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Abstract

The theory of stochastic dynamic equations extends and unifies the theories of stochastic difference and differential

equations. In this paper, we prove the existence and uniqueness of the strong solution of a certain class of stochastic

dynamic equations. As a principal tool in the proof, we define and develop the properties of stochastic dynamic

integrals with respect to a Brownian motion indexed by a time scale. Finally we illustrate our theory with the

examples of stochastic exponential and geometric Brownian motion.
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1. Introduction

The theory of stochastic dynamic equations (SΔE) is a relatively new area of mathematics that extends and unifies

the theory of stochastic difference and differential equations. The basic idea is to replace the time domain of the

underlying stochastic process with a time scale, T; that is T is an arbitrary nonempty closed subset of the reals

R. It is evident that when T = Z we have the theory of stochastic difference equations and when T = R we

have the theory of stochastic differential equations. The theory of SΔE was first investigated in (Sanyal, 2008).

Subsequently various authors have contributed to this endeavor. Notable contributions include the construction

of Brownian motion in (Grow & Sanyal, 2011), the quadratic variation of Brownian motion in (Grow & Sanyal,

2012), the construction of the stochastic dynamic exponential and the explicit solution of geometric Brownian

motion in (Bohner & Sanyal, 2010), the existence and uniqueness of random dynamical systems in (Lugan &

Lupulescu, 2012), and in the special case of q-calculus time scale T = qZ
+

= {1, q, q2, q3, . . .} for q > 1, Itô’s

lemma and a financial option pricing application in (Haven, 2009, 2011).

In this paper we provide conditions which guarantee the existence and uniqueness of the strong solution of a certain

class of stochastic dynamic initial value problems (IVPs) of the form

ΔX = a(X, t)Δt + b(X, t)ΔW, Xt0 = X0. (1)

By a strong solution of (1) on (Ω,F ,P) and w.r.t. a fixed Brownian motion W and a fixed initial process X0, we

mean a stochastic process indexed by a time scale, X = {Xs: s ∈ T}, with sample paths that are continuous and

with the following properties:

1) X is adapted to the filtration {Fs: s ∈ T},
2) P(Xt0 = X0) = 1,

3) P

(∫
Tt

(
|a(Xu, u)| + b2(Xu, u)

)
Δu < ∞

)
= 1,

and the integral version of (1)

Xt = X0 +

∫
Tt

a(Xu, u)Δu +
∫
Tt

b(Xu, u)ΔWu, (2)

holds almost surely. We define Brownian motion indexed by T as an adapted, continuous stochastic process

W = {Wt,Ft: t ∈ T}, defined on (Ω,F ,P) such that
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1) Wt0 = 0 a.e.-P;

2) if t0 ≤ s < t and s, t ∈ T then the increment Wt −Ws is normally distributed with mean 0 and variance t − s and

is independent of Fs.

For a generalization of the Kolmogorov-Čentsov theorem and the construction of such a generalized Brownian

motion indexed by T, please refer to (Grow & Sanyal, 2011). Here and in the rest of this paper Tt denotes [t0, t]∩T
for some t ∈ T. In (2), the first integral is a Δ-integral defined in (Bohner & Peterson, 2001) and the validation for

the second integral is provided in Section 3.

The paper is organized as follows. In Section 2 we provide basic definitions regarding time scales, in Section 3 we

define the stochastic integral w.r.t. a Brownian motion indexed by a time scale and develop some its properties, and

finally in Section 4 we state and prove an existence and uniqueness result concerning (1).

2. Preliminaries

A time scale, T, is primarily used to unify and extend discrete and continuous analysis (Bohner & Peterson, 2001,

2003). Examples of time scales include R, Z, qN0 for q > 1, hZ for h > 0, [0, 1] ∪ [2, 3], the Cantor set, etc. Given

a time scale, T, we define ρ(t) = sup{s ∈ T: s < t} as the backward shift operator ρ on Tκ, σ(t) = inf{s ∈ T:

s > t} as the forward shift operator σ on Tκ, and μ(t) = σ(t) − t as the graininess function depicting the gaps

between two points in a time scale, where the sets Tκ and Tκ are defined as Tκ := T\{supT} and Tκ := T\{inf T}.
For the definitions of (i) right dense point, (ii) the set of right dense continuous functions (Crd), (iii) the set of all

regressive functions (R), (iv) the set of positively regressive functions (R+), (v) Hilger derivative (or Δ-derivative),

(vi) Δ-anti-derivative, and (vi) Δ-integral, we refer the readers to (Bohner & Peterson, 2001). For t0 ∈ T, y0 ∈ R,

and p ∈ R, the IVP

yΔ = p(t)y, y(t0) = y0

has a unique solution given by y = ep(·, t0)y0. The generalized polynomials gk, hk: T × T → R, k ∈ N0 are defined

as follows. The functions g0 and h0 are g0(t, s) = h0(t, s) ≡ 1 for all s, t ∈ T, and for k ∈ N0

hΔk+1(t, s) = hk(t, s) (3)

for t ∈ Tκ with hk+1(s, s) = 0 where hΔk (t, s) denotes for each fixed s the Δ-derivative of hk(t, s) w.r.t. t. Similarly

gΔk+1
(t, s) = gk(σ(t), s) for t ∈ Tκ with gk+1(s, s) = 0. Thence, it can be shown that

ek(t, t0) =

∞∑
n=0

knhn(t, t0) (4)

for constant k ∈ R and t0, t ∈ T. To verify (4) we need the following lemma.

Lemma 1 Let s, t ∈ T with s ≤ t and h defined as in (3). Then

hn(t, s) ≤ (t − s)n

n!
(5)

for n ∈ N0.

Proof. Observe that h0(t, s) = 1 and h1(t, s) = t − s so (5) holds when n = 0 or 1. Suppose (5) holds for some

integer n ≥ 1. Then

hn+1(t, s) =

∫ t

s
hn(u, s)Δu ≤ 1

n!

∫ t

s
(u − s)nΔu. (6)

But (
(t − s)n+1

)Δ
=

n∑
ν=0

(σ(t) − s)ν(t − s)n−ν

and

(u − s)n ≤
n∑
ν=0

1

n + 1
(σ(u) − s)ν(u − s)n−ν
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for u ≥ s, so

∫ t

s
(u − s)nΔu ≤

∫ t

s

⎛⎜⎜⎜⎜⎜⎝ 1

n + 1

n∑
ν=0

(σ(u) − s)ν(u − s)n−ν
⎞⎟⎟⎟⎟⎟⎠Δu

=

∫ t

s

(
1

n + 1
(u − s)n+1

)Δ
Δu

=
(t − s)n+1

n + 1
.

Substituting in (6) gives

hn+1(t, s) ≤ 1

n!

(t − s)n+1

(n + 1)!
=

(t − s)n+1

(n + 1)!
.

Hence (5) holds for all n ∈ N0 by induction. �

To begin the verification of (4), let yN(t) =
N∑

n=0

knhn(t, t0) for N ∈ N0. Then

yΔN(t) =
N∑

n=0

knhΔn (t, t0) =

N∑
n=1

knhΔn−1(t, t0) = k
N−1∑
n=0

knhΔn (t, t0) = kyN−1(t).

From Lemma 1, it follows that

∞∑
n=0

|knhn(t, t0)| ≤
∞∑

n=0

kn(t − t0)n

n!
= ek(t−t0) < ∞.

Therefore
{
yΔN

}∞
N=1
= {kyN−1}∞N=1 converges uniformly on TT and the limit function

y(t) = lim
N→∞ yN(t) =

∞∑
n=0

knhn(t, t0)

is differentiable on TT with

yΔ(t) = lim
N→∞ yΔN(t) = k lim

N→∞ yN−1(t) = ky(t).

Clearly y(t0) =

∞∑
n=0

knhn(t, t0) = 1, so y(t) =
∞∑

n=0

knhn(t, t0) is a solution to the IVP yΔ = ky, y(t0) = 1 on T. By

uniqueness of solutions to this IVP, y(t) = ek(t, t0) on T, i.e. (4) holds for all t ∈ T. Finally we present the following

lemma (an analogue of Gronwall’s inequality) without proof.

Lemma 2 Let φ ∈ Crd, f ∈ R+, f ≥ 0, and let C0 ∈ R. Then

φ(t) = C0 +

∫
Tt

f (u)φ(u)Δu

for all t ∈ TT implies
φ(t) ≤ C0e f (t, t0)

for all t ∈ TT .

In the next section we present the construction of the stochastic dynamic integral.

3. Stochastic Dynamic Integral

Let inf T > −∞ and supT = ∞ and let ψ be a real, increasing, and right continuous function on T. Lebesgue-

Stieltjes delta integrals w.r.t.ψ on intervals in T can be defined in terms of Lebesgue-Stieljes intervals on intervals

in R in a manner analogous to the Lebesgue delta integral w.r.t. the forward shift function of T (Bohner & Peterson,

2003; Guseinov, 2003). Explicitly, define Ψ on R by Ψ(t) = inf{ψ(s): s ∈ T, t < s}. Since Ψ is real, increasing,

and right continuous of R such that ν(c, d] = Ψ(d) − Ψ(c) for all intervals in R of the form (c, d]. If φ is a Borel
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measurable function on an interval I such that

∫
I
|φ(x)|dν < ∞ then we say that φ is Lebesgue-Stieltjes integrable

w.r.t.Ψ on I.

Definition 1 Let a < b be points in T, let ψ be a real, increasing, and right continuous function on [a, b] ∩ T, and

let φ be a Borel measurable function which is Lebesgue-Stieltjes integrable w.r.t.Ψ on [a, b]. Then the Lebesgue-

Stieltjes delta integral of φ w.r.t.ψ on the interval [a, b] ∩ T is defined by

∫ b

a
φ(x)Δψ(x) =

∫
[a,b]

φ(x)dΨ(x) =

∫
[a,b]

ψ+dν −
∫

[a,b]

ψ−dν.

Similarly, if φ is a nonnegative Borel measurable function on [a, b], then we define

∫ b

a
φ(x)Δψ(x) =

∫
[a,b]

φ(x)dΨ(x) =

∫
[a,b]

ψdν,

with +∞ as a possible value of this integral.

For the construction of the stochastic dynamic integral

∫
Tt

XuΔWu, we parallel the construction of the stochastic

integral w.r.t. a continuous square integrable martingale on [0,∞) as presented in (Karatzas & Shreve, 1998). Let

W = {Wt,Ft: t ∈ T} be a Brownian motion indexed by T defined on (Ω,F ,P). In order to avoid possible measure

theoretic pathologies, we can and do assume that Ft0 contains all subsets of P-measure zero in F and the filtration

{Ft: t ∈ T} is right continuous, i.e.

Ft = ∩{Fρ(s) : s ∈ T, s > t} (7)

for all t ∈ T. By a partition of the interval Tt we mean a finite subset P : t0 < t1 < t2 < · · · < tn = t of Tt and we

define mesh(P) := max
1≤i≤n
|ti − ti−1| for which (ti−1, ti) ∩ T � ∅ and we discard intervals for which (ti−1, ti) ∩ T = ∅.

Definition 2 X be a stochastic process indexed by T with inf T > −∞. Then the quadratic variation of X over the

partition P of the time scale Tt is defined as

X2
t0,t(P) =

n∑
k=1

(Xtk − Xtk−1
)2.

If X2
t0,t(P) converges in probability sufficiently rapidly as mesh(P) → 0 then the limit, 〈X〉t, is called the quadratic

variation of X on Tt.

In (Grow & Sanyal, 2012), it has been shown that

〈W〉t = λ(Tt) +
∑
bn≤t

(Wbn −Wan )2, (8)

where λ denotes the Lebesgue measure and ∪̇∞n=1(an, bn) = [t0,∞)\T.

For fixed t ∈ T, the function ω→ 〈W〉t(ω) is in L2(Ω,P) and so

∑
bn≤t

(Wbn −Wan )2 < ∞ P-a.e. ω ∈ Ω.

Then P-a.e. ω ∈ Ω, the function ω → 〈W〉t(ω) is real, increasing, and right continuous on T. Consequently, we

may define a measure μW on (T ×Ω,B(T) ⊗ F ) by

μW (A) = E

(∫
T
χA(u, ·)Δ〈W〉u

)
=

∫
Ω

∫
T
χA(u, ω)Δ〈W〉u(ω)dP(ω).

We will say that two measurable, adapted processes X = {Xs,Fs: s ∈ T} and Y = {Ys,Fs: s ∈ T} indexed by T are

equivalent if Xs(ω) = Ys(ω) for μW -a.e. (s, ω). Then

[X]T =

(∫
Ω

∫
TT

X2
u(ω)Δ〈W〉u(ω)dP(ω)

)1/2
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for t ∈ T defines an L2-norm for X regarded as a function of (s, ω) restricted to the space TT ×Ω under the measure

μW , and [X − Y]T = 0 for all T ∈ T if and only if X and Y are equivalent.

Definition 3 A stochastic process X = {Xt: t ∈ T} on (Ω,F ) is called progressively measurable w.r.t. the filtration

{Ft: t ∈ T} if the mapping (s, ω) �→ Xs(ω) from (Tt ×Ω,B(Tt) ⊗ Ft) into (R,B(R)) is measurable for all t ∈ T.

Let L∗ denote the set of equivalent classes of stochastic processes X which are progressively measurable w.r.t. {Ft:

t ∈ T} and for which [X]T < ∞ for all T ∈ T. Following the standard convention in measure and integration, we

will not distinguish between an equivalence class in L∗ and a representative process X from that class. Choose and

fix a strictly increasing sequence {tn}∞n=1 of points from T tending to infinity and define a metric on L∗ by

d(X,Y) = [X − Y] where [X] =

∞∑
n=1

2−n min{1, [X]tn }. (9)

Let L∗T denote the set of processes X in L∗ for which Xt(ω) = 0 for all t ∈ [T,∞)∩T and ω ∈ Ω. Define L∗∞ as the

class of processes X ∈ L∗ for which

E

(∫
T

X2
uΔ〈W〉u

)
=

∫
Ω

∫
T

X2
u(ω)Δ〈W〉u(ω)dP(ω) < ∞.

If T ∈ T or T = ∞ then L∗T is a subspace of the Hilbert spaceHT = L2(TT ×Ω,B(Tt) ⊗ FT , μW ).

Definition 4 A process X indexed by T is called simple if there exists a strictly increasing sequence {sn}∞n=0 of

points from T, tending to infinity with s0 = t0, as well as a sequence of random variables {ξn}∞n=0 and a constant

C < ∞ with sup
n≥0

|ξn(ω)| ≤ C for every ω ∈ Ω, such that ξn is Fsn -measurable for every n ≥ 0 and

Xt(ω) =

∞∑
i=0

ξi(ω)χ[si−1,si)∩T(t) (10)

for all t ∈ T and ω ∈ Ω.

Denote byL0 the class of all simple processes and observe thatL0 ⊆ L∗ since the processes inL0 are progressively

measurable and bounded. A standard construction shows that the set L0 of simple processes is dense in L∗ w.r.t.

metric d(X,Y) = [X − Y] defined in (9).

Definition 5 The Brownian motion transform of (10) in L0 is a progressively measurable stochastic process

I(X) = {It(X),Ft : t ∈ T}
given by

It(X) =

n−1∑
i=0

ξi(Wsi+1
−Wsi ) + ξn(Wt −Wsn ).

Here n ≥ 0 is the unique integer for which sn ≤ t < sn+1.

It is apparent from Definition 5 that the Brownian motion transform is linear, i.e.

I(αX + βY) = αI(X) + βI(Y)

for all α, β ∈ R and all X,Y ∈ L0. Furthermore, if X ∈ L0 then I(X) is a right continuous, square integrable

martingale indexed by T with quadratic variation

〈I(X)〉t =
∫
Tt

X2
uΔ〈W〉u

and second moment

E

(
I2
t (X)

)
= E

(∫
Tt

X2
uΔ〈W〉u

)
=

∫
Tt

E

(
X2

u

)
Δu.

for all t ∈ T.

81



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 2; 2013

Definition 6 The spaceM2 of all right continuous, square integrable martingales indexed by T consists of those

adapted processes X = {Xt,Ft : t ∈ T} such that

1) Xt0 = 0 a.e.-P;

2) for P-a.e ω ∈ Ω, the function t �→ Xt(ω) is right continuous on T;

3) E
(
X2

t

)
=

∫
Ω

X2
t (ω)dP(ω) < ∞ for all t ∈ T;

4) the conditional expectations of X satisfy E (Xt |Fs) = Xs for all s and t in T such that t0 ≤ s ≤ t.

For any X ∈ M2, if we define

||X|| :=
∞∑

n=1

2−n min
{
1,

√
E

(
X2

tn

)}
,

then ||X − Y || is a pseudo-metric onM2, almost all of whose sample paths t �→ Xt(ω) and t �→ Yt(ω) are identical

on T, then ||X − Y || is a complete metric on the equivalence classes ofM2. As usual, we will blur the distinction

between an equivalence class inM2 and a representative process X from that class. Observe that for X ∈ L0 we

have

||I(X)|| =
∞∑

n=1

2−n min
{
1,

√
E

(
I2
tn (X)

)}

=

∞∑
n=1

2−n min

⎧⎪⎪⎪⎨⎪⎪⎪⎩1,

√
E

(∫
Ttn

X2
uΔ〈W〉u

)⎫⎪⎪⎪⎬⎪⎪⎪⎭ = [X]. (11)

That is, the Brownian motion transform is a linear isometry from the space L0 of simple processes into the space

M2 of right continuous, square integrable martingales. Moreover, L0 is a dense subspace of the square integrable

progressively measurable processes L∗ equipped with the metric d(X,Y) = [X − Y], and M2 equipped with the

metric D(U,V) = ||U −V || is complete. Consequently, the Brownian motion transform extends in the usual manner

to an isometry from L∗ intoM2.

Definition 7 The stochastic dynamic integral of X ∈ L∗ w.r.t. a Brownian motion W indexed by T is the unique right

continuous, square integrable martingale indexed by T, I(X) = {It(X),Ft: t ∈ T}, satisfying ||I(X(n)) − I(X)|| → 0

for every sequence {X(n)}∞n=1 in L0 satisfying

[X(n) − X]→ 0.

We denote the stochastic dynamic integral of X w.r.t. W by It(X) =

∫
Tt

XuΔWu for all t ∈ T.

Theorem 1 Let X and Y belong to L∗, let s, t ∈ T with t0 ≤ s < t, and let α, β ∈ R. Then the stochastic dynamic
integral given in Definition 7 has the following properties.

1)

∫
Tt0

XuΔWu = 0.

2)

∫
Tt

(αXu + βYu)ΔWu = α

∫
Tt

XuΔWu + β

∫
Tt

YuΔWu.

3) E

(∫
Tt

XuΔWu

∣∣∣∣∣∣Fs

)
=

∫
Ts

XuΔWu.

4) E

⎛⎜⎜⎜⎜⎜⎝
(∫
Tt

XuΔWu

)2
⎞⎟⎟⎟⎟⎟⎠ = E

(∫
Tt

X2
uΔ〈W〉u

)
=

∫
Tt

E

(
X2

u

)
Δu.

5) ||I(X)|| = [X].

Proof. Properties 1, 2, and 3 follow from Definition 7. For property 4, note that

E

(
I2
t (X)

)
= E

(∫
Tt

X2
uΔ〈W〉u

)
=

∫
Ω

∫
Tt

X2
u(ω)Δ〈W〉u(ω)dP(ω)
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and from (8) we have

∫
Ω

∫
Tt

X2
u(ω)Δ〈W〉u(ω)dP(ω) =

∫
Ω

(∫
Tt

X2
u(ω)Δλ(Tu)

)
dP(ω) +

∫
Ω

⎛⎜⎜⎜⎜⎜⎜⎝
∫
Tt

X2
u(ω)Δ

⎛⎜⎜⎜⎜⎜⎜⎝
∑
bn≤u

(Wbn −Wan )(ω)

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ dP(ω)

=

∫
Tt

E

(
X2

u

)
Δλ(Tu) +

∑
bn≤t

∫
Ω

X2
an

(ω)(Wbn −Wan )2(ω)dP(ω)

=

∫
Tt

E

(
X2

u

)
Δλ(Tu) +

∑
bn≤t

E

(
X2

an

) (∫
Ω

(Wbn −Wan )2(ω)dP(ω)

)

=

∫
Tt

E

(
X2

u

)
Δλ(Tu) +

∑
bn≤t

E

(
X2

an

)
(bn − an)

=

∫
Tt

E

(
X2

u

)
Δ (λ(Tu) + λ([t0, u]\T))

=

∫
Tt

E

(
X2

u

)
Δ (λ([t0, u]))

=

∫
Tt

E

(
X2

u

)
Δu.

Finally property 5 follows from (11) and property 4. �

Example 1 Let T = [0, 1] ∪ [2,∞). By the definition of right-continuity of the filtration Ft given in (7) note that

F1 � F2. Let us take a simple process

Xt =

{
a for t ∈ [0, 1),

b for t ∈ {1} ∪ [2,∞),

where a, b ∈ R. Then

E

(
I2
2(X)

)
= E

(
(aW1 + b(W2 −W1))2

)
= a2 + b2 + 2E (abW1(W2 −W1))

and

E

(∫
T2

X2
uΔ〈W〉u

)
= E

(
a2W2

1 + b2(W2 −W1)2
)
= a2 + b2.

Since by the definition of W given in Section 1, W2 −W1 is F1 measurable and independent of F1, we observe that

E (abW1(W2 −W1)) = 0. Also

∫
T2

E

(
X2

u

)
Δu =

∫ 1

0

a2du + b2μ(1) = a2 + b2

and hence

E

(
I2
2(X)

)
= E

(∫
T2

X2
uΔ〈W〉u

)
=

∫
T2

E

(
X2

u

)
Δu.

In the next section we present the existence and uniqueness of stochastic dynamic equation.

4. Existence and Uniqueness

With the theory of stochastic dynamic integral established, the second integral in (2) has meaning. Consequently,

we are able to rigorously cast the IVP (1) in the integral form (2). We now consider the problem of the existence

and uniqueness of solutions of (1).

Theorem 2 Let T be a time scale and suppose a, b: T × R→ R satisfy the conditions

|a(x1, t) − a(x2, t)| ≤ L|x1 − x2|
|b(x1, t) − b(x2, t)| ≤ L|x1 − x2| (12)
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and

|a(x, t)| ≤ L(1 + |x|)
|b(x, t)| ≤ L(1 + |x|) (13)

for all t ∈ TT , all x, x1, x2 ∈ R and for some constant L. Let X0 be any real-valued random variable such that
E

(
|X0|2

)
< ∞. Then there exists a unique strong solution X of the stochastic dynamic IVP

ΔX = a(X, t)Δt + b(X, t)ΔW, X(t0) = X0 (14)

on TT . Moreover, there exists a constant kT ∈ R such that

E

(
|Xt |2

)
≤ kT

(
1 + E

(
|X0|2

))
ekT (t, t0) (15)

for t ∈ TT .

Proof. Let us suppose that X and X̂ are solutions of (14). Then for t0, t,T ∈ T,

E

(
|Xt − X̂t |2

)
≤ 2E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

(
a(Xu, u) − a(X̂u, u)

)
Δu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠ + 2E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

(
b(Xu, u) − b(X̂u, u)

)
ΔWu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠

≤ 2L2(T − T0 + 1)

∫
Tt

E

(∣∣∣Xu − X̂u

∣∣∣2)Δu

≤ C
∫
Tt

E

(∣∣∣Xu − X̂u

∣∣∣2)Δu,

provided t ∈ TT and C = 2L2(T − T0 + 1). Therefore Lemma 2, with C0 = 0, implies φ(t) = E
(
|Xt − X̂t |2

)
≡ 0.

Thus Xt = X̂t a.s. for all t ∈ TT .

To prove existence, let us define X0
t := X0 and

Xn+1
t := X0 +

∫
Tt

a(Xn
u , u)Δu +

∫
Tt

b(Xn
u , u)ΔWu (16)

for n ∈ N0 and t ∈ TT . We claim that

δnt := E
(
|Xn+1

t − Xn
t |2

)
≤ Mn+1hn+1(t, t0) (17)

for all n ∈ N0, and t ∈ TT , where hn are the generalized polynomials defined by (3) and M a constant that depends

on L, T , and X0. Indeed for n = 0, we have

δ0t = E
(
|X1

t − X0
t |2

)

= E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

a(X0, u)Δu +
∫
Tt

b(X0, u)ΔWu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠

≤ 2E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

L (1 + |X0|)Δu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠ + 2E

(∫
Tt

L2 (1 + |X0|)2 Δ〈W〉u
)

≤ M(t − t0) = Mh1(t, t0)
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for M = 2L2(T − t0 + 1)E
(
(1 + |X0|)2

)
. Under the assumption that the claim is valid for n − 1, we have

δnt = E
(
|Xn+1

t − Xn
t |2

)

= E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

(
a(Xn

u , u) − a(Xn−1
u , u)

)
Δu +

∫
Tt

(
b(Xn

u , u) − b(Xn−1
u , u)

)
ΔWu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠

≤ 2E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

(
a(Xn

u , u) − a(Xn−1
u , u)

)
Δu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠ + 2E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

(
b(Xn

u , u) − b(Xn−1
u , u)

)
ΔWu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠

≤ 2(t − t0)E

(∫
Tt

∣∣∣a(Xn
u , u) − a(Xn−1

u , u)
∣∣∣2 Δu

)
+ 2E

(∫
Tt

∣∣∣b(Xn
u , u) − b(Xn−1

u , u)
∣∣∣2 Δ〈W〉u

)

≤ 2L2(t − t0)

∫
Tt

E

(∣∣∣Xn
u − Xn−1

u

∣∣∣2)Δu + 2L2

∫
Tt

E

(∣∣∣Xn
u − Xn−1

u

∣∣∣2)Δu

= 2L2(T − t0 + 1)

∫
Tt

E

(∣∣∣Xn
u − Xn−1

u

∣∣∣2)Δu

= 2L2(T − t0 + 1)

∫
Tt

δn−1
u Δu

= 2L2(T − t0 + 1)

∫
Tt

Mnhn(u, t0)Δu

≤ Mn+1hn+1(t, t0),

provided we choose M ≥ 2L2(T − t0 + 1)E
(
(1 + |X0|)2

)
and this proves the claim. Now using (12) and(16) we have

sup
t∈TT

∣∣∣Xn+1
t − Xn

t

∣∣∣2 ≤ 2L2(T − t0)

∫
TT

∣∣∣Xn
u − Xn−1

u

∣∣∣2 Δu + 2 sup
t∈TT

∣∣∣∣∣∣
∫
Tt

(
b
(
Xn

u , u
) − b

(
Xn−1

u , u
))
ΔWu

∣∣∣∣∣∣
2

.

Consequently the martingale inequality implies

E

(
sup
t∈TT

∣∣∣Xn+1
t − Xn

t

∣∣∣2
)
≤ 2L2(T − t0)

∫
TT

E

(∣∣∣Xn
u − Xn−1

u

∣∣∣2)Δu + 8

∫
TT

E

(∣∣∣Xn
u − Xn−1

u

∣∣∣)Δu

≤ CMnhn(T, t0),

by claim (17), where C = 2L2(T − t0 + 4). Since

P

(
sup
t∈TT

∣∣∣Xn+1
t − Xn

t

∣∣∣ > 1

2n

)
≤ 4E

(
sup
t∈TT

∣∣∣Xn+1
t − Xn

t

∣∣∣2
)
≤ C4nMnhn(T, t0)

and by (4) with 4M ∈ R,

C
∞∑

n=0

(4M)nhn(T, t0) = Ce4M(T, t0) < ∞,

the Borel-Cantelli lemma applies. Thus, P

(
sup
t∈TT

∣∣∣Xn+1
t − Xn

t

∣∣∣ > 1

2n i.o.

)
= 0. Therefore for almost every ω, Xn =

X0 +

n−1∑
j=0

(
X j+1 − X j

)
→ X on TT . Now if we let n→ ∞ in (16), we have

Xt = X0 +

∫
Tt

a(Xu, u)Δu +
∫
Tt

b(Xu, u)ΔWu.
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That is (14) holds for all time t ∈ TT . Then we have

E

(∣∣∣Xn+1
t

∣∣∣2) ≤ 2E
(
|X0|2

)
+ 2E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

a(Xn
u , u)Δu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠ + 2E

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∫
Tt

b(Xn
u , u)ΔWu

∣∣∣∣∣∣
2
⎞⎟⎟⎟⎟⎟⎠

≤ 2E
(
|X0|2

)
+ 2(t − t0)

∫
Tt

E

(∣∣∣a (
Xn

u , u
)∣∣∣2)Δu + 2

∫
Tt

E

(∣∣∣b (
Xn

u , u
)∣∣∣2)Δu

≤ 2E
(
|X0|2

)
+ 2L2(t − t0)

∫
Tt

E

((
1 +

∣∣∣Xn
u

∣∣∣)2
)
Δu + 2L2

∫
Tt

E

((
1 +

∣∣∣Xn
u

∣∣∣)2
)
Δu

≤ 2E
(
|X0|2

)
+ 4L2(t − t0)

∫
Tt

E

(
1 +

∣∣∣Xn
u

∣∣∣2)Δu + 4L2

∫
Tt

E

(
1 +

∣∣∣Xn
u

∣∣∣2)Δu

≤ 2E
(
|X0|2

)
+ 4L2(t − t0)2 + 4L2(t − t0) + 4L2(t − t0 + 1)

∫
Tt

E

(∣∣∣Xn
u

∣∣∣2)Δu

≤ kT (1 + E (|X0|)) + kT

∫
Tt

E

(∣∣∣Xn
u

∣∣∣2)Δu,

for some constant kT ≥ max
{
2, 4L2(T − t0)(T − t0 + 1), 4L2(T − t0 + 1)

}
. Note that kT > 1. By induction, there-

fore,

E

(∣∣∣Xn+1
t

∣∣∣2) ≤ (
kT + k2

T h1(t, t0) + · · · + kn+2
T hn+1(t, t0)

) (
1 + E

(
|X0|2

))
and consequently by (4), we have

E

(∣∣∣Xn+1
t

∣∣∣2) ≤ kT

(
1 + E

(
|X0|2

))
ekT (t, t0),

for all t ∈ TT . If we let n→ ∞, then

E

(
|Xt |2

)
≤ kT

(
1 + E

(
|X0|2

))
ekT (t, t0).

for all t ∈ TT , which proves (15). �

Corollary 1 Suppose that the stochastic process X indexed by T satisfies the stochastic dynamic IVP (14) and a, b:
R × T→ R satisfy (12) and (13). Then

E

(∫
Tt

|Xu|2Δu
)
< ∞

for all t ∈ TT .

Proof. Using (15) we have

E

(∫
Tt

|Xu|2Δu
)
=

∫
Tt

E

(
|Xu|2

)
Δu

≤
(
1 + E

(
|X0|2

)) ∫
Tt

kT ekT (u, t0)Δu

=
(
1 + E

(
|X0|2

)) (
ekT (t, t0) − 1

)
< ∞

for all t ∈ TT . �

Remark 1 For T = [0,∞) and t0 = 0, the stochastic dynamic IVP (14) reduces to the stochastic differential equation

dX = a(X, t)dt + b(X, t)dW, Xt0 = X0,

where W is a Brownian motion indexed by [0,∞) and (15) reduces to

E

(
|Xt |2

)
≤ kT

(
1 + E

(
|X0|2

))
ekT t

for all t ∈ [0,T ].

Remark 2 For T = N0 and t0 = 0, the stochastic dynamic IVP (14) reduces to the stochastic difference equation

Xn+1 = Xn + a(Xn, n) + b(Xn, n)Φn+1, Xt0 = X0,
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where Φn+1 := Wn+1 −Wn are normal random variables with mean 0 and variance 1. Likewise (15) reduces to

E

(
|Xn|2

)
≤ kN

(
1 + E

(
|X0|2

))
(1 + kN)n−1

for all n ∈ {1, 2, . . . ,N}.
Remark 3 For T = {0 = t0, t1, t2, . . . , tN}, the stochastic dynamic IVP (14) reduces to the stochastic difference

equation

Xtn+1
= Xtn + a(Xtn , tn) + b(Xtn , tn)Φtn+1

, Xt0 = X0,

where Φtn+1
:= Wtn+1

−Wtn are normal random variables with mean 0 and variance μ(tn) = tn+1 − tn. Likewise (15)

reduces to

E

(∣∣∣Xtn

∣∣∣2) ≤ ktN

(
1 + E

(
|X0|2

)) N−1∏
n=0

(
1 + μ(tn)ktN

)

for all n ∈ {1, 2, . . . ,N}.
Definition 8 For a function f : T → R, let us define RW as a space of all stochastic regressive function (w.r.t. W)

such that for all t ∈ T
1 + f (t)

(
Wσ(t) −W(t)

)
� 0 a.s. (18)

For T = R, since σ(t) = t, we have 1 � 0 which is trivially true. Likewise for T = Z, (18) reduces to 1 +

f (t) (Wt+1 −Wt) � 0 a.s. for t ∈ Z.

Example 2 (Stochastic exponential) Consider the stochastic dynamic IVP (14) with a(X, t) ≡ 0 and b(X, t) = β(t)X
for some β ∈ RW . Then according to Theorem 2, the solution of

ΔX = β(t)XΔW, X(t0) = X0, (19)

exists and is unique. For an isolated time scale T, i.e. μ(t) > 0 for all t ∈ T, it has been shown in (Bohner & Sanyal,

2010) that (19) with X0 = 1 has a solution X = Eβ(·, t0), with the following properties:

E

(
Eβ(t, t0)

)
= 1 and E

(
E2
β(t, t0)

)
= eβ2 (t, t0). (20)

Now by virtue of Theorem 2 it is clear that for an arbitrary T the solution of (19) exists, is unique, and has properties

given by (20).

Example 3 (Geometric Brownian motion) Consider the stochastic dynamic IVP (14) with a(X, t) ≡ α(t)X and

b(X, t) = β(t)X for some α ∈ R and
β

1+μα
∈ RW . Then according to Theorem 2, the solution of dynamic geometric

Brownian motion

ΔX = α(t)XΔt + β(t)XΔW, X(t0) = X0, (21)

exists and is unique. For an isolated time scale T it has been shown in (Bohner & Sanyal, 2010) that (19) has a

solution X = X0eα(·, t0)E β
1+μα

(·, t0), with the following properties:

E (Xt) = X0eα(t, t0) and E

(
X2

t

)
= X2

0e2
α(t, t0)e β2

(1+μα)2

(t, t0). (22)

Now using Theorem 2 it is clear that for an arbitrary T the solution of (21) exists, is unique, and has properties

given by (22).

5. Concluding Remarks

In this paper, we construct the stochastic dynamic integral and the existence and uniqueness of a certain class of

stochastic dynamic equation (SΔE) on a general time scale T. We also present examples concerning generalization

of stochastic exponential and geometric Brownian motion which are used in the model of stock price behavior and

to model stock prices in the celebrated Black–Scholes model.
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