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Abstract

For square contingency tables with ordered categories, Yamamoto et al. (2007) considered a measure to repre-

sent the degree of departure from extended marginal homogeneity. It attains the maximum value when one of

two symmetric cumulative probabilities is zero. The present paper proposes an improved measure so that the de-

gree of departure from extended marginal homogeneity can attain the maximum value even when the cumulative

probabilities are not zeros. An example is given.
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1. Introduction

For the R × R square contingency table, let πi j denote the probability that an observation will fall in cell (i, j)
(i = 1, . . . ,R; j = 1, . . . ,R). The marginal homogeneity (MH) model is defined by

πi· = π·i (i = 1, . . . ,R),

where πi· =
∑R

k=1 πik and π·i =
∑R

k=1 πki (Stuart, 1955; Bishop et al., 1975, p. 294). Let

H1(i) =

i∑

s=1

R∑

t=i+1

πst, H2(i) =

R∑

s=i+1

i∑

t=1

πst,

for i = 1, . . . ,R − 1. This model may be expressed as

H1(i) = H2(i) (i = 1, . . . ,R − 1).

This states that the cumulative probability that an observation will fall in row category i or below and column

category i + 1 or above is equal to the cumulative probability that the observation falls in column category i or

below and row category i + 1 or above for i = 1, . . . ,R − 1.

Tomizawa (1984, 1995) considered the extended marginal homogeneity (EMH) model which is expressed as

H1(i) = δH2(i) (i = 1, . . . ,R − 1).

When δ = 1, this is the MH model. Let

H1 =

R−1∑

i=1

H1(i), H2 =

R−1∑

i=1

H2(i).

Assume that {H1(i) + H2(i) > 0}, H1 > 0, and H2 > 0. The EMH model may also be expressed as

Q1(i) = Q2(i) (i = 1, . . . ,R − 1),
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where

Q1(i) =
H∗1(i)

H∗
1(i) + H∗

2(i)
, Q2(i) =

H∗2(i)

H∗
1(i) + H∗

2(i)
,

H∗1(i) =
H1(i)

H1

, H∗2(i) =
H2(i)

H2

.

This indicates that there is a structure of symmetry between {Q1(i),Q2(i)}. Yamamoto et al. (2007) considered

a measure to represent the degree of departure from EMH, using Patil and Taillie (1982) diversity index. The

measure ranges between 0 and 1, and the degree of departure from EMH is maximum when Q1(i) = 0 or Q2(i) = 0

for all i = 1, . . . ,R − 1. [Note that for measures for other models, e.g., the symmetry model (Bowker, 1948) and

the MH model, see (e.g., Tomizawa et al., 2001; Tahata et al., 2006; Tahata et al., 2009)].

However, for analyzing square contingency tables, all Q1(i) and Q2(i) (i = 1, . . . ,R − 1) are positive in many cases.

Thus, then Yamamoto et al. (2007) measure cannot attain the maximum value. So, we are now interested in a

measure to represent the degree of departure from EMH such that it can attain the maximum value even when each

of {Q1(i)} and {Q2(i)} is not zero.

For square contingency tables with ordered categories, the present paper proposes such a measure on EMH when

all cumulative probabilities are positive.

2. New Measure

Let

Ei =
H∗1(i) + H∗2(i)

2
(i = 1, . . . ,R − 1).

For a specified d with 0.5 < d ≤ 1 and 1 − d ≤ Q1(i) ≤ d (i = 1, . . . ,R − 1), define the new measure as, for λ(> −1)

fixed,

Ω =
1

K

⎛⎜⎜⎜⎜⎜⎜⎝1 −
λ2λ

2λ − 1

R−1∑

i=1

EiWi

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

K = 1 − λ2λ

2λ − 1
L,

L =
1

λ

(
1 − dλ+1 − (1 − d)λ+1

)
,

Wi =
1

λ

(
1 − Qλ+1

1(i) − Qλ+1
2(i)

)
,

and the value at λ = 0 is taken to be continuous limit as λ→ 0. Thus, when λ = 0,

Ω =
1

K

⎛⎜⎜⎜⎜⎜⎜⎝1 −
1

log 2

R−1∑

i=1

EiWi

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

K = 1 − 1

log 2
L,

L = −dlogd − (1 − d)log(1 − d),

Wi = −Q1(i)logQ1(i) − Q2(i)logQ2(i).

Note that Wi is Patil-Taillie diversity index including Shannon entropy (when λ = 0). A value of d is chosen by the

user such that 1−d ≤ Q1(i) ≤ d for any i = 1, . . . ,R−1. When d = 1, the measure Ω is identical to Yamamoto et al.

(2007) measure. [Although the detail is omitted, note thatΩ can also be expressed by using the power-divergence.]

Then, we can obtain the following theorem:

Theorem 1 For each λ and a fixed d,

(i) 0 ≤ Ω ≤ 1,

(ii) Ω = 0 if and only if the EMH model holds,
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(iii) Ω = 1 if and only if the degree of departure from EMH is the largest in the sense that Q1(i) = d or Q2(i) = d
for all i = 1, . . . ,R − 1.

Proof. When d = 1, for each λ, the minimum value of Wi is 0 when Q1(i) = 0 or Q2(i) = 0 for all i = 1, . . . ,R − 1,

and the maximum value of it is (2λ − 1)/(λ2λ) (if λ � 0) or log 2 (if λ = 0), when Q1(i) = Q2(i) = 1/2 for all

i = 1, . . . ,R − 1. When d � 1, the minimum value of it is L, which is not equal to 0, and the maximum value of it

is the same as d = 1. Thus, the measure Ω lies between 0 and 1. So the proof is completed.

We note that the measure Ω is the modified measure of Yamamoto et al. (2007) by using a coefficient 1/K.

Consider the artificial 4 × 4 table data in Table 1a on cell probabilities {pi j}. Then, we see the degree of departure

from EMH by using the existing measure Ω with d = 1 (i.e., Yamamoto et al. measure) and the measure Ω with

d < 1 (in this case we set d= 0.9). We see from Table 1b that the true value of Ω with d = 1 is 0.531 (when λ = 0),

and that of Ω with d = 0.9 is 1 (when λ = 0). Thus, we can see that the new measure Ω with d < 1 attains the

maximum value 1, though all cumulative probabilities are positive.

Table 1. (a) An artificial 4 × 4 table data on cell probabilities {pi j}, and (b) the values of measure Ω with d = 1

(existing measure) and Ω with d = 0.9 (new measure) applied to Table 1a

(a) Artificial data

(1) (2) (3) (4)

(1) 0.2 0.00025 0.00025 0.0005

(2) 0.003 0.2 0.089 0.00025

(3) 0.003 0.001 0.2 0.00825

(4) 0.003 0.003 0.075 0.2135

(b) Value of the existing measure and new measure

Existing measure New measure

0.531 1

3. Asymptotic Variance for Estimated Measure

Let ni j denote the observed frequency in cell (i, j) (i = 1, . . . ,R; j = 1, . . . ,R). Assuming a multinomial distribution,

the estimated measure Ω̂ is given by Ω with {πi j} replaced by {π̂i j}, where π̂i j = ni j/n and n =
∑∑

ni j. Using the

delta method, Ω̂ has asymptotically (as n→ ∞) a normal distribution with mean Ω and variance

σ2 =
1

nK2

R−1∑

k=1

R∑

l=k+1

[
πkl(v1(kl))

2 + πlk(v2(kl))
2
]
,

where for λ � 0,

vs(kl) =
2λ

2(2λ − 1)Hs

⎡⎢⎢⎢⎢⎢⎢⎣
l−1∑

i=k

τs(i) − (l − k)

R−1∑

i=1

H∗s(i)τs(i)

⎤⎥⎥⎥⎥⎥⎥⎦ (s = 1, 2),

with

τ1(i) = (Q1(i))
λ + λ

{
(Q1(i))

λ − (Q2(i))
λ
}

Q2(i),

τ2(i) = (Q2(i))
λ + λ

{
(Q2(i))

λ − (Q1(i))
λ
}

Q1(i),

and for λ = 0,

vs(kl) =
1

2Hs(log 2)

⎡⎢⎢⎢⎢⎢⎢⎣
l−1∑

i=k

log Qs(i) − (l − k)

R−1∑

i=1

H∗s(i) log Qs(i)

⎤⎥⎥⎥⎥⎥⎥⎦ (s = 1, 2).

Let σ̂2 denote σ2 with {πi j} replaced by {π̂i j}. Using these, the approximate confidence interval for the measure Ω

is obtained as follows:

Ω̂ ± Zα/2
σ̂√

n
,
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where Zα/2 is the (1 − α/2) percentile of the standard normal distribution.

4. An Example

Consider the data in Table 2, taken from Hattori et al. (2002, p. 244). These data describe the cross-classification

of father’s and son’s occupational status categories in Japan which were examined in 1955 and in 1975.

Table 2. Occupational status for Japanese father-son pairs (from Hattori et al., 2002, p. 244)

(a) Examined in 1955

Son’s status

Father’s status (1) (2) (3) (4) Total

(1) 59 41 18 13 131

(2) 45 136 70 27 278

(3) 25 75 236 43 379

(4) 62 131 212 686 1091

Total 191 383 536 769 1879

(b) Examined in 1975

Son’s status

Father’s status (1) (2) (3) (4) Total

(1) 127 101 54 12 294

(2) 86 207 125 13 431

(3) 78 124 310 24 536

(4) 109 206 437 325 1077

Total 400 638 926 374 2338

Note: (1) is Upper White-collar; (2) Lower White-collar; (3) Blue-collar and (4) Farming.

It seems natural to assume that all cumulative probabilities are positive because any observations can fall in all

cells of the table. Therefore, it may not be appropriate to use the measure Ω with d = 1 because there is not a

structure of cumulative probabilities such that Ω with d = 1 attains the maximum value 1. So we should use Ω

with d < 1 (for example, d = 0.99) so that the measure can attain the maximum value 1.

Since the confidence intervals for Ω with d = 0.99 applied to the data in each of Tables 2a and 2b, do not include

zero for all λ (see Table 3), these would indicate that there is not a structure of EMH in neither of tables.

Table 3. When d = 0.99, the estimate of Ω, estimated approximate standard error (S.E.) for Ω̂, and approximate

95% confidence interval (C.I.) for Ω, applied to Tables 2a and 2b

λ Ω̂ S.E. C.I.

−0.5 0.023 0.007 (0.010, 0.036)

0.0 0.033 0.009 (0.014, 0.051)

0.5 0.039 0.011 (0.018, 0.061)

For Table 2a 1.0 0.043 0.012 (0.019, 0.067)

1.5 0.044 0.012 (0.020, 0.068)

2.0 0.043 0.012 (0.019, 0.067)

2.5 0.041 0.012 (0.018, 0.063)

−0.5 0.105 0.012 (0.080, 0.129)

0.0 0.141 0.016 (0.110, 0.172)

0.5 0.165 0.017 (0.131, 0.199)

For Table 2b 1.0 0.177 0.018 (0.141, 0.213)

1.5 0.180 0.018 (0.144, 0.216)

2.0 0.177 0.018 (0.141, 0.213)

2.5 0.170 0.018 (0.135, 0.205)

Moreover, we compare the degree of departure from EMH in Tables 2a and 2b using the confidence intervals for

Ω. For any λ, the values in the confidence interval for Ω applied to the data in Table 2b are greater than those
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applied to the data in Table 2a. In addition, the values in the confidence interval do not overlap for Table 2a and

for Table 2b. Thus, the degree of departure from EMH is greater for Table 2b than for Table 2a.

5. Concluding Remarks

We have proposed Ω which is an improvement of Yamamoto et al. (2007) measure (i.e., Ω with d = 1) to represent

the degree of departure from EMH. For analyzing the data of square table such that all cumulative probabilities

are positive, it may not be adequate to use the measure Ω with d = 1 because then the measure cannot attain the

maximum value 1. For such data, it would be natural to use the measure Ω with d < 1 because then the measure

can attain maximum value 1 even when all cumulative probabilities are positive.

The analyst may also be interested in how the value of d is determined. However it seems difficult to discuss this.

The measure Ω depends on the value of a fixed d. Also, the value of Ω increases as the value of d decreases. But

when we compare several tables, the result of comparisons is invariant without depending on the value of d. For

analyzing a square table data, we note that if 1−d ≤ Q1(i) ≤ d is not satisfied for all i = 1, . . . ,R−1, the measure Ω

cannot be used for the given data. Thus, the analyst must set the value of d carefully, so as to satisfy the condition

1−d ≤ Q1(i) ≤ d for all i = 1, . . . ,R−1. Therefore we recommend a value being close to 1 (for example, d = 0.99)

as the value of d.
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