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Abstract

Collinearity amongst covariates in linear regression models has long been recognised as a potential source of bias.

Various ‘solutions’ have been proposed, though one issue almost entirely omitted in the current literature is the

importance of the relationship between the outcome and the correlated covariates. Using vector geometry, it can be

shown that the impact of collinearity on the model, such as changes in regression coefficients, cannot be judged by

the correlation structure of the covariates alone-their relationship with the outcome is crucial. Traditional diagnos-

tics of collinearity are thus insufficient in evaluating adverse effects or model instability. Collinearity diagnostics

should play an important role in assessing this impact, both adverse and beneficial, on model parameters. The

objective of this study was to build a new index that measures the impact of collinearity in the model environment,

rather than providing only a description of the feature. Vector geometry was used to design a measure that ac-

counts for the relationship between the outcome and the correlated covariates-labelled the D-index. The D-index

was implemented as part of a regression study to develop a parsimonious model for body fat using easily obtainable

body circumference measurements. The covariates were selected based on the degree of collinearity amongst the

predictors in the model and the variance explained in the response. Such a model would potentially allow for a

reduction in the number of body size measurements required, reducing study length and cost, whilst maintaining

measurements that most accurately represent total body fat.
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1. Introduction

In epidemiological and clinical research, it is not surprising to find that many covariates are correlated as they often

share common physiological mechanisms, or measure different aspects of the same underlying mechanism. The

question is not whether collinearity is an issue, but what the impact is on the modelling process. The least squares

assumption that covariates are independent implies that all pair-wise covariate associations should be negligible-

a most unlikely scenario for biological and epidemiological data. Small, but significant, departures from the

assumption of independence can severely distort the interpretation of a model and the role of each covariate,

causing increased inaccuracy as expressed through bias within regression coefficients and increased uncertainty as

expressed through coefficient standard errors.

The variance inflation factor (VIF) (Marquardt, 1970; Stine, 1995) and condition index (CI) (Belsley, Kuh, &

Welsch, 1980) are often labelled collinearity ‘diagnostic’ tools, however this description is perhaps misguided.

Collinearity itself is not a ‘disease’. Symptoms such as a change of sign or an adverse change in the variance

and point estimates may be considered ‘problematic’. However, they are only problematic based on prior biolog-

ical knowledge. In some circumstances, such as confounding, including a collinear variable in the model may be
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beneficial to increasing the precision and accuracy of the assessment of a cause-effect relationship. These statis-

tical measures are not ‘diagnosing’ a disease, but instead providing a description of a feature of the data. This

description, along with external biological knowledge, should facilitate the process of deciding whether problem-

atic collinearity exists in the data and whether any remedial action is necessary.

Collinearity indices such as the VIF and CI belong to a class of ‘correlation based’ diagnostics as the assessment

rests entirely on the XT X matrix (i.e. the matrix of sums of squares and cross products of all predictors). The VIF

is calculated as follows,

VIF =
1

1 − R2
x j

(1)

where R2
x j

is the explained variance of the variable x j regressed on the remaining predictors included in the model.

Regardless of the chosen response entered into the model, the assessment of collinearity from a correlation based

index such as the VIF will not change. The measure is providing a description of the collinearity present amongst

the predictors only. This result may be of limited use in application. The researcher will hold an interest in

understanding the potential impact of collinearity on the parameter estimates from the model and subsequently

a potential impact on clinical and biological interpretation of the estimates. An arbitrary ‘rule of thumb’ will

often be employed to indicate serious collinearity in a dataset. For instance, VIF’s ranging from 4 to 30 have

been previously used as an indication that severe collinearity is present in the data (O’Brien, 2007). This may

encourage the use of remedial action (such as the removal of collinear variables, entering linear combinations as a

single predictor or employing alternative, often more complex, methodology) to relieve or resolve the ‘problems’

of collinearity. If other factors had been accounted for in the initial assessment of the data, the need for such action

may be much less than first thought.

Figure 1. An illustration of the role of the response dictating the impact of collinearity

The impact of collinearity on parameter estimates is governed by factors such as the response, the sample size

and sampling variation. These are all features of the ‘model environment’. In Figure 1 there is a rotation of the

regression planes (labelled P12 and P34) that are spanned by the green and red pairs of predictors respectively (see

Wickens (1995) for a description of the vector geometry and Draper and Smith (1998) for matrix approaches to

regression analysis). This movement represents a change in the position of the response (e.g. a result of sampling

variation) as the predictors are assumed to be measured without error (Freund & Wilson, 1998). When the response

is closer to the regression plane in the green example (reflected by an increased coefficient of determination-R2
y),

a change in the slope of the plane will conceptually have less impact on the deviation of the coefficient estimates.

Further to that, an increased correlation between the covariates (i.e. an increase in r12, reflected by a reduced
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(a) (b)

Figure 2. Placing two models on common collinear axes

angle between vectors �x1 and �x2) would demonstrate that small changes in the position of the response would be

amplified by the change in the coefficient point estimates. This relationship of the response with the covariates

mediates the impact of collinearity on the coefficients and standard errors. O’Brien (2007) demonstrates this on

the variance of the estimates using a variance deflation factor (VDF).

VDF = 1 − R2
y (2)

The VIF represents a multiplicative factor of the inflation in variance against a baseline of independence (i.e.

r12 = 0, VIF = 1). If we were to consider a VIF·VDF measure, it would place the impact of collinearity on

the variance of a coefficient in the context of the model environment. The VIF (and similarly VIF·VDF) is a

measurement on each of the predictors in the model, however such a measure is often difficult to interpret without

a ‘global’ indicator of the collinearity present in a model. It will also not indicate which covariates are involved in

linear dependencies (Belsley et al., 1980). In section 2.1 we develop a new index motivated by vector geometry

that incorporates the covariance structure between the predictors and the response. In section 2.2 this concept is

extended to the general case to provide a measure of the impact in regression models with k > 2 predictors. In

section 2.3 we further develop the measure to identify the individual role of each predictor in contributing to the

observed ‘global’ impact. Finally, in section 3 we provide an illustrative regression study with the interpretation of

the results discussed and compared to existing correlation based indices.

2. Methods

2.1 The Development of a Covariance Based Collinearity Index

A researcher should not rely exclusively on study data to assess the validity of a model. External information

should be incorporated into the analysis to tailor the assessment to a particular discipline or setting. If we consider

the impact of collinearity on an estimate to be a ‘problem’, then to assess that ‘problem’ we need an idea of what

the population structure is. For instance, suppose x1 and x2 are two uncorrelated predictors in a population, but the

sample observations are correlated. If we believe the population values to be uncorrelated (i.e. a prior assumption),

the expectation is that the multivariable regression coefficients on both x1 and x2 are unchanged compared to their

univariable regression coefficients (i.e. the regression models with only x1 or x2 entered). The fact that the sample

values are correlated causes the univariable and multivariable estimates to differ. One feature of a ‘covariance

based’ index would be to indicate the ‘magnitude’ of this deviation in the sample from this (or any other) chosen

baseline. Another potential use is in model selection by comparing regression models with different predictors

entered. Similarly, this may involve comparing univariable coefficients (as a baseline) to different multivariable

regression models. In whichever application the index is required, the motivation remains to measure the deviation

of the point estimates between models to illustrate the impact of collinearity on an expectation or a sample estimate.

To measure the disparity between two sets of estimates, we need to put them in a comparable setting. In vector

geometry, we could do so by considering both in a common space. The traditional vector geometry representation

is to project the response y orthogonally onto the regression space spanned by X (i.e. the vectors �x1 and �x2 in the

bivariable example). The fitted response (labelled ŷk=2) is then projected orthogonally onto the covariate vectors
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Figure 3. An Illustration of the computation of components α2 and β2

to find the univariable point estimates b
′
x j

and parallel to the complementary covariate vector to find multivariable

estimates bx j (see Figure 2a). The distance between the projections would indicate the change in point estimates

on each predictor moving from the univariable to multivariable model (i.e. shown in blue). To gain a ‘global’

measure of this impact on the overall model we choose to represent the individual univariable estimates as a single

multivariable model involving orthogonal predictors (see Figure 2b). This is achieved by identifying an alternative

fitted response ŷ′k=2
, that when projected parallel to the covariates (analogous to the construction of ŷk=2), would

attain the univariable point estimates b
′
x j

, rather than the bx j . The distance between ŷk=2 and ŷ′k=2
is the product of

the change in regression coefficients, relative to the collinearity in the model (i.e. shown by the green line in Figure

2b). Using ŷ′k=2
removes the effect of a non-orthogonal projection and places the estimates from the univariable

models on the collinear axes. This movement from ŷk=2 to ŷ′k=2
represents a global measure of coefficient deviation,

which we label D2.

For the bivariable example, the calculation of the index D2 (with the subscript denoting the two covariates entered

into the model) is found to be Ry · r12 (see Appendix for a derivation of this result). The proof divides the index

into 2 components. The first labelled α2 is measured by the deviation parallel to �x1 and the second labelled β2 is

the deviation orthogonal to �x1 (see Figure 3). To explain these components further, first consider a single predictor

model including only x1 (i.e. a simple regression), which naturally assumes a zero impact of collinearity (i.e.

D1 = 0). A second predictor x2 is then added to this model to generate an impact demonstrated by a non-zero

D2 (unless x2 is uncorrelated with x1 or neither predictor explains any variance in the response). The unadjusted

variance explained by x2 is ry2 (This quantity is demonstrated as a distance from the origin along the vector �x2).

This variance on x2 can be divided into a portion that is ‘overlapped’ with x1 (i.e. α2) and a portion of the variance

explained by x1 confounded with x2 (i.e. β2). The component α2 is demonstrated by a simple regression of the

geometrical point ry2 (on the vector �x2) onto x1-(i.e. ry2 · r12). The second component β2 is the residual variance

of ry2 from this regression, subtracting the semi-partial correlation of x2 with y (i.e. ry2 variance attributed to x2

only). This is found to be r12 · sry1. Therefore, we are projecting two components of the fitted response ŷk=2 (i.e.

ry2 and sry1, where |ŷk=2| = Ry =
√

ry2 + sry1) onto vectors to which they would have zero correlation at baseline.

Any deviation of these components away from zero will represent an impact of collinearity demonstrated by a

deviation in the point estimates.

The bivariable index D2
2 = (ry2 · r12)2 + (sry1 · r12)2 = (Ry · r12)2 (squared to make the magnitude comparable

to variance based diagnostics such as the VIF) represents the impact on the coefficient point estimates associated

with the collinearity amongst the predictors and also the covariates relationship with the response. The composite

direction vector formed by the two univariable regression coefficients (ŷ′k=2
) is in the covariance maximizing direc-

tion on a single dimension. This is equivalent to a one component partial least squares regression (PLS) (Phatak &

Dejong, 1997; Wold, Sjostrom, & Eriksson, 2001). The ŷk=2 vector represents the OLS estimation. By definition,

this is the covariance maximizing direction in the bivariable model, thus equivalent to a PLS regression with a full

complement of components retained. We understand that the D-index is measuring the distance between an un-

correlated composite single dimension vector and the collinear predictors of the bivariable model. From the vector
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(c) (d)

Figure 4. Vector geometry illustrating two examples with equal r12

Figure 5. Illustration of the extension to D2 with x3 included

geometry, the length of the vector ŷ′k=2
is equal to the summation of the two univariable r2

y estimates, relative to

the collineatity present (i.e. |ŷ′k=2
| = r2

y1 + r2
y2 + 2ry1ry2r12 by the cosine rule). The length of ŷk=2 is equal to the

Ry found in the sample. The D-index represents the impact of collinearity on the point estimates of moving from

an uncorrelated prior to a correlated sample estimate, or similarly the impact of collinearity in adding a second

predictor to a ‘simple’ regression model. ‘Correlation based’ indices would be unable to distinguish between the

examples in Figure 4 as the correlation amongst the covariates is identical. As illustrated by the geometry in Figure

4b the movement in the point estimates is far greater than in Figure 4a and a change of sign has occurred on �x2.

The change of sign may not be of particular interest statistically, but it could represent a potential change in the

clinical interpretation. The D-index does not directly indicate a change of sign, but rather the greater propensity

for a change of sign is reflected by an increased D-statistic (i.e. a greater movement). Under sampling variation,

these deviations can become inflated or dampened with a potential impact on the conclusions of the study.

2.2 Extension of the Bivariable Case to a General Index

For the index to be of use in application it is important that it can be extended to models for k > 2 predictors. We

consider two options for extending this measure. First we look for the additional impact on the existing bivariable

model (including x1 and x2) of adding a third predictor x3 (labelled Ḋ3), and second the impact of collinearity on

a baseline model that assumes orthogonality amongst all of the predictors (labelled D3). Figure 5 illustrates the

vector geometry for the three predictor regression model. The fitted response of the trivariable model �̂yk=3 is first

projected orthogonally onto the covariate vectors �x j to obtain the individual ry j (i.e. regression coefficients from

each univariable model). The ry j are then projected along the plane formed by the remaining two predictors to

identify �̂y′ k=3 representing our baseline model of orthogonality amongst the covariates. The distance between �̂yk=3

and �̂y′ k=3 forms the new D3 (analogous to the D2 computation). The fitted response in the three predictor model
�̂yk=3 is an extension of �̂yk=2 in the direction orthogonal to the plane spanned by �x1 and �x2. The orthogonality with

the plane demonstrates that this extension represents a partial correlation between y and x3, whilst holding x1 and
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x2 constant-we label this correlation pry312
. The �̂y′ k=3 is an extension of the �̂y′ k=2 in the direction of �x3 with length

(i.e. variance) equal to ry3.

We first consider the calculation of the additional impact of adding x3 to the already assumed D2 impact from the

bivariable case. First, we project �D3 onto the 2-dimensional plane spanned by the vectors �x1 and �x2. The projected
�D3 is demonstrating the overlap between x3 with variance ry3 and the existing predictors in the model (i.e. �x1 and

�x2)-analogous to α2 in the bivariable index. This projection is labelled α3, which is composed of D2 and a further

component γ3 (see Figure 5). Following the previous construction of D2 we compute γ3 as two components. The

first is parallel to �x1, found by an orthogonal projection of �x3 with variance ry3 onto �x1,

γ̇3 = ry3 · r13 (3)

This represents the overlap of x3 (of length ry3) and x1. The second (labelled γ̈3) is in the direction orthogonal

to �x1 in the plane spanned by �x1 and �x2. This demonstrates that �x1 is held constant, thus defining a semi-partial

correlation between �x3 and �x2, holding �x1 constant (labelled sr23).

γ̈3 = ry3 · sr23 (4)

Therefore, γ3 is calculated as the squared sum of orthogonal components,

γ3 =

√
γ̇2

3
+ γ̈2

3
=

√
(ry3r13)2 + (ry3sr23)2 (5)

From Equation 5 we have an extension to D2 in the plane spanned by x1 and x2 after adding x3 to the model.

Finally, there is an additional deviation that would represent the new β component (labelled β3). β3 represents a

deviation of the coefficients in a dimension orthogonal to the computation of D2. The vector geometry illustrates

that this is a projection of the remaining explained variance of ŷ (i.e. the component of y orthogonal to �x3) onto

an arbitrary axis orthogonal to the plane spanned by �x1 and �x2. There is a residual from x3 (of length ry3) after

regressing on x1 and x2. This residual is composed of pry312
and β3 (analogous to our proof for D2 with the residual

composed of sry21
and β2). Therefore, β3 is an impact of collinearity representing the explained variance of the

original model confounded with x3.

β3 = R312

√
sr2

y13
+ pr2

y212
(6)

The index Ḋ3 can be calculated as the squared sum of the components γ3 and β3,

Ḋ2
3 = γ

2
3 + β

2
3 = [r2

y3(r2
13 + sr2

231
)] + [R312

√
sr2

y13
+ pr2

y213
]2) (7)

Returning to the vector geometry, we can summarise the computation of Ḋ3. The response ŷ has been split into

two components (ry3 and sry2 + pry123
). We project ry3 onto the surface spanned by �x1 and �x2 (which would have

zero correlation if it were uncorrelated with the baseline model) and project the second component (sry2 + pry123
)

onto �x3 (which would similarly be uncorrelated at baseline). However, if a correlation is present it will generate

a deviation of the point estimates represented by a non-zero Ḋ3. The advantage of using this measure (i.e. the

bivariable model as baseline) is that the interpretation is much the same as the example for D2. We again have two

components of the response to project, only in this example one component represents a baseline model with the

explained variance of two predictors rather than one.

The second index D3 is an impact of collinearity in moving from uncorrelated covariates at baseline to the three

predictor model. In other words, if x3 had zero correlation with both x1 and x2, the Ḋ3 would always be zero.

However, x1 and x2 could still be correlated and so an impact on the point estimates from baseline orthogonality

would still be seen, but it would be represented solely in the D2. Now we look for an overall impact of collinearity

to give D2 and D3 a common baseline for comparison. In this computation we place an emphasis on x3 by

considering the first component of ŷ to be ry3 (followed by sry13
and pry213

, however any construction of ŷ would

produce the same ‘global’ result. In the D3 measure we once again split α3 into two components. The first deviation

component is parallel to �x1, which is the summation of α2 and γ̇3. This represents the portion of explained variance

from x2 and x3 overlapped with x1. There is a second component of this impact in the plane spanned by �x1 and �x2.

This consists of the shared variance of ry3 with x2, whilst holding x1 constant. This is represented by the addition

of γ̈3 and β2. The final component of D3 is the deviation orthogonal to the plane spanned by �x1 and �x2-this is the

6
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Figure 6. Computation of the angle between �D2 and �x1

component β3 identical to that computed for Ḋ3. The D2
3 demonstrating the overall impact from the baseline of

orthogonality can now be expressed as follows,

D2
3 = [ry2r12 + ry3r13]2 + [ry3sr231

]2 + [r12sry12
+ R312

√
sr2

y13
+ pr2

y213
]2 (8)

In both measures, the components of the response are projected onto vectors which would have zero correlation at

the specified baseline. This deviation contributes to the global measure. We can extend these measures generated

for the trivariable model to the general case with k predictors.

Ḋ2
k = [r2

yk(r2
k1 + pr2

k21
+ . . .+pr2

k(k−1)1,2,...,(k−2)
)] + [Rk1,2,...,(k−1)

√
pr2

y1k
+ pr2

y2k
+ . . .+pr2

y(k−1)k
]2 (9)

D2
k = [ry2r12 + ry3r13 + . . .+rykr1k]2 + [ry3sr231

+ ry4sr241
+ . . .+ryk sr2k1

]2 + . . .

+ [ryk pr(k−1)k1,...,(k−2)
]2 + [Rk1,2,...,(k−1)

√
pr2

y1k
+ pr2

y2k
+ . . .+pr2

y(k−1)k
]2 (10)

We suggest that our measure in higher dimensions represents a generalized form of Rx · Ry. The first index

Ḋ2
k measures the impact of adding a single predictor to a baseline model (assumed as the model including k −

1 predictors). The second index D2
k assumes the predictors to be uncorrelated at baseline and incorporates the

previous D2
k−1

impact as part of an overall measure.

2.3 Measurement of Impact on Individual Predictors

The global D-index only partly achieves our original goal in creating a regression tool for applied research. It

is useful to highlight when there exists a high impact of collinearity on the point estimates, however it will not

indicate which covariate contributes a greater impact to the deviation (a similar limitation to the VIF). This is the

strength of an index such as the CI on the correlation matrix of the covariates. A feature of the D-index that we

have ignored to this point is the direction of the deviation. In coordinate free vector geometry, the direction is

relative to the collinear axes of the covariates. Therefore, we choose to focus on the angle between each covariate

and the deviation D2
k (which we now consider in vector form-�Dk). The angles (that in turn provide correlations) can

perform a similar role to variance decomposition proportions alongside the CI in identifying which predictors are

involved in a near dependency (Belsley, 1991). The vector geometry in Figure 6 demonstrates that each correlation

(i.e. cosine of θD1) can be calculated in the bivariable model as the ratio of ry j and Ry. For example,

cos θD1 = rD1 =
α2

D2

=
r12 · ry2

r12 · Ry
=

ry2

Ry
(11)

The component α2 is redefined for the target variable with which we wish to identify its contribution to the impact

of collinearity. The correlation with �D2 is computed by setting arbitrary axes parallel and orthogonal to the target

covariate. Therefore, if we are adding x1 to the simple regression model consisting of the predictor x2, the arbitrary

axis would be formed parallel to �x2 and represent the degree to which ry1 is explained by x2. Scaling by D2 removes

the inflation effect of collinearity, thus normalizing the quantity to place the estimate on a scale of 0 − 1. If the

explained variance on each predictor in the univariable models is equal, then the correlations with �D2 (in the

7
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bivariable case) will be equally split. However, if the ratio is larger on one covariate, then the covariate with the

weaker correlation to the response will have a greater association with �D2. This dictates the direction of global

change (i.e. �D2) to be greater in the direction of the covariate with the weaker correlation to the response. Extending

to the general case, the calculation remains similar with the correlation calculated as the ratio of αk to Dk.

3. Example

The index was applied to data from a study by Penrose et al. (1985). The study recorded percentage body fat

and several body circumference measures of 252 men. We used the data to explore the inter-relationship between

body composition using external measurements of different body circumference variables and how these highly

correlated variables can then be explored to create the optimal model to explain percentage body fat.

Table 1. Pearson correlations for the body fat study

y = body fat x1 = neck x2 = abdomen x3 = biceps

x1 = neck 0.49

x2 = abdomen 0.81 0.75

x3 = biceps 0.49 0.73 0.68

x4 = ribs 0.35 0.74 0.62 0.63

The aim was to discover which subset of easily measurable body circumference measurements (x1 = neck, x2 =

abdomen, x3 = biceps, x4 = ribs) could be used to represent body fat (see Table 1 for correlations between the

predictors and the response). This would allow a reduction in the number of measurements required reducing

study length, cost and participant burden whilst maintaining the measurements that most accurately represent total

body fat.

Table 2. Results from the D-index for the four predictor body fat study

Model R2
y D2

k (95% CI) rD1 rD2 rD3 rD4

x1, x2 0.24 0.13 (0.08 to 0.18) 0.99 0.71 - -

x1, x3 0.70 0.27 (0.25 to 0.29) 0.97 - 0.41 -

x1, x4 0.25 0.10 (0.06 to 0.13) 0.99 - - 0.70

x2, x3 0.70 0.40 (0.36 to 0.43) - 0.97 0.59 -

x2, x4 0.28 0.15 (0.10 to 0.20) - 0.93 - 0.93

x3, x4 0.67 0.31 (0.28 to 0.34) - - 0.60 0.99

x1, x2, x3 0.71 0.89 (0.65 to 1.16) 0.92 0.92 0.62 -

x1, x2, x4 0.28 0.50 (0.32 to 0.74) 0.95 0.87 - 0.81

x1, x3, x4 0.70 0.79 (0.54 to 1.05) 0.92 - 0.62 0.87

x2, x3, x4 0.70 1.06 (0.80 to 1.32) - 0.95 0.69 0.89

x1, x2, x3, x4 0.71 1.77 (1.28 to 2.33) 0.89 0.93 0.70 0.85

Consider the D2
2 produced by each model (see Table 2), the greatest impact of collinearity is highlighted for the

model involving x2 and x3. This follows with the maximal correlation and subsequently the VIF (r23 = 0.75, VIF23

= 2.29). The rD2 demonstrates that the covariate with the greater correlation to the response is x3, highlighting

that x2 provides the greater contribution to the impact of collinearity in the model. Studying the correlations

between covariates indicates that the model involving x2 and x4 has a similarly high correlation (r24 = 0.73). For

this example the variance in y explained by both predictors is low (ry2 = 0.49, ry4 = 0.49) and so the impact

of collinearity on the model has been limited by the low model R2
y. However, both rD j are large indicating that

the collinearity is high. Therefore, the individual predictors perform an important role in indicating a potential

‘problem’ even when the global inflation indicated by D2 is low.

In each bivariable model the covariate �x1 had the strongest correlation with �D2. This is demonstrated by the low

correlation with y (i.e. ry1 = 0.35). We also observe that x3 consistently had the lowest correlation with �D2 (for

any model) suggesting that it would be a useful predictor to include in the model due to its high explanatory power.

A confidence interval for the two predictor models (shown in parentheses in Table 2) was generated using the

standard error of R2
y (Cohen, 2003), whilst r12 is fixed (due to predictors assumed to be measured without error).

A confidence interval for the three and four predictor models was bootstrapped using a “leave one out” approach

8
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(Tukey, 1958). We notice that R2
y does not increase greatly beyond the two predictor model that included x1 and

x3. The correlations rD j indicate that x1 was the main contributor to this impact of collinearity in the bivariable

model. We observe a very moderate increase in R2
y after including x2 in this model. However, with this inclusion

our D-index has increased from 0.27 to 0.89. We can calculate the additional impact of adding the predictor x2

to this model as Ḋ2
3 = 0.49. This would appear high when viewed alongside other bivariable measures to attain a

small increase in R2
y.

We notice that when x3 is entered into the model along with x1 and x2 the rD j are equal for both x1 and x2. In

comparison, when x4 is added to the model with x1 and x2, rD1 is greater than rD2. This demonstrates how the

role of each predictor changes dependent on others entered into the model. In the full four predictor model the

R2
y reaches 0.71, however the deviation peaks at 1.77. The collinearity structure of the four predictors and the

variance explained suggests that x2 is the greatest contributor to this impact of collinearity. This is a change to x1

being consistently high in previous models. Observing model parsimony would seem to discount the four predictor

model. Removing x2 produces a model with a high R2
y (0.70) and moderately low D2

3 (0.79). Excluding x2 from

the model would not seem obvious from only observing the three predictor models (due to the consistently high

rD1), however noticing the impact in the full model has highlighted the statistical dependency of this predictor with

others in the study.

4. Discussion

From a model building perspective the bivariable model with x1 and x3 included as predictors would appear

optimal. This model explained a high variance of the response and had a relatively low D2. We can demonstrate

that adding the predictor x2 to this model, whilst moderately increasing the R2
y, would generate a high deviation in

the point estimates of the existing model. Also, when considering the full set of predictors, x2 would seem to have

the greatest impact. Therefore, if any predictor would be added to the bivariable model, x4 would seem the better

option from a collinearity perspective. However, adding x4 does not increase the explanatory power of the model

and so this may not be wise. This example has been much simplified as we have not considered the nature of any

causal relationships amongst the covariates. This would raise the complexity of the problem and our understanding

of incorporating collinearity in the model. We are instead focussing on the purely statistical aspect of what our

measure indicates.

The greatest change in impact from D2 to D3 is after adding x3 to the model including x2 and x4. However, x3

contributes the greatest explained variance individually (ry3 = 0.81) and so including this predictor would appear

a sensible decision. It is labelled the most beneficial of the predictors by our correlations with �D, suggesting x1

and x2 contribute greatly to the impact of collinearity in this model. The high change in global impact could be

misleading if it were interpreted as a measure of some collinearity ‘problem’. This is why it would seem beneficial

that any change in D-index between models be interpreted alongside the R2
y. If little explained variance is gained

by including an additional predictor in the model, but the deviation is high, then this should perhaps be viewed as a

potential warning (based on the conceptual model employed) of the impact of collinearity on the model estimates.

If the global inflation is small, but the correlations between predictor and �D are large, this would suggest a high

degree of collinearity that is being moderated by a low R2
y.

5. Concluding Remarks

In this study we have demonstrated the important role that the response plays in mediating the impact of collinearity

in an applied regression study. This has demonstrated the need for a collinearity index, not simply to describe

the degree of collinearity amongst the covariates, but to identify the potential impact on the variance and point

estimates in relation to the response entered into the model. We have developed a novel index based on vector

geometry and regression theory that assesses a global deviation in the point estimates and analyses the role of each

predictor in contributing to this effect. When interpreting the D-index for use in model building it may appear

conceptually appealing to assume a greater R2
y to be beneficial to the estimation. This is how variance based

inflation (such as the VIF · VDF) would be interpreted and to some would seem a more natural metric. However,

it is important to stress that the D-index is not necessarily measuring a ‘problem’. A high R2
y will inflate the point

estimates under collinearity and this is subsequently reflected in our index. If we were comparing to a baseline

prior, whether that be a zero correlation or some ‘guesstimate’ of a population correlation, then we would wish

to know the deviation of the estimates away from our expectation. This is not representing a biased or ‘wrong’

estimate, but a population prior that is not reflected in the single sample case. Therefore, if a greater R2
y inflates the

change in coefficients, then we would wish to know the degree of inflation in the sample data.
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The D-index could be developed in the future to produce a more natural interpretation for model building. Re-

placing explained variance with some reciprocal estimate could deflate the impact. However, collinearity remains

a complex feature in application and the development of a statistical index still requires a very careful conceptual

understanding to be of benefit in application. The work in this paper should only be viewed as a starting point for

future methodological development and simulation studies. An achievement in the development of this index is in

the use of vector geometry to create the measure and to interpret it. One of the reasons for proposing the geometric

alternative to the VIF · VDF is that it allows flexibility to incorporate different a priori assumptions. This would

be achieved by varying angles of projection to reflect different correlations.
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Appendix

The derivation of the D2 index can be demonstrated by considering two components of the D2 vector (labelled α2

and β2)-see Figure 7.

Figure 7. Construction of D2 as two components α2 and β2

The first component α2 is parallel to �x1 and the second component β2 is orthogonal to �x1. The proof of the index

(using the triangle highlighted in blue) can be shown as follows,

α2 = ry2 cos θ12 = r12ry2 (12)

β2 = ry2 sin θ12 − sry2

= ry2

√
1 − r2

12
− ry2 − ry1r12√

1 − r2
12

=
ry2(1 − r2

12) − ry2 + ry1r12√
1 − r2

12

= r12 · ry1 − ry2r12√
1 − r2

12

= r12sry1 (13)

The index is then calculated as the squared sum of orthogonal components,

D2
2 = α

2
2 + β

2
2 = (r12ry2)2 + (r12sry1)2 = R2

yr2
12

D2 = R2
yr12 (14)

Therefore, the index is the product of the correlation between x1 and x2 (i.e. r12) and the root of the variance

explained in the response Ry.
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