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Abstract

Many premium calculating problems in actuarial science consider the number of claims, denoted as K, as the

variable risk. Traditionally, this random variable is modelled by the Poisson distribution. However, it is well known

that automobile insurance portfolios are characterized by zero-inflation (high percentage of zero values in the

sample) and overdispersion (the variance is greater than the mean), and the Poisson distribution does not properly

reflect the last phenomenon. In this paper we determine the Bayes premium considering that K follows a Poisson-

Lindley distribution, with parameter θ1 in [0, 1], which is a potential alternative to describe these situations. As the

structure function for θ1 we elicit the standardized two-sided power distribution, which is a reasonable alternative

to the usual beta distribution. In addition, an aggregate loss model is considered with primary distribution given by

the Poisson-Lindley distribution. A Bayesian analysis is developed to obtain the Bayes premium. The conclusion

is that the STSP is not an adequate alternative in the problem in question because it is more informative and less

dispersed than the Beta distribution.

Keywords: Bayes premium, aggregate loss, Poisson-Lindley model, structure function, standardized two-sided

power distribution

1. Introduction

An important issue in insurance theory is that of premium calculation. In particular, determining the Bayes pre-

mium is the natural aim when prior information and claim experience are considered (see Klugman, 1992).

In many practical problems of actuarial science, the claim experience is described by a frequency distribution for

the number of claims, K, considered as the magnitude risk. Traditionally, this random variable is modelled by the

Poisson distribution. However, it is well known that automobile insurance portfolios are characterized by zero-

inflation (high percentage of zero values in the sample) and overdispersion (the variance is greater than the mean),

and the Poisson distribution does not properly reflect the last phenomenon. For this reason, as Nikoloulopoulos

and Karlis (2008) point out, overdispersed models (relative to simple Poisson) are potential alternative to describe

these situations. In particular, mixed Poisson distributions are widely considered for the random variable K. For a

detailed review of models based on the mixed Poisson distributions see Cohen (1966), Willmot (1986), Grandell

(1997), Nadarajah and Kotz (2006a, 2006b) or Antzoulakos and Chadjiconstantinidis (2004), among others.

Some of the advantages of these distributions obtained by mixing are that they are overdispersed, and that they

also assign high probabilities at k = 0, which is very adequate because the mode of the variable number of claims

is often at this value. Sometimes, this situation is managed with zero-inflated distributions (see Angers & Biswas,

2003; Yip & Yau, 2005; Boucher et al., 2007) which are not considered here to avoid introducing another parameter

in the problem.

One of the mixed distribution is the Poisson-Lindley distribution, with parameter θ1 ∈ (0, 1), proposed by Sankaran

(1971). It has been widely studied by Ghitany et al. (2008) or Ghitany and Al-Mutairi (2009). An extension of

this distribution, which includes an additional parameter is suggested in Mahmoudi and Zakerzadeh (2010). Some

recent works have pointed out the usefulness of this one-parameter distribution in the Bayes premium calculating

problem (see Hernández-Bastida et al., 2011 or Martel-Escobar et al., 2012).

In other practical situations it is considered the aggregate loss model. In actuarial risk theory, the collective

risk model, hereafter crm, is described by a frequency distribution for the number of claims K and a sequence
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of independent and identically distributed random variables representing the size of the single claims Xi. Frequency

K and severities Xi are assumed independent. Note that the independence assumed here is conditional on distri-

bution parameters. There is an extensive body of literature on modelling the risk process, see e.g. Klugman et al.

(2004) or McNeil et al. (2005). Estimation of the annual loss distribution by modelling the frequency and severity

of losses is a well known actuarial technique. It is also used for modelling solvency requirements in the insurance

industry; see e.g. Sandström (2006) or Wüthrich (2006). Then the aggregate loss S is the sum of the individual

claim sizes, i.e. S =
∑K

i=1 Xi, for K > 0, and S = 0, for K = 0.

The present paper aims to develop a Bayesian analysis of the PL model for the number of claims. The structure

function for the parameter θ1 is given by the standardized two-sided power (STSP) distribution, a reasonable

alternative for the beta distribution.

The analysis include two steps. The first step, which is developed in Section 2, considers that the risk variable is

the number of claims. In this section the model is presented. The premiums are determined and an application to

real data is provided. In the second step, which is developed in Section 3, it is considered an aggregate loss model

and the Bayes premiums are also obtained. Both sections show the results obtained from the comparison with the

beta distribution, since it is a usual distribution in this problem. A final section draws the main conclusions.

For our purposes, let

pFq

[{
a1, a2, ..., ap

}
; {b1, b2, ..., bk} ; z

]
=

∞∑
k=0

∏p
j=1

(a j)k∏q
j=1

(b j)k

zk

k!

represent the Gaussian hypergeometric function, and (α) j = α(α + 1)...(α + j − 1) for j ≥ 1, (α)0 = 1 be the

Pochhammer symbol (see http://functions.wolfram.com).

2. The Claims Number Model

In this section the variable number of claims, denoted as K, is considered as the variable risk. We determine the

Bayes premium, when the STSP is considered as structure function, and it is compared with the Bayes premium

when the structure function is the usual beta distribution. An application to real data is also provided.

2.1 The Model

Let K be the random variable number of claims taking values {0, 1, . . . } which is assumed to follow a Poisson-

Lindley distribution with a probability mass function (pmf) given by

fPL (k|θ1) = θ21 (1 − θ1)k [2 − θ1 + (1 − θ1) k] , (1)

for k = 0, 1, . . . , and 0 < θ1 < 1, (hereafter the PL model).

It is well known that its moment generating function is given by MPL (t; θ1) =
θ2

1(2−θ1−et+θ1 et)
(1−et+etθ1)2 . The first two moments

are EPL [K] = (2−θ1)(1−θ1)
θ1

and EPL

[
K2

]
=

(1−θ1)(3θ2
1
−8θ1+6)
θ2

1

, respectively.

It is obtained as a mixed Poisson distribution with mixing function given by the Lindley distribution (see Lindley,

1958), whose density function is f (x|θ1) =
θ2

1

θ1+1
(x + 1) e−xθ1 , for x = 0, 1, . . . , and θ1 > 0. Compared with the

Poisson distribution, the PL distribution presents three qualities that usually appear in claim data sets. Since it is a

mixed Poisson distribution then it is overdispersed. The probability of observing a zero value is higher than under

a Poisson distribution with the same mean, termed zero inflated phenomenon, (see Karlis & Xekalaki, 2005 and

references therein). Furthermore, for mean values under 2.4, which includes practically all the real data cases, it is

straightforward to prove the termed one-deflated phenomenon, i.e., fPL(1; θ1) < fP(1; (2−θ1)(1−θ1)
θ1

), where fP is the

probability mass function of the Poisson distribution.

Under a bayesian point of view, the parameters of interest of the problem can be estimated using our knowledge

about them.

The beta distribution B(θ1;α, β) ∝ θα−1
1

(1 − θ1)β−1 ,0 < θ1 < 1; α > 0 and β > 0 is a common prior distribution

for the parameter θ1, where EB [θ1] = α
α+β

and VarB [θ1] =
α β

(α+β)2 (α+β+1)
. With α > 1 and α + β > 2 is unimodal

and MoB[θ1] = α−1
α+β−2

. For the application of this model to the premium calculating and operational risk see

Hernández-Bastida et al. (2011). It is known that in the PL model the marginal distribution of K, if the B(α, β)
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prior is considered, is given by

m(k|B) =
A1(α, β, k)B(α + 3, β + k)

B(α, β)
, (2)

where A1(α, β, k) =
α+2β+2+k(β+k+2)

α+2
. Observe that this marginal distribution is a mixed Poisson distribution with

mixing function given by Γ(α+2)
B(α,β)

(λ + 1)U (α + 2,−β + 2, λ), whereU is the Hypergeometric U.

For the calculation of the moments of the marginal distribution it is useful to observe that they can be written as

Em(k|B) [Kr] = EB
[
E fPL [Kr]

]
. It also occurs with the rest of the marginal distributions.

A meaningful alternative to the beta distribution is proposed in Van Dorp and Kotz (2002a). Hence, the STSP
distribution is proposed as a choice of prior distribution for θ1. Its pdf is given by:

STPS(θ1; a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
b
(
θ1
a

)b−1

, 0 ≤ θ1 ≤ a;

b
(

1 − θ1
1 − a

)b−1

, a ≤ θ1 ≤ 1.

(3)

The prior mean and the variance for θ1 are given by ESTSP[θ1] = (b−1)a+1
b+1

and VarSTSP[θ1] = b(2a2−2a+1)+2a(1−a)

(b+2)(b+1)2 .

When b > 1 and 0 < a < 1 or a = 0 or 1, it is unimodal with mode MoSTSP[θ] = a and STPS(a) = b, (see Van

Dorp & Kotz, 2002b).

When b = 2 the Triangular distribution, denoted as T (θ1, a) (see Johnson, 1997), is obtained. If b = 1 the Uniform

distribution in [0, 1] is derived (hereafter the U distribution) and if a = 1 it follows the potential distribution

(hereafter, the P distribution).

This paper focuses on the STSP distribution as an alternative prior distribution to the beta distribution for θ1.

To make this comparison operative, we establish certain aspects considered essential to the distribution modelling

the prior information. The first aspect to consider is that of unimodality with the value of the mode at a, thus

completely determining the T distribution. To rank the comparison we are interested in, the second aspect is set

so as to consider unimodal distributions with the same mean. Given a unimodal STSP(a, b) distribution, b > 1, a

unimodal B(α, β) distribution with the same mode and mean as the STSP(a, b) is obtained by considering

α = ab − a + 1; β = a + b − ab. (4)

In the sequel we assume that the parameters for the B distribution are determined from the expressions in (4).

In accordance with our aim of comparing the three models derived from the three prior distributions for the pa-

rameter of the distribution considered, T ,STSP and B, we compare the amount of information contained in each

of these distributions, considering such quantity to be the discrepancy of each of them with respect to the uni-

form distribution, defined as (see Shannon, 1948; Kullback, 1959 or Kullback & Leibler, 1951) DKL
[
f : U

]
=

−
∫ 1

0

f (x)log f (x)dx. If the uniform distribution is considered to be the less informative probabilistic model, then

the greater the discrepancy DKL
[
f : U

]
, the greater the information contained in the f distribution.

The divergence between the B and the U distributions is obtained with the following expression, (see Soofi &

Retzer, 2002) DKL [B : U] = −log (B(α, β)) + (α − 1)
[
ψ(α) − ψ(α + β)

]
+ (β − 1)

[
ψ(β) − ψ(α + β)

]
, where ψ(z) is

the PolyGamma function (see http://functions.wolfram. com).

The discrepancy of the STSP with respect to the U is given by DKL [STSP : U] = log b − 1 + b−1, with a

minimum at b = 1, whose value is 0, and which strictly increases if b > 1 (see Van Dorp & Kotz, 2002b, for

details). Hence, if 1 < b < 2 it is verified that DKL [STSP : U] < DKL [T : U] ≡ 0.19314718 and when b > 2

the contrary occurs.

From the comparison between the STSP and the B with the same mode and mean, it follows that whatever the

value of the mode a, and whatever the value b > 1, the B has less information and more dispersion than the STSP
distribution.

The following notation will be useful in the sequel. For the sake of simplicity, the acronym of the distributions are

used to indicate the corresponding density functions.
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Let ε1 and ε2 be integers and let k be a positive integer. We note ESTSP
[
θε1

1
(1 − θ1)ε2 f (k|θ1)

]
asD (ε1, ε2|k, a, b).

The calculation of this expected value is tedious but after a bit of algebra it is obtained (see the Appendix for

details).

In the PL model the marginal distribution of K, if the STSP(a, b) prior is considered, is

m(k|STSP) = D (0, 0|k, a, b) , k ≥ 0. (5)

For k = 0 the expression is notably simplified and it is obtained that m(0|STSP) =
6+4b+a[−6+b(2+4b+a(−3+a+b−(−2+a)b2))]

(b+1)3
.

Making b = 2, b = 1 and a = 1 in expression (5) the marginal distributions m(k|T ), m(k|U) and m(k|P) are

obtained, respectively.

For the beta and STSP distributions we determine the hyper-parameters with the expected value of the marginal

distribution and the value of this distribution at k = 0. Making Em(k|···) = k̄, where k̄ represents the sample mean

of the data, and m(0|· · ·) = f0 where f0 is the relative frequency of the value k = 0, we get two systems of

two equations. The hyper-parameters can be obtained by solving the systems. In the particular case of the T
distribution, we can use one of both possibilities since we only need one parameter.

In the real data sets for the problem considered, it is common to find that the frequency of the zero value is

extremely high, clearly more than the 50%. Hence, it is worth paying special attention to how the marginal

distribution at k = 0 behaves.

It is no so difficult to prove that, for instance with the Mathematica package, the m(0|B) and m(0|STSP) distribu-

tions, as functions of the hyper-parameters a and b have similar behavior.

For a ≤ 0.54 fixed, these functions decrease uniformly in b, achieving the maximum value at b = 1. This maximum

is always under 0.45.

For a > 0.54 fixed, these functions increase uniformly in b, whose superior is obtained when b increases indefi-

nitely. It is straightforward to show that lim
b→∞

m(0|B) = lim
b→∞

m(0|STSP) = a2(2 − a), and the limit function only

takes values over 0.5 when a is greater than 0.6.

In summary, for the problems in question the range of relevant values for a is given by the interval (0.6, 1).

It is straightforward to prove that m(0|T ) varies in the interval (0.234; 0.6), and furthermore, Em(k|T )[K] ranges in

the interval (1, 67; 34.8). Accordingly, we will not consider the T distribution as structure function in data sets

which present observed frequency at k = 0 greater than 0.6 or sample mean smaller than 1.67.

For the comparison between the m(k|B) and m(k|STSP) distributions we have considered the difference function

defined as Dmarg(k, a, b) = m(k|B) − m(k|STSP) and a complete numeric analysis for fixed values for k has

been developed. In each case there have been determined the superior and the inferior in (a, b) for the difference

function. It is obtained that,

- When k ≤ 3, the difference function takes positive and negative values.

- When k ≥ 3, the difference function always takes positive values.

- In any case the function given by the absolute value of the difference, denoted as |Dmarg(k, a, b)| takes small

values. The highest one is 0.033 when k = 1 and when k ≥ 3 it is always under 0.0058.

As a conclusion it is shown that, considering the marginal distribution, it is not direct the difference between the B
and STSP models.

2.2 The Premiums

In this section, for the several specified prior distributions, we examine the collective and Bayes premiums. The

collective premium is defined as the expected value of the True Individual premium with respect to the corre-

sponding prior distribution and it is equal to the expected value of the marginal distribution for K. Observe that

the collective premium is the appropriate premium when claim experience is not available. It is straightforward to

prove that the Bayes premium, which is the expected value of the True Individual premium with respect to the cor-

responding posterior distribution, is equal to the expected value of predictive function of K. Furthermore, it is the

appropriate premium when experience claim is present being the best estimation of the True Individual premium.

In the PL model, the True Individual premium is given by E [K].
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Hence, if the B(α, β) or the STSP(a, b) are considered as prior distributions then the corresponding collective

premiums are, by direct calculus,

CP(B) =
β (α + 2β + 1)

(α − 1) (α + β)
, (6)

and

CP(STSP) =
(2a + 1)b2 + (3 − 2a)b

b2 − 1
− a − 2 +

2b
(1 − a)b−1

∫ 1

a

(1 − θ1)b−1

θ1
dθ1, (7)

respectively.

When b = 1 the CP(U) does not exist and for a = 1 it follows that CP(P) = b+3
b2−1

.

In the comparison between the collective premiums for the structure functions B and STSP with the same mean

and mode it is obtained that the first distribution produces greater values for the collective premium, i.e.,

CP(B) ≥ CP(STSP). (8)

This affirmation is obtained just observing that it is equivalent to EB[θ−1
1 ] ≥ ESTSP[θ−1

1 ] which is equivalent to

b(1 − a)

a(b − 1)
−

b
(1 − a)b−1

∫ 1

a

(1 − θ1)b−1

θ1
dθ1 ≥ 0.

It can be proved that the term in the left hand achieves a minimum at 0.2527.

The Bayes premium is determined and compared for the different prior distributions. By direct calculus,

BP(k|B) =
C3(k, α, β) (β + k)

(α + 1) (α + β + k + 3)
[
α + 2β + 2 + k (β + k + 2)

] , (9)

where

C3(k, α, β) = 4 (α + β + k + 3) (β + k + 1) + (α + 1)2 + k(β + k + 1)(α + 2β + 2k + 5).

Using (17) for the STSP,

BP(k|STSP) =
2D (−1, 1|k, a, b) −D (0, 1|k, a, b)

m(k|STSP)
. (10)

For the comparison of the Bayes premium we made a complete numerical analysis for the difference function

Dbp(k, a, b) = BP(k|B) − BP(k|STSP) for integers of k, a ≥ 0.6 and b > 1. The conclusions are clear, when there

is experience of “non sinistrality”, i.e., k = 0, the difference function takes values positives and negatives although

the last ones predomine.

However, when any claims are declared, i.e., k ≥ 1, the difference function is always positive. That means that,

compared with the STSP distribution, the B distribution penalizes more severely the additional claim declaration.

Table 1 shows the highest values which have been observed in the function
Dbp(k,a,b)

BP(k|STSP)
× 100, and it indicates the

level of additional penalization given by the B as structure function.

Table 1. The highest observed values in b for the function
Dbp(k,a,b)

BP(k|STSP)
× 100 for the indicated values of k and a

a
k 0.6 0.7 0.8 0.9

1 17.32 23.20 27.27 27.93

2 36.67 42.54 45.10 42.78

3 51.66 56.47 56.99 52.28

4 63.58 66.95 65.62 58.99

5 73.41 75.21 72.23 64.12

It is clear that the differences between the premiums are remarkable, and the conclusion in the model for the number

of claims is clear: If the essential aspects of the prior information are the unimodality, with the value of the mode,
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and the mean value, then the B distribution is a better choice than the STSP distribution. The B distribution is

less informative than the other distribution and also produces higher values for the premiums i.e., so it results more

conservative from the point of view of the insurance firm.

2.3 An Application to Real Data

To address the issues described previously, we develop the analysis applied to a real data set which is well known

in studies of automobile insurance claim calculation. These data, taken from Klugman et al. (2004) concern

the number of automobile liability policies in Germany during the years 1960-61. The sample mean is 0.1442

and the sample variance is 0.1639. Accordingly, the sample dispersion index is 1.136. The Binomial Negative

distribution (hereafter, NB), which is another mixed Poisson distribution allowing for overdispersion, and the

Poisson distribution are compared with the Poisson-Lindley model to data set. Table 2 shows fits from these

distributions. For comparative and illustrative purposes, all the usual measures, such as p-value, -Loglikelihood, the

Akaike Information criterio (AIC) and the Bayesian Information Criteio (BIC) are used to compared the models.

As it is known, a model with a minimum BIC value is preferred.

Table 2. Fitting of automobile claim data

Observed Fitting distribution (expected frequency)

Number of claims frequency Poisson Neg.Binomial Poisson-Lindley

0 20592 20420 20596.8 20612.10

1 2651 2945.10 2631.03 2604.39

2 297 212.37 318.37 326.21

3 41 10.21 37.81 40.56

4 7 0.37a 4.45a 5.01a

5 0 0.01a 0.52a 0.62a

6+ 1 0.00a 0.06a 0.07a

χd(d. f ) 203.87(2) 5.083(1) 4.40(2)

p-value < 1% 0.08 0.22

-Loglikelihood 10297.8 10223.4 10223.9

AIC 20597.7 20450.8 20449.8

BIC 20605.8 20467.8 20457.8

a Expected frequencies have been combined for the calculation of χ2.

Table 2 shows that the PL model performs very well in fitting the distribution with respect to the Poisson distri-

bution and provides a fit as good as that of the biparametric Negative Binomial model. Based on the AIC and the

BIC the PL is the preferred model. Furthermore, taking into account the Ockham’s razor principle, it is simpler

than the Negative Binomial and therefore it might appear to be more preferable than a less complex model.

The next step is to choose the prior distributions. As the sample mean is under 1.67, the Triangular distributions is

not considered here as possible structure function.

For the B and STSP distributions we solve the systems of equations proposed in the previous section, and we

obtain a pair of values which let us to theB(8, 1) or theSTSP(1, 8), which are the same distribution. The following

figure shows the prior, marginal and posterior distributions for a B(8, 1).

α = 8; β = 1

0.2 0.4 0.6 0.8 1.0
Θ

1

2

3

4

prior

1 2 3 4
k

0.2

0.4

0.6

0.8

marginal

k�3

k�4

0.2 0.4 0.6 0.8 1.0
Θ

1�106

2�106

3�106

4�106

5�106

6�106

posterior

Figure 1. Prior, marginal and posterior distributions
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In this case, the collective premium, which is given by the expected value of the marginal distribution is equal to

0.1746. The Bayes premium and the variation rates, denoted as TV and calculated as BP(k|... )−BP(k−1|... )
BP(k−1|... ) × 100, are

in Table 3.

Table 3. Bayes premiums and variation rates

k 0 1 2 3 4 5 6 7

BP 0.143 0.317 0.504 0.696 0.891 1.087 1.284 1.484

TV% 58.940 38.064 27.909 22.30 18.250 18.200 15.527

3. The Collective Risk Model

This section develops an aggregate loss model and determines the Bayes premium. A STSP distribution is

considered as an alternative to the usual B distribution as estructure function for the parameter of the primary

distribution whereas a gamma distribution is considered for the secondary one.

3.1 The Model

Let Xi be the random variable size of a single claim assumed to follow an Exponential distribution with parameter

θ2 > 0, i.e., fE (x|θ2) = θ2e−θ2 x, x > 0 (hereafter the model E). Its moment generating function is ME
2

(t; θ2) = θ2
θ2−t

and the expected value and the variance are EE [X] = 1
θ2

and VE [X] = 1
θ2

2

, respectively.

If the primary distribution is a Poisson-Lindley and the secondary is an Exponential, (the crmPLE), it is verified

that:

(i) The probability density function of the random variable aggregate claim, when s > 0, is given by,

fPLE (s|θ1, θ2) = θ21 (1 − θ1) θ2
(
3 − 2θ1 + (1 − θ1)2 θ2s

)
e−θ1θ2 s, (11)

while

fPLE (0|θ1, θ2) = θ21 (2 − θ1) , (12)

with the usual discontinuity of the crm appearing at s = 0.

(ii) The moment generating function of S is given by MPLE
3

(t; θ1, θ2) =
θ2

1[(2−θ1)t2+(θ1θ2−3θ2)t+θ2
2]

(θ1θ2−t)2 and the mean and

the variance are EPLE(S ) =
θ2

1
−3θ1+2

θ1θ2
and VPLE(S ) =

−θ4
1
+4θ3

1
−5θ2

1
+3θ1+2

θ2
1
θ2

2

, respectively.

The natural choice of a prior pdf for θ2 is the Gamma density G (θ2; c, d) = dc

Γ(c)
· θc−1

2
· exp(−dθ2), θ2 > 0, c, d > 0.

We consider values of c such that c > 1, a necessary and sufficient condition for the existence of the inverse

moment. The prior mean and variance for θ2 are given by EG [θ2] = c
d and VarG [θ2] = c

d2 . The corresponding

prior mode for the parameter θ2 is MoG[θ2] = c−1
d .

The following notation and formulas are used throughout this paper.

Let ε1, ε2, ε3 be integers and let k be a positive integer. Let s be a real positive number. If there is no possibility

of misunderstanding and for the sake of simplicity of the notation, the hyper-parameters will be omitted. We

note ESTSP·G
[
θε1

1
(1 − θ1)ε2 θε3

2
e−sθ1θ2

]
as J (ε1, ε2, ε3|s). This expected value is calculated in a detailed way in the

Appendix.

We note EB·G
[
θε1

1
θε2

2
fPLE (s|θ1, θ2)

]
as I (ε1, ε2|s). This expected value is obtained as a linear combination of hyper-

geometric functions (see the Appendix for details).

In the crmPLE the marginal distribution of S , if independent B(α, β) and G(c, d) priors are considered, is given by

a linear combination of hypergeometric functions when s > 0

m(s|B · G) = I (0, 0|s) , (13)

using (9′), and when s = 0, it follows that m(0|B · G) = m(0|B).

In addition, in the crmPLE the marginal distribution of S , if independent STSP(a, b) and G(c, d) priors are con-

sidered, is given by

m(s|STSP · G) = 3J (2, 1, 1|s) − 2J (3, 1, 1|s) + sJ (2, 3, 2|s) , s > 0 (14)
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and, when s = 0, it follows that, m(0|STSP · G) = m(0|STSP).

As it was indicated in section 2, the real data sets in the problems in question present a high percentage of values

at s = 0. Accordingly, it is interesting to analyze the values for the marginal distributions at s = 0. The analysis is

reduced to that made in the previous section.

From the comparison between the marginal distributions m(s|B · G) and m(s|STSP · G) when s > 0, the numeric

analysis show that there exist inequalities in both directions.

By assuming b = 1 in expressions (14) the marginal distribution for the priorU · G distribution is obtained and it

is irrespective of the hyper-parameters a and b.

In the question of the specification of the hyper-parameters different sources of information can be considered in

order to help us to choose them on a reasonable basis: the unimodality and the value of the mode are usually a strong

intuitive aspect; the consideration, separately, of the PL and E models whose composition leads to the crm model;

the value of m(s| · · · ) at s = 0 and, finally, it can be useful to calculate some moments of the marginal distribution

m(s| · · · ). For the calculus of the moments for the marginal distribution is useful to know that Em(s|B·G) [S r] =

EB·G
[
E fPLE [S r]

]
, which is also true for the other marginal distributions.

3.2 The Premiums

In this section we examine the Risk Net premium, which is the expected value of the likelihood, the collective

premium and the Bayes premium.

In the crm.PLE model, the Risk Net premium is EPLE [S ] = EPL[K] · EE[X].

Then, the collective premiums if independence between θ1 and θ2 is assumed, are given by CP(B · G) = CP(B) ·
CP(G) and CP(STSP · G) = CP(STSP) ·CP(G), where CP(G) = EG

[
θ−1

2

]
= d

c−1
.

If b = 1 (U distribution), the collective premium does not exist.

The comparison of the collective premiums is deduce directly from the inequality in the model for the number of

claims, specifically CP(B · G) ≥ CP(STSP · G).

Finally, we determine the Bayes premiums. Hence, the Bayes premium for the B · G distribution is obtained by

dividing linear combinations of hypergeometric functions,

BP(s|B · G) =
2I(−1,−1; s) − 3I(0,−1; s) + I (1,−1; s)

I(0, 0; s)
(15)

Assuming s = 0 on the right side of this expression we obtain the Bayes Premium in the point of discontinuity,

which is given by BP(0|B · G) = BP(0|B) ·CP(G).

The Bayes Premium for the STSP · G prior distribution is given by the following expressions:

For s > 0,

BP(s|STSP · G) =
1

m(s|STSP · G)
{6J (1, 2, 0|s) − 7J (2, 2, 0|s) + 2sJ (1, 4, 1|s) (16)

+ 2J (3, 2, 0|s) − sJ (2, 4, 1|s)} ;

and for s = 0, BP(0|STSP · G) = BP(0|STSP) ·CP(G).

Making b = 1, the Bayes premium for the priorU · G distribution is obtained.

In the comparison for the Bayes premium we consider, separately, the cases s = 0 and s > 0.

When s = 0, the comparison between the Bayes premium is reduced to the comparison between BP(0|B) and

BP(0|STSP) made in the previous section.

For s > 0, we have made a wide numerical analysis for the values a = 0.6, 0.7, 0.8, 0.9 and b = 2, 7, 10, 25. Several

gamma distributions have been considered. The conclusions are similar in the following way: it is obtained

positive and negative values for the variation rates, defined as the quotient BP(s|B·G)−BP(s|STSP·G)
BP(s|STSP·G)

× 100 with the

hyper-parameter for the beta distribution given by (4). The variation rates indicate that none of the premiums

is systematically greater or slower than the other. Furthermore, it is shown that sometimes it is possible to find

dramatic differences between the premiums. As an illustration, Table 4 shows the variation rates for the Bayes

premium for the G(4, 6).
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Table 4. Variation rates for Bayes premiums in the crmPLE model for the indicated values of a, b and s, when the

hyper-parameter (c, d) = (4, 6)

a 0.6 0.7

b 2 7 15 25 2 7 15 25

s
0.1 56.7 117.3 134.6 137.3 66.7 244.7 475.3 679.0

5.1 44.4 119.9 132.8 128.4 43.3 182.9 325.0 412.0

10.1 38.0 119.1 132.3 125.6 427.0 161.8 289.2 358.3

15.1 33.9 117.4 131.6 123.9 29.0 141.9 272.3 334.8

20.1 31.1 115.8 130.9 122.7 25.7 136.1 262.2 321.4

25.1 29.0 114.2 130.7 121.8 23.5 135.1 255.4 312.7

a 0.8 0.9

b 2 7 15 25 2 7 15 25

s
0.1 71.5 734.8 -829.9.6 -478.0 68.5 -5164.7 -306.9 -232.6

5.1 38.9 289.2 5760.2 -750.8 31.9 416.9 -419.4 -261.8

10.1 -210.7 216.5 3645.4 -978.4 -283.1 249.5 -508.9 276.8

15.1 212.4 184.5 1880.8 -1172.7 -78.4 193.6 -583.8 -286.0

20.1 19.8 166.1 1427.1 -1341.2 138.0 165.2 647.8 -292.3

25.1 18.0 154.0 1218.1 -1488.8 11.8 147.8 -703.4 296.8

4. Discussion

The aim of this paper is to determine the Bayes and collective premiums, in an aggregate loss Poisson-Lindley

model. A natural choice for the structure function is the Beta distribution. In this paper, taking into account the

unimodality with mode value and mean value as essentials aspects of the prior information, it is studied the possi-

bility of considering the STSP distribution as alternative to the structure function. The conclusion is that the STSP

is not an adequate alternative in the problem in question because it is more informative and less dispersed than

the Beta distribution.Comparing the marginal distribution it is not easy to distinguish it from the Beta distribution.

However, we obtain premium values totally different.
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Appendix

Let ε1, ε2 and ε3 be integers, let k be a positive integer and let s be a positive number.

A.1.-

D (ε1, ε2|k, a, b) = ESTSP
[
θε1

1
(1 − θ1)ε2 f (k|θ1)

]
= b aε1+3

{
C1(k) +

∑k+ε2

j=0
(−1) j

(
k+ε2

j

)
a jD1( j, k)

}
+ b (1 − a)k+ε2+1

{
C2(k) +

∑ε1+2
j=0

(−1) j
(
ε1+2

j

)
(1 − a) jD2( j, k)

}

where

C1(k) =
(−a)k+ε2+1 k

b + ε1 + ε2 + k + 3
;

C2(k) =
−(a − 1)ε1+3

b + ε1 + ε2 + k + 3
;

D1( j, k) =
2

b + ε1 + 2 + j
−

a
b + ε1 + 3 + j

+
k(k + ε2 + 1)

(k + ε2 + 1 − j) (b + ε1 + 2 + j)
,

and

D2( j, k) =
ε1 + 3 − 2 j

(ε1 + 3 − j) (b + ε2 + k + j)
+

k(1 − a)

(b + ε2 + k + 1 + j)
.

A.2.-

J (ε1, ε2, ε3|s) ≡ ESTSP·G
[
θε1

1
(1 − θ1)ε2 θε3

2
e−sθ1θ2

]
, (1′)

and can be written as the following addition:

J (ε1, ε2, ε3|s) =
bdcΓ(c + ε3)

Γ(c)

[
J1 (ε1, ε2, ε3|s)

ab−1
+
J2 (ε1, ε2, ε3|s)

(1 − a)b−1

]
, (2′)

where

J1 (ε1, ε2, ε3|s) =

∫ a

0

θb−1+ε1
1

(1 − θ1)ε2

(sθ1 + d)c+ε3 dθ1 (3′)

and

J2 (ε1, ε2, ε3|s) =

∫ 1

a

θε1
1

(1 − θ1)b−1+ε2

(sθ1 + d)c+ε3 dθ1. (4′)

When s = 0 the integrals in (3) and (4) are immediate and given by J1 (ε1, ε2, ε3|0) =
ab+ε1

dc+ε3

ε2∑
j=0

(
ε2
j

)
(−1) ja j

b + ε1 + j
and

J2 (ε1, ε2, ε3|0) =
(1 − a)b+ε2

dc+ε3

ε1∑
j=0

(
ε1
j

)
(−1) j(1 − a) j

b + ε2 + j
.

A.3.- From the integral representation of the Kummer confluent hypergeometric function (see

http://functions.wolfram.com/07.20.07.0001.01) and the integral representation of 2F1(· · · ) (see

http://functions.wolfram.com/07.23.07.00003.01), the following results are derived

∫ 1

0

etθθε1−1 (1 − θ)ε2−1 dθ = B (ε1, ε2) 1F1 (ε1; ε1 + ε2; t) ;

I1 (ε1, ε2, ε3) ≡ EB·G
[
θε1

1
(1 − θ1)ε2 θε3

2

]
=

B (α + ε1, β + ε2) Γ (c + ε3)

B (α, β)Γ (c) dε3
, (5′)

The integral

I2 (ε1, ε2, ε3, ε4|s) ≡ EB·G
[
θε1

1
(1 − θ1)ε2 θε3

2
e−ε4θ2de−sθ1θ2

]
(6′)
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is a hypergeometric gaussian function. In particular,

I2 (ε1, ε2, ε3, ε4|s) =
B (α + ε1, β + ε2)Γ (c + ε3)

B (α, β)Γ (c) dε3 (ε4 + 1)c+ε3 ×2 F1

(
{α + ε1; c + ε3} ; {α + β + ε1 + ε2} ;

−s
d (ε4 + 1)

)
. (7′)

The integral

I (ε1, ε2|s) ≡ E
[
θε1

1
θε2

2
fPLE (s|θ1, θ2) |B · G

]
(8′)

is a linear combination of hypergeometric functions, giving the discontinuity at s = 0 in fPLE (s|θ1, θ2). In particular,

we have

I (ε1, ε2|s) = 3I2 (ε1 + 2, 1, ε2 + 1, 0, s) − 2I2 (ε1 + 3, 1, ε2 + 1, 0, s) + sI2 (ε1 + 2, 3, ε2 + 2, 0, s) , s > 0 (9′)

I (ε1, ε2|0) = 2I1 (ε1 + 2, 0, ε2) − I1 (ε1 + 3, 0, ε2) . (10′)

The I function will be useful in the analysis of the crmPLE with the B prior distribution. The I1 and I2 functions

are auxiliary functions for the I function.

Notice that all the functions introduced above are perfectly calculable, for example with a software package such

as Mathematica. Henceforth, all the magnitudes of interest for our purposes are written in terms of these functions.
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