

loadings obtained for the population pattern.

Finally, the binary data were investigated according to the threshold approach. Tetrachoric correlations were

computed and investigated by the congeneric model in considering the robust estimation method. The fit results

are presented in the first row of Table 5. For comparison the results observed by the criterion-based and predictor-

based ways of the threshold-free approach are given in the other rows of this table. Despite the robust estimation

method only the S RMR results indicated a good model fit for the threshold approach. Comparing the upper and

lower parts of this Table revealed considerable differences. Apparently, the model fit achieved in the investigation

according to the threshold approach was not acceptable.

Table 5. Fit results achieved in investigations according to the threshold and threshold-free approaches

Way Data χ2 df Normed SRMR TLI

type χ2 RMSEA CFI AIC

Threshold approach

Standard TCor2 98.65 27 3.65 0.082 0.053 0.88 0.84 134.6

Threshold-free approach

Criterion-based1 PCor3 4.15 27 0.15 0.000 0.027 1.00 1.08 40.1

Predictor-based1 PCov4 0.12 35 0.01 0.000 0.036 1.00 1.08 20.1

1 Parameter estimation with robust method.
2 Tetrachoric correlations.
3 Probability-based correlations.
4 Probability-based covariances.

6. Discussion

The introduction of a threshold-free approach for the investigation of the structure of binary data by means of

confirmatory factor analysis is described as the major aim in the introductory section of this paper since the con-

sideration of thresholds implies a considerable demand to the estimation process in the investigation of structure.

Meeting this demand usually means providing a very large dataset. Although only one dataset of agreeable size

was investigated for a demonstration of the threshold approach, this investigation provided a very convincing cor-

roboration of the demand. Furthermore, there is another point which may additionally influence the outcome and

needs to be mentioned. Data analysis according to the threshold approach implies two separate estimation pro-

cesses: the estimation of the thresholds as part of the computation of tetrachoric correlations and the estimation of

the parameters of the structural model. These are estimation processes according to different models. In datasets

showing a high quality the combination of these estimation processes can be expected to do very well. However, if

the quality of the data is less than optimal, the first estimation process can cause an exaggeration of the deviations

from the expected structure.

In the threshold-free approach the repeated estimation of parameters is avoided by concentrating on the parameters

of the structural model. The estimation of thresholds is replaced by the computation and adaptation of sample

statistics. This approach initially requires the computation of probabilities. This includes the transformation of the

probabilities into probability-based covariances or probability-based correlations. Adjustments for bridging the

difference in variance between the binomial and normal distributions add up to a second step. These adjustments

follow the logic of the generalized linear model by McCullagh and Nelder (1985, p. 21) at the level of variances
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and covariances. Finally, there is the disattenuation of completely standardized factor loadings in order to achieve

values close to the completely standardized factor loadings for the population pattern. However, the disattenuation

step is only an auxiliary component of the threshold-free approach which can be helpful in checking the appropri-

ateness of the outcome. Corresponding results achieved for binary and continuous data can not really be expected

since the original step from continuous to binary means a loss of information.

Two ways of dealing with the distributional differences are considered. The criterion-based way requires the

application of the congeneric model of measurement (Jöreskog, 1971), which is the standard model of confirmatory

factor analysis, to probability-based correlations. The predictor-based way is more demanding because it requires

the investigation of probability-based covariances by means of the weighted version of the tau-equivalent model of

measurement (Schweizer, 2012a). In the demonstration both ways did equally well according to the fit statistics. In

contrast, the disattentuated and completely standardized factor loadings obtained in the predictor-based way were

much closer to the population statistics than the disattentuated and completely standardized factor loadings for the

other way. The advantage of the predictor-based way is presumably due to the fact that both the tau-equivalent and

data-generation models assumed one latent source that equally contributes to all the manifest variables. If there

were a discrepancy between the models, the predictor-based way could be expected to yield the less favourable

results.

Although the simulated data did not mean a severe challenge to the methods according to the two ways of the

threshold-free approach, the demonstration made characteristic similarities and differences obvious. Furthermore,

the demonstration substantiated the claim that the threshold and threshold-free approaches are differently demand-

ing to the quality of the data.
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