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Abstract

In this work, we study the empirical estimator of the Value at Risk (VaR for short) for weak dependent observations.

Our approach uses the oscillation of the empirical process under hypothesis of moment’s inequality. We provide

general conditions which ensure the convergence of the empirical estimator of the VaR. We also prove a central

limit theorem (CLT) for the difference. We perform some simulations for different sequences to illustrate our

results. Finally, we apply the results for different sequences under assumptions of mixing or covariance.

Keywords: Value at Risk (VaR), modulus of continuity, empirical process, quantile function, moment’s inequality,

dependent random variables

1. Introduction

The Value at Risk VaR is a method to evaluate financial risks. It summarizes the risks of loss in a unique number

and aggregating the risks of market through several classes of financial assets (stocks, bonds, etc.).

The VaR is a probabilistic measure of the possible loss for a given horizon. It represents a level of loss, for a

financial position or a portfolio, which will be exceeded during a given period only with a chosen typically small

probability.

The VaR is obviously neither the loss which one can expect nor the maximum loss which one may suffer, but a

level of loss which will be exceeded only with a level of a fixed probability q.

Definition 1 (P&L and loss function) Let Pt be the value of a portfolio of assets at time t. Then the variation of the

value of this portfolio over the interval [t, t + T ], is called the profit-and-loss (P&L) function:

�Pt ≡ Pt+T − Pt,

and the function

Xt :≡ −�Pt

is called the loss function.

In practice, we decide to fix T (e.g. one day or one week), yet �Pt ≡ Pt+1 − Pt.

Definition 2 (Value at Risk) The Value at Risk VaR (q) of a portfolio of assets for a period [t, t + 1] at the confidence

level q ∈ (0, 1) is given by the smallest number x such that the probability that the loss Xt exceeds x is no larger

than (1 − q). Formally

VaR(q) ≡ inf {x : P (Xt > x) ≤ 1 − q}
or

VaR (q) ≡ F−1
t (q) = inf {x : F (x) ≥ q} := ξ. (1.1)

where Ft (x) = P (Xt ≤ x) , x ∈ R is the distribution function of Xt and F−1
t its quantile function.

Definition (1.1) clearly shows that the knowledge of the distribution function (in short d f ) of the r.v X can de-

termine the VaR (q). Often the function F is assumed to be normal. However a lot of financial practitioners use

historical distributions which are far from being normally distributed (see e.g. Cont, 2001). Moreover, in general,

the historical data have an intertemporally dependent structures. Indeed the assumption that the variables (Xi)1≤i≤n
(denote the variations (−�Pi)1≤i≤n in the value of a portfolio over the n periods) are i.i.d, is not easily satisfied
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in practice. Hence the feeling of the need of taking into account a possible dependence structure or an effect of

memory in the observations. In order to model and measure this memory aspect in the data, we consider two cases:

correlations or mixing coefficients.

So the main objective of this paper is to provide ways which allow to tackle the issue of estimation of the VaR in

the cases where there is either a lack of parameterizations of F or some weak dependency among the data. To do

so, we use the empirical distribution function Fn (x) = 1
n
∑n

i=1 I(Xi≤x), where x ∈ R and I is the indicator function,

for a stationary sequence of dependent real-valued random variables (Xi)1≤i≤n to estimate the VaR.

The empirical estimator of the VaR
(
V̂aR

)
(see e.g. Dowd, 2001) is defined by:

V̂aR (q) ≡ F−1
n (q) ≡ inf {x : Fn (x) ≥ q} .

We note that if we order the independent random variables Xn,1 ≤ Xn,2 ≤ ... ≤ Xn,n then V̂aRe (q) can be written as

V̂aR (q) = Xn,s, s =
[
nq

]
+ 1.

where [a] is the integer part of a.

Next let us recall the definitions of some mixing coefficients which are criteria needed to introduce dependency

measures between variables.

Let (Ω,K , P) be a probability space and letA, B be two sub σ−algebras of K .We define:

1) The α−mixing coefficient by:

α (A,B) = sup
A∈A,B∈B

|P (A ∩ B) − P (A) P (B)| .

2) The ρ−mixing coefficient by:

ρ (A,B) = sup
f∈L2(A),g∈L2(B)

|corr ( f , g)| ,

where corr ( f , g) =
Cov( f ,g)√

Var( f )
√

Var(g)
.

3) The ϕ−mixing coefficient by:

ϕ (A,B) = sup
A∈A,B∈B

∣∣∣∣∣P (A ∩ B)

P (A)
− P (B)

∣∣∣∣∣ .
Finally, we say that a stationary sequence (Xi)i∈Z is strong mixing or α−mixing, if

αn = α (σ (Xi, i ≤ 0) , σ (Xi, i ≥ n))→n→∞ 0.

The paper is organized as follows. The section 2 is related to the notion of oscillation of an empirical process

which is defined for each fx ∈ F by:

Zn ( fx) =
1√
n

n∑
i=1

[
fx (Xi) − E ( fx (Xi))

]
=
√

n [Fn (x) − F (x)]

where F is the set of characteristic functions of intervals of the form (−∞, x) for any x ∈ R. We study the mean of

the modulus of continuity of the empirical process defined by

W (n, δ) := E

⎛⎜⎜⎜⎜⎜⎜⎝ sup
‖ fx− fy‖v≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎠ (1.2)

where ‖ fx‖v = (E | fx|v)
1
v . Our method is inspired by the work by Ben Hariz (2005) who studied the stochastic

equicontinuity of empirical processes indexed by a family of functions.
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In the section 3, which is the main part of this work, we prove the consistency as well as a central limit theorem

for the V̂aR, i.e.
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
where

σ2
∞(ξ) =

∑
i∈Z

Cov
(
I(X1≤ξ), I(Xi+1≤ξ)

)
= Var

(
I(X1≤ξ)

)
+ 2

+∞∑
i=1

Cov
(
I(X1≤ξ), I(Xi+1≤ξ)

)
is assumed to satisfy 0 < σ2∞(ξ) < ∞.
In the section 4, several applications are discussed. Finally, the section 5 is devoted to simulations which illustrate

the results.

2. Oscillation of the Empirical Process

First let us introduce the following assumptions:

H(X) : (Xi)1≤i≤n is a stationary sequence of real-valued random variables with a common distribution function

F.

H(p, X) : For all positive real numbers 2 ≤ v < p < r ≤ ∞ and for any ε > 0, there exists a positive constant

D = D (ε, p, v, r) < ∞ such that for any f ∈ F
E |Zn ( f )|p ≤ D

(
‖ f ‖pv + n1+ε− p

2 ‖ f ‖pr
)
.

H(F) : F is continuous in I = [
ξ − an, ξ + an

]
where 0 < an →n→∞ 0, and F has a density function f which is

continuous and 0 < f (ξ) < ∞.

For 0 < bn →n→∞ 0 we denote,

an � bn ⇔
{

an < bn and
an

bn
→n→∞ 0

}
.

In the proofs C denote constant where values may change from one line to another. We will now focus on the

modulus of continuity of an empirical process (Xi)1≤i≤n.

Theorem 1 Under conditions H(X) and H(p, X), there exists C = C (ε, p, v, r) < ∞ such that for δ > n

1+ε
p −1

v(1+ 1
p − 1

r ) ,

W (n, δ) ≤ C ·
(
n
− 1

2
+

2+ε− p
r

p+1− p
r + δ

(
1− v

p

))
.

If in addition ε < p
2

(
1 − 1

p +
1
r

)
− 1 and δ = δn → 0, then

lim
n→∞W (n, δn) = 0.

Remark

•When r = p the result becomes for δ > n
1+ε−p

vp ,

W (n, δ) ≤ C ·
(
ln n · n− 1

2
+ 1+ε

p + δ
(
1− v

p

))
. (2.1)

• If F is L−Lipschitz, then for δ0 >
1

C(v,L)
n

1+ε
p −1

1+ 1
p − 1

r ,

E

⎡⎢⎢⎢⎢⎣ sup
|x−y|≤δ0

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎤⎥⎥⎥⎥⎦ ≤ C ·

(
n
− 1

2
+

2+ε− p
r

p+1− p
r +C (v, p, L) · δ

(
1
v− 1

p

)
0

)
.

Proof of Theorem 1. Let N (k) = N�.�
(
2−k, ‖.‖v ,F

)
, k ∈ N (the bracketing number) be the minimal number of

brackets which are of a norm ‖.‖v less than or equal 2−k needed to cover F . As N (k) ≤ 2.2vk is finite (see e.g. Van

der Vaart & Wellner, 1996, ex 2.5.4 in p. 129), there exists a finite sequence{
fxk(i),Δxk(i) = I(xk(i)≤.≤xk(i+1))

}
1≤i≤2vk
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such that:

1)
∥∥∥Δxk(i)

∥∥∥
v ≤ 2−k,

2) ∀ fx ∈ F ,∃ i :
∣∣∣ fx − fxk(i)

∣∣∣ ≤ Δxk(i).

We set (πk ( f ) ,Δk ( f )) the first pair
(
fxk(i),Δxk(i)

)
which satisfies

∣∣∣ fx − fxk(i)

∣∣∣ ≤ Δxk(i). Let q0, k and q1 ∈ N such that

q0 ≤ k ≤ q1, we define for 1 ≤ i ≤ 2vq0 ,

Ei =
{
f ∈ F : πq0

( f ) = fxq0
(i)

}
,

then the sets Ei form a partition of F . For δ ∼ 2−q0 ⇔ q0 ∼ − ln δ
ln 2

, we define:

Fi, j =
{(

fx, fy
)
∈ F × F : fx ∈ Ei, fy ∈ E j,

∥∥∥ fx − fy
∥∥∥

v ≤ δ
}
.

Let now Λ =
{
(i, j) : Fi, j � ∅

}
. For every pair (i, j) ∈ Λ, we fix an element of Fi, j and denote this pair

(
φi, j, ψi, j

)
.

Let
(

fx, fy
)

be a pair satisfying
∥∥∥ fx − fy

∥∥∥
v ≤ δ, then

(
fx, fy

)
∈ Fi, j for some (i, j) ∈ Λ. We write

fx − fy = fx − πq0
( fx) + πq0

( fx) − φi, j + φi, j − ψi, j + ψi, j − πq0

(
fy
)
+ πq0

(
fy
)
− fy

but πq0
( fx) = πq0

(
φi, j

)
and πq0

(
fy
)
= πq0

(
ψi, j

)
since fx, φi, j ∈ Ei, fy, ψi, j ∈ E j. Consequently:

sup
‖ fx− fy‖v≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣ ≤ 4 sup
fx∈F

∣∣∣∣Zn

(
fx − πq0

( fx)
)∣∣∣∣ + sup

(i, j)∈Λ

∣∣∣∣Zn

(
φi, j − ψi, j

)∣∣∣∣
That gives by applying the expectation:

E

⎛⎜⎜⎜⎜⎜⎜⎝ sup
‖ fx− fy‖v≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎠ ≤ 4E

⎛⎜⎜⎜⎜⎝sup
fx∈F

∣∣∣∣Zn

(
fx − πq0

( fx)
)∣∣∣∣
⎞⎟⎟⎟⎟⎠ + E

⎛⎜⎜⎜⎜⎝ sup
(i, j)∈Λ

∣∣∣∣Zn

(
φi, j − ψi, j

)∣∣∣∣
⎞⎟⎟⎟⎟⎠

≡ 4E1 + E2.

In order to control the terms E1 and E2, we put ‖Zn ( f )‖F = sup f∈F |Zn ( f )| , and we use the following inequality

due to Pisier: For all random variables Z1,Z2, ..., ZN

E

[
max
1≤i≤N

|Zi|
]
≤ N

1
p max

1≤i≤N
(E |Zi|p)

1
p .

Control of E1: For f ∈ F , we write:

f − πq0
( f ) = f − πq1

( f ) +

q1∑
k=q0+1

[
πk ( f ) − πk−1 ( f )

]
.

Therefore,

E1 ≡ E

∥∥∥∥Zn

(
f − πq0

( f )
)∥∥∥∥F

≤ E

∥∥∥∥Zn

(
f − πq1

( f )
)∥∥∥∥F +

q1∑
k=q0+1

E ‖Zn (πk ( f ) − πk−1 ( f ))‖F

≤ E1,q1+1 + 2
√

n sup
f∈F

E

∣∣∣Δq1
( f )

∣∣∣ + q1∑
k=q0+1

E1,k

where E1,k = E ‖Zn (πk ( f ) − πk−1 ( f ))‖F , q0 + 1 ≤ k ≤ q1 and E1,q1+1 = E

∥∥∥∥Zn

(
Δq1

( f )
)∥∥∥∥F . Note that πk ( f ) −

πk−1 ( f ) = πk ( f ) − πk−1 (πk ( f )) and πk ( f ) take values on a finite set N (k) ≤ 2.2vk. Then using Pisier’s inequality,

we can write:

E1,k ≤ 2
vk
p max

g∈πk(F )
‖Zn (g − πk−1 (g))‖p .
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Apply H(p, X) to h = g − πk−1 (g) to get:

‖Zn (h)‖p ≤ D
1
p
(
‖h‖pv + n1+ε− p

2 ‖h‖pr
) 1

p

≤ D
1
p

(
‖h‖v + n

1+ε
p − 1

2 ‖h‖r
)

Using the fact that

‖X‖r ≤ ‖X‖
v
r
v × ‖X‖

r−v
r∞ ,

we obtain

‖Zn (h)‖p ≤ D
1
p ·

(
2−(k−1) + n

1+ε
p − 1

2 2−
(k−1)v

r

)
≤ 2D

1
p ·

(
2−k + n

1+ε
p − 1

2 2−
kv
r

)
.

Hence,

E1,k ≤ 2D
1
p · 2 vk

p

(
2−k + n

1+ε
p − 1

2 2−
kv
r

)
≤ 2D

1
p ·

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2 2k
(

v
p− v

r

))
≤ C ·

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2 2k
(

v
p− v

r

))
Similarly for E1,q1+1:

E1,q1+1 ≤ C ·
(
2−(q1+1)

(
1− v

p

)
+ n

1+ε
p − 1

2 2(q1+1)
(

v
p− v

r

))
.

Finally, using that E
∣∣∣Δq1

( f )
∣∣∣ = ∥∥∥Δq1

( f )
∥∥∥v

v ≤ 2−q1v, we obtain:

E1 ≤ C · √n2−q1v +

q1+1∑
k=q0+1

E1,k ≤ C · √n2−q1v +C ·
q1+1∑

k=q0+1

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2 2k
(

v
p− v

r

))
(2.2)

≤ C ·
(√

n2−q1v + 2−q0

(
1− v

p

)
+ n

1+ε
p − 1

2

[
2q1

(
v
p− v

r

)
− 2q0

(
v
p− v

r

)])
.

Then,

E1 ≤ C ·
(√

n2−q1v + 2−q0

(
1− v

p

)
+ n

1+ε
p − 1

2

[
2q1

(
v
p− v

r

)
− 2q0

(
v
p− v

r

)])
. (2.3)

Control of E2: Noting that |Λ| ≤ 2 × 2vq0 (since if Fi, j � φ, then j = {i − 1, i, i + 1} , because
∣∣∣ fx − fxq0

(i)

∣∣∣ ≤ Δxq0
(i)

and
∥∥∥Δxq0

(i)

∥∥∥
v
≤ 2−q0 ) and

∥∥∥φi, j − ψi, j

∥∥∥
v ≤ δ, using the inequality of Pisier, we get

E2 = E

⎛⎜⎜⎜⎜⎝ sup
(i, j)∈Λ

∣∣∣∣Zn

(
φi, j − ψi, j

)∣∣∣∣
⎞⎟⎟⎟⎟⎠

≤ 2
vq0

p max
(i, j)∈Λ

∥∥∥∥Zn

(
φi, j − ψi, j

)∥∥∥∥
p
.

Again by H(p, X),

E2 ≤ 2
vq0

p

[
D

1
p ·

(∥∥∥φi, j − ψi, j

∥∥∥
v + n

1+ε
p − 1

2

∥∥∥φi, j − ψi, j

∥∥∥
r

)]
≤ 2

vq0
p D

1
p ·

(
δ + n

1+ε
p − 1

2 δ
v
r

)
Then,

E2 ≤ D
1
p · 2 vq0

p

(
δ + n

1+ε
p − 1

2 δ
v
r

)
. (2.4)

Thus, from (2.3) and (2.4) we conclude that:

W (n, δ) ≤ C ·
[√

n2−q1v + 2−q0

(
1− v

p

)
+ 2

vq0
p δ + n

1+ε
p − 1

2

(
2q1

(
v
p− v

r

)
− 2q0

(
v
p− v

r

)
+ 2

vq0
p δ

v
r

)]
.
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We have δ ∼ 2−q0 then 2
vq0

p · δ ∼ 2−q0

(
1− v

p

)
∼ δ

(
1− v

p

)
, hence

W (n, δ) ≤ C ·
[√

n2−q1v + δ
(
1− v

p

)
+ n

1+ε
p − 1

2 2q1

(
v
p− v

r

)]
.

Take q1 such that
√

n2−q1v ∼ n
1+ε

p − 1
2 2q1

(
v
p− v

r

)
then

2q1 ∼ n
1− 1+ε

p

v(1+ 1
p − 1

r ) ⇒ q1 ∼
(
1 − 1+ε

p

)
ln n

v
(
1 + 1

p − 1
r

)
ln 2
.

Therefore,

W (n, δ) ≤ C ·
(
n
− 1

2
+

2+ε− p
r

p+1− p
r + δ

(
1− v

p

))
.

As q1 and q0 have to satisfy q0 < q1 then δ > n

1+ε
p −1

v(1+ 1
p − 1

r ) . And to ensure that W (n, δ) →{n→∞,δ→0} 0, we need

− 1
2
+

2+ε− p
r

p+1− p
r
< 0 which is this

ε <
p
2

(
1 − 1

p
+

1

r

)
− 1.

Proof of Remark 1. The proof of the first point of the Remark 1 has the same steps of the proof of Theorem 1 up to

the inequality (2.2). This relation becomes in the case where r = p,

E1 ≤ C · √n2−q1v +C ·
q1+1∑

k=q0+1

(
2−k

(
1− v

p

)
+ n

1+ε
p − 1

2

)

≤ C ·
(√

n2−q1v + 2−q0

(
1− v

p

)
+ q1n

1+ε
p − 1

2

)
.

Since

q1 ∼ 1

v ln 2

(
1 − 1 + ε

p

)
ln n.

Therefore,

W (n, δ) ≤ C ·
(
ln n.n−

1
2
+ 1+ε

p + δ
(
1− v

p

))
.

3. Limit Theorems for the Empirical VaR

In this part we will apply the results of the previous section on the fluctuations of the empirical process to deduce

asymptotic results on the V̂aR (q).

Theorem 2 Under conditions H(X), H(F) and H(p, X) where ε < p
2

(
1 − 1

p +
1
r

)
− 1, we have for an � n−

1
2 ,

|ξn − ξ| = op (an) .

If in addition √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
,

then √
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

The proof of the previous theorem is based on the two following lemmas:

Lemma 1 Under conditions H(X), H(F) and H(p, X) where ε ≤ p
2
− 1, we have for an > 0,

P (|ξn − ξ| > an) ≤ C (ε, p, v, r, ξ) .
(
n

1
2 an

)−p
.

If in addition an � n−
1
2 , then

|ξn − ξ| = op (an) .
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Proof of Lemma 1. Let s =
[
nq

]
+ 1. Then, we note that

P (ξn < ξ − an) = P (s or more of the Xi (1 ≤ i ≤ n) are < ξ − an)

= P

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

I(Xi<ξ−an) ≥ s

⎞⎟⎟⎟⎟⎟⎠
= P

(
Fn (ξ − an) ≥ s

n

)
= P

(
Fn (ξ − an) − F (ξ − an) ≥ s

n
− F (ξ − an)

)
.

Since

Fn (ξn) =
s
n
= F (ξ) + O

(
n−1

)
, (see e.g. Sen, 1972)

then, using H(F) and the first-order Taylor expansion of F (ξ − an), one obtains

s
n
− F (ξ − an) = f (ξ) an [1 + o (1)] .

Then

P (ξn < ξ − an) = P (Fn (ξ − an) − F (ξ − an) ≥ f (ξ) an [1 + o (1)]) .

And by Markov’s inequality, this is bounded by

P (ξn < ξ − an) ≤
(

1

f (ξ) an [1 + o (1)]

)p

E
[
Fn (ξ − an) − F (ξ − an)

]p ,

≤ C ·
(

1

f (ξ) an

)p

E |Fn (ξ − an) − F (ξ − an)|p .

But,

E |Fn (ξ − an) − F (ξ − an)|p =
(

1√
n

)p

E

∣∣∣∣Zn

(
f(ξ−an)

)∣∣∣∣p .
By H(p, X),

E |Fn (ξ − an) − F (ξ − an)|p ≤
(

1√
n

)p

D ·
(∥∥∥I(Xi<ξ−an)

∥∥∥p
v + n1+ε− p

2 · ∥∥∥I(Xi<ξ−an)

∥∥∥p
r

)
≤ n

−p
2 D ·

(
F (ξ − an)

p
v + n1+ε− p

2 F (ξ − an)
p
r

)
.

Then,

P (ξn < ξ − an) ≤ C ·
(

1

f (ξ) an

)p

n
−p
2 D ·

(
F (ξ − an)

p
v + n1+ε− p

2 F (ξ − an)
p
r

)
≤ C · D

(
1

f (ξ)

)p

n
−p
2 a−p

n

(
F (ξ − an)

p
v + n1+ε− p

2 F (ξ − an)
p
r

)
≤ C (ε, p, v, r, ξ) ·

(
1 + n1+ε− p

2

)
n
−p
2 a−p

n .

Consequently for 0 < an and ε ≤ p
2
− 1

P (ξn < ξ − an) ≤ C (ε, p, v, r, ξ) · n −p
2 a−p

n . (3.1)

For the second term, we note that:

P (ξn > ξ + an) = P (s or less of the Xi (1 ≤ i ≤ n) are < ξ + an)

= P

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

I(Xi<ξ+an) ≤ s

⎞⎟⎟⎟⎟⎟⎠
= P

(
Fn (ξ + an) ≤ s

n

)
= P

(
Fn (ξ + an) − F (ξ + an) ≤ s

n
− F (ξ + an)

)
.
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But, using H(F) and the first-order Taylor expansion of F (ξ + an), one obtains

P (ξn > ξ + an) = P (Fn (ξ + an) − F (ξ + an) ≤ − f (ξ) an [1 + o (1)])

= P (F (ξ + an) − Fn (ξ + an) ≥ f (ξ) an [1 + o (1)]) .

and by Markov’s inequality, this is bounded by

P (ξn > ξ + an) ≤
(

1

f (ξ) an [1 + o (1)]

)p

E
[
F (ξ + an) − Fn (ξ + an)

]p ,

≤ C ·
(

1

f (ξ) an

)p

E |Fn (ξ + an) − F (ξ + an)|p .

In the same way for the first term, we have

E |Fn (ξ + an) − F (ξ + an)|p =
(

1√
n

)p

E

∣∣∣∣Zn

(
f(ξ+an)

)∣∣∣∣p .
By H(p, X),

E |Fn (ξ + an) − F (ξ + an)|p ≤
(

1√
n

)p

D ·
(∥∥∥I(Xi<ξ+an)

∥∥∥p
v + n1+ε− p

2 · ∥∥∥I(Xi<ξ+an)

∥∥∥p
r

)
≤ n

−p
2 D.

(
F (ξ + an)

p
v + n1+ε− p

2 F (ξ + an)
p
r

)
.

Then,

P (ξn > ξ + an) ≤ C ·
(

1

f (ξ) an

)p

n
−p
2 D ·

(
F (ξ + an)

p
v + n1+ε− p

2 F (ξ + an)
p
r

)
≤ C · D ·

(
1

f (ξ)

)p

n
−p
2 a−p

n

(
F (ξ + an)

p
v + n1+ε− p

2 F (ξ + an)
p
r

)
≤ C (ε, p, v, r, ξ) ·

(
1 + n1+ε− p

2

)
n
−p
2 a−p

n .

Consequently for 0 < an and ε ≤ p
2
− 1

P (ξn > ξ + an) ≤ C (ε, p, v, r, ξ) · n −p
2 a−p

n . (3.2)

Thus, from (3.1) and (3.2) we conclude for 0 < an and ε ≤ p
2
− 1

P (|ξn − ξ| > an) ≤ C (ε, p, v, r, ξ) ·
(
n

1
2 an

)−p
.

Finally, if an � n−
1
2 , then

P (|ξn − ξ| > an)→n→∞ 0.

The following lemma studies the proximity between Zn

(
fξn

)
=
√

n (Fn (ξn) − F (ξn)) and Zn

(
fξ
)
=
√

n(Fn(ξ)−

F(ξ)).

Lemma 2 Under conditions H(X), H(F) and H(p, X) where ε < p
2

(
1 − 1

p +
1
r

)
− 1, we have for an � n−

1
2 and

bn � max

(
n
− 1

2
+

2+ε− p
r

p+1− p
r , a

(
1
v − 1

p

)
n

)
,

∣∣∣√n (Fn (ξn) − F (ξn)) − √n (Fn (ξ) − F (ξ))
∣∣∣ = op (bn) .

Proof of Lemma 2. Let 0 < an and 0 < bn, we note that

P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn

)
= P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn ∩ |ξn − ξ| ≤ an

)
+ P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn ∩ |ξn − ξ| > an

)
≤ P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ I(|ξn−ξ|≤an) > bn

)
+ P (|ξn − ξ| > an) .
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If H(p, X) is verified for ε < p
2

(
1 − 1

p +
1
r

)
− 1 ≤ p

2
− 1 and 0 < an, then by Lemma 1:

P (|ξn − ξ| > an) ≤ C ·
(
n

1
2 an

)−p
.

If H(F) is verified, then F is locally Lipschitz, then for |y − ξ| ≤ an, we have∥∥∥ fy − fξ
∥∥∥

v = |F (y) − F (ξ)| 1v ≤ C (v, ξ) · |y − ξ| 1v ≤ C (v, ξ) · a 1
v
n .

In addition, by Markov’s inequality and Theorem 1 for an >
1

C(v,ξ) n

1+ε
p −1

1+ 1
p − 1

r

P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ I(|ξn−ξ|≤an) > bn

)
≤ 1

bn
E

∣∣∣∣∣∣ sup
|y−ξ|≤an

∣∣∣∣Zn

(
fy − fξ

)∣∣∣∣
∣∣∣∣∣∣

≤ C · b−1
n

(
n
− 1

2
+

2+ε− p
r

p+1− p
r +C.a

(
1
v − 1

p

)
n

)
.

Consequently, for an >
1

C(v,ξ) n

1+ε
p −1

1+ 1
p − 1

r where ε < p
2

(
1 − 1

p +
1
r

)
− 1 and 0 < bn

P

(∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ > bn

)
≤ C ·

[
b−1

n

(
n
− 1

2
+

2+ε− p
r

p+1− p
r +C · a

(
1
v − 1

p

)
n

)
+

(
n

1
2 an

)−p
]
.

If an � n−
1
2 and bn � max

(
n
− 1

2
+

2+ε− p
r

p+1− p
r , a

(
1
v − 1

p

)
n

)
, then

∣∣∣∣Zn

(
fξn − fξ

)∣∣∣∣ = op (bn) .

Finally, by the definition of Zn ( fx), we obtain∣∣∣√n (Fn (ξn) − F (ξn)) − √n (Fn (ξ) − F (ξ))
∣∣∣ = op (bn) .

Proof of Theorem 2. By Lemmas 1 and 2 for an � n−
1
2 and bn � max

(
n
− 1

2
+

2+ε− p
r

p+1− p
r , a

(
1
v − 1

p

)
n

)
, we have

∣∣∣√n (Fn (ξn) − F (ξn)) − √n (Fn (ξ) − F (ξ))
∣∣∣ = op (bn) . (3.3)

Since

Fn (ξn) =
s
n
= F (ξ) + O

(
n−1

)
,

then, √
n (Fn (ξn) − F (ξn)) =

√
n (F (ξ) − F (ξn)) + O

(
n−

1
2

)
. (3.4)

If H(F) is satisfied, then by the Mean Value Theorem of F (ξ) − F (ξn),

F (ξ) − F (ξn) = (ξ − ξn) f (θξn + (1 − θ) ξ)
where θ ∈ [0, 1]. Then

√
n (Fn (ξn) − F (ξn)) =

√
n (ξ − ξn) f (θξn + (1 − θ) ξ) + O

(
n−

1
2

)
.

Hence, ∣∣∣∣√n (ξ − ξn) f (θξn + (1 − θ) ξ) + O
(
n−

1
2

)
− √n (Fn (ξ) − F (ξ))

∣∣∣∣ = op (bn) . (3.5)

But we have, √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

And by Lemma 1 for an � n−
1
2 ,

f (θξn + (1 − θ) ξ) =
[
f
(
ξ + op (an)

)]
→n→∞ f (ξ) in probability. (3.6)
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Then by (3.3), (3.4), (3.5), (3.6) and Slutsky’s Theorem (Cramér, 1946, p. 254), we have:

√
n ( f (ξ) (ξ − ξn))→d N

(
0, σ2

∞ (ξ)
)
.

Which is equivalent in the result to,
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4. Applications

In this section we apply the previous results for different sequences. Using the findings of Hu (2003, p. 1124) and

Peligrad (1985, Theorem 2.1, p. 1305), we apply our result to ϕ−mixing case. Making use of the result of Utev

and Peligrad (2003, Theorem 2.1 and 2.2), we apply our result to the ρ−mixing case and to α−mixing by mean

of the results in Shao and Yu (1996, Theorem 4.1) and Rio (1997, Theorem 7.2). We also consider the nonlinear

functional of Gaussian sequences to which we apply the result of Ben Hariz (2011) and Breuer and Major (1983).

Finally we compare the results with those in the existing literature.

4.1 ϕ−mixing Process

Corollary 1 Under condition H(X), if the ϕ−mixing coefficient satisfies

∞∑
i=0

ϕ
1
p
(
2i

)
< ∞ with p > 2,

Then, for δ > n−
1
2

(
1− 1

p

)
, there is a positive constant C(p, ϕ (.)) such that for any f ∈ F

E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C(p, ϕ (.)) ·

(
ln n.n

1
p− 1

2 + δ
(
1− 2

p

))
.

If H(F) is verified, then for an � n−
1
2 we have

|ξn − ξ| = op (an) .

and if in addition 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 1. When (Xi)i≥1 are identically distributed, using a Lemma by Hu (2003, p. 1124), if

∞∑
i=0

ϕ
1
p
(
2i

)
< ∞,

then, there exists a positive constant K = K(p, ϕ (.)) such that for all n ≥ 1 and for any f

E |Zn ( f )|p ≤ C (p, ϕ (·)) .
(
‖ f ‖p

2
+ n1− p

2 ‖ f ‖pp
)
.

Then H(p, X) is satisfied with ε = 0, v = 2 and p = r. Apply now Theorem 1 for δ > n−
1
2

(
1− 1

p

)
, to obtain

E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C ·

(
ln n · n 1

p− 1
2 + δ

(
1− 2

p

))
.

If H(F) is verified and an � n−
1
2 , then by Lemma 1 for p > 2 we obtain

|ξn − ξ| = op (an) .

To show that √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
,
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we will apply a result by Peligrad (1985, Theorem 2.1, p. 1305) with Yi ≡ I(Xi≤ξ) − F (ξ), σ2
n = E

[∑n
i=1 Yi

]2
and

Wn (t) := 1
σn

∑[nt]
i=1

Yi, t ∈ [0, 1] and 0 < σ2∞ < ∞. If we have 0 < σ2∞ < ∞, then
σ2

n
n →n→∞ σ2∞.

The condition (L) therein can be written for ε > 0,

1

σ2
n

n∑
i=1

E

[
Y2

i I[Y2
i >εσ

2
n]

]
≤ n
σ2

n
E

[
Y2

i I[Y2
i >εσ

2
n]

]

≤ C · n
σ2

n
P

[[
I(Xi≤ξ) − F (ξ)

]2
> εσ2

n

]
≤ C · n
εσ4

n
E

[[
I(Xi≤ξ) − F (ξ)

]2
]
→n→∞ 0.

The conditions:

(A) σ2
n = nh(n) où h(n) is a slowly varying function defined on R,

(B) supm≥0,n≥1

[
E

(∑m+n
i=1 Yi −∑m

i=1 Yi

)2
/σ2

n

]
< ∞,

therein are a result of 0 < σ2∞ < ∞. We take t = 1 to conclude

√
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

Therefore by Theorem 2
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.2 ρ−mixing Process

For a stationary sequence (Xi)i∈Z ,we define

α∗n = sup
S ,T⊂Z,dist(S ,T )≥n

α (MT ,MS ) ,

ρ∗n = sup
S ,T⊂Z,dist(S ,T )≥n

ρ (MT ,MS ) ,

whereMT = σ (Xi, i ∈ T ) ,MS = σ (Xi, i ∈ S ) .We apply a result by Utev and Peligrad (2003, Theorems 2.1 and

2.2) to prove the following Theorems:

Corollary 2 Under condition H(X), we assume: H (ρ) : There exists a real number 0 ≤ η < 1 and integer number
N ≥ 1 such that ρ∗N ≤ η. Then, for p > 2 and δ > n−

1
2

(
1− 1

p

)
, there is a positive constant C (p,N, η) such that for any

f ∈ F
E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C (p,N, η) .

(
ln n · n 1

p− 1
2 + δ

(
1− 2

p

))
.

If H(F) is verified, then for an � n−
1
2 we have

|ξn − ξ| = op (an) in probability.

If in addition the sequence (Xi)i≥1 is stongly mixing and 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 2. Assuming that the condition H (ρ) is satisfied and the random variables are identically

distributed, then by Utev and Peligrad (2003, Theorem 2.1), for any p > 2, there exists a positive constant D =
D (p,N, η) such that for n ≥ 1,

E |Zn ( f )|p ≤ D
(
‖ f ‖p

2
+ n1− p

2 ‖ f ‖pp
)
.

Apply now Theorem 1 with the condition H(p, X) where ε = 0, v = 2 and p = r, we obtain

E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C ·

(
ln n · n 1

p− 1
2 + δ

(
1− 2

p

))
.
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If H(F) is verified and an � n−
1
2 , then by Lemma 1 for p > 2 we obtain

|ξn − ξ| = op (an) in probability.

To show that √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
,

we will apply a result by Utev and Peligrad (2003, Theorem 2.2, p. 105) with ξni ≡ I(Xi≤ξ)−F (ξ), σ2
n = E

[∑n
i=1 ξni

]2
,

kn = n and Wn (t) := 1
σn

∑vt
i=1
ξni where vt = [nt] and t ∈ [0, 1]. Si on a 0 < σ2∞ < ∞, alors

σ2
n

n →n→∞ σ2∞. The

condition (2.5) of Utev and Peligrad (2003):

(2.5) limn→∞ sup
[
nE (ξn1)2 /σ2

n

]
≤ C, is a consequence of 0 < σ2∞ < ∞. The condition (2.3) is proved in Corollary

2: (condition (L). We take t = 1 to conclude

√
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

Therefore by Theorem 2
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.3 α−mixing Process

Corollary 3 Under conditions H(X) and H(F), if the α−mixing coefficient satisfies

α (n) ≤ Cn−θ for some C ≥ 1 and θ > 1 +
√

2.

Then, for an � n−
1
2 we have

|ξn − ξ| = op (an) .

and if in addition 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 3. When (Xi)i≥1 are identically distributed, then by Shao and Yu (1996, Theorem 4.1), if

α (n) ≤ Cn−θ for C > 0 and θ > 0.

Then, for some real numbers 2 < p < r ≤ ∞, 2 < v ≤ r, ε > 0, θ > v
v−2

and θ ≥ (p−1)r
r−p , there is a constant

K = K (v, p, r, ε, θ,C) < ∞ such that for any f ∈ F
E |Zn ( f )|p ≤ K

(
‖ f ‖pv + n1+ε− p

2 ‖ f ‖pr
)

which satisfies H(p, X). If ε ≤ p
2
− 1 and an � n−

1
2 , then by Lemma 1 we have

|ξn − ξ| = op (an) .

For determining θ which allows to apply Theorem 1 we need v < p < r and
p
2

(
1 − 1

p +
1
r

)
− 1 > 0. Now we have

θ ≥ (p − 1) r
r − p

⇔ p ≤ r (θ + 1)

θ + r
,

and

θ >
v

v − 2
⇔ v >

2θ

θ − 1
.

Since v < p we need
2θ

θ − 1
<

r (θ + 1)

θ + r
which is satisfied if

θ > 1 +
√

2

⎛⎜⎜⎜⎜⎝
√

r (r − 1) +
√

2

r − 2

⎞⎟⎟⎟⎟⎠ .
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Consequently, we take θ = 1 + η where η >
√

2. For η >
√

2 we have 2 + 2
η
< 2 +

2η2+6η+4

η3+η2+2η+4
< 2 +

2(2η+3)

η2−2
, then we

choose v, p, r

i) v = 2 + 2
η
,

ii) p = 2 +
2η2+6η+4

η3+η2+2η+4
,

iii) r = 2 +
2(2η+3)

η2−2
.

With these choices we have v < p < r and

p
2

(
1 − 1

p
+

1

r

)
− 1 > 0.

Then we have

W (n, an) ≤ C.
(
n
− 1

2
+

2+ε− p
r

p+1− p
r + a

1
v − 1

p
n

)
→n→∞ 0.

If in addition 0 < σ2∞ < ∞, then by Rio (1997, Theorem 7.2) for

α (n) ≤ Cn−θ where C ≥ 1 and θ > 1,

we have √
n (Fn (ξ) − F (ξ))→d N

(
0, σ2

∞ (ξ)
)
.

Finally, by applying Theorem 2 for an � n−
1
2 , we obtain that

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.4 Nonlinear Functional of Gaussian Sequences

Corollary 4 Let Xi = G (Zi) where G is a measurable function and (Zi) is a stationary Gaussian sequence with
zero mean and covariance function

� (n) = E (ZiZi+n) .

Assume
∑∞

i=0 |� (i)| < ∞. Then, for p > 2 and δ > n−
1
2

(
1− 1

p

)
, there is a positive constant C (p, �) such that for any

f ∈ F
E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
‖ fx− fy‖2≤δ

∣∣∣∣Zn

(
fx − fy

)∣∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ C (p, �) .

(
ln n.n

1
p− 1

2 + δ
(
1− 2

p

))
.

If H(F) is verified, then for an � n−
1
2 we have

|ξn − ξ| = op (an) in probability,

and if in addition 0 < σ2∞ < ∞, then

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Proof of Corollary 4. The proof of this corollary is a consequence of the following results:

Lemma 3 (Ben Hariz, 2011) Let p be an even integer and assume that
∑∞

i=0 |� (i)| < ∞, then there exists a constant
K = K (p, �) such that for all n > 0,

E

⎛⎜⎜⎜⎜⎜⎝ 1√
n

n∑
i=1

f (Zi) − E ( f (Zi))

⎞⎟⎟⎟⎟⎟⎠
p

≤ K (p, �)
(
‖ f ‖p

2
+ n1− p

2 ‖ f ‖pp
)
.

We apply Lemma 3 for f (Z) = IG(Z)≤x. Then H(p, X) is satisfied with ε = 0, v = 2 and p = r. If H(F) is verified,

then by Lemma 1 for an � n−
1
2 , we have

|ξn − ξ| = op (an) .
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And by Theorem 1

W (n, δ) ≤ C.
(
ln n.n−

1
2
+ 1

p + δ
(
1− 2

p

))
.

For the central limit theorem we need to apply the following results due to Breuer and Major (1983), (see also

Csörgo, Sándor & Mielniczuk, 1996, for a functional extension) .

Lemma 4 Let (Zi) be a stationary Gaussian sequence with a covariance function satisfying
∑∞

i=0 |� (i)| < ∞, then

1√
n

n∑
i=1

(
IG(Zi)≤x − F (x)

) −→d N
(
0, σ2

∞ (x)
)

where σ2
n (x) = Var

(
IG(Zi)≤x

)
+ 2

∑∞
i=1 Cov

(
IG(Z1)≤x, IG(Zi)≤x

)
.

If 0 < σ2∞ < ∞, then by Lemma 3, Lemma 4 and Theorem 2 we have

√
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

4.5 Comparison with the Existing Results of the Literature

• In Sen (1972), Sen has proved that for a ϕ-mixing sequence of random variables, if we have

∞∑
i=0

ϕ
1
2 (i) < ∞,

then √
n (ξn − ξ) −→d N

(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

which is stronger than our condition:
∞∑

i=0

ϕ
1
p
(
2i

)
< ∞.

Indeed,
∑∞

i=0 ϕ
1
2 (i) < ∞ needs an algebraic decay of the the mixing coefficient ϕ (i) , and

∑∞
i=0 ϕ

1
p
(
2i

)
< ∞ needs

only a logarithmic decay.

• In 2005, Chen and Tang studied the nonparametric estimation of the Value at Risk (VaR) for a geometric

α-mixing sequence of random variables, that means

α (k) ≤ cρk where k ≥ 1, c > 0 and ρ ∈ (0, 1) .

Using the kernel estimation of the VaR:

F̂n,h

(
V̂aRh (q)

)
=

1

n

n∑
i=1

G
⎛⎜⎜⎜⎜⎝ V̂aRh (q) − Xi

h

⎞⎟⎟⎟⎟⎠ = q,

where G (x) =
∫ x
−∞ K (u) d (u) is a distribution function of a kernel density K, they showed that:∣∣∣∣V̂aRh (q) − VaR (q)

∣∣∣∣ = oa.s.

(
n−

1
2 ln (n)

)
.

√
n
(
V̂aRh (q) − VaR (q)

)
→ dN

(
0,
σ2∞ (VaR (q))

f 2 (VaR (q))

)
.

• Lahiri and Sun (2009) showed that for a α-mixing sequence of random variables such that

α (n) ≤ dn−θ where θ > 12,

the empirical V̂aR (q) satisfy for a constant C > 0 and n ≥ 1

sup
x∈R

∣∣∣∣∣∣P [√
n (ξn − ξ) ≤ x

]
− Φ

[
x × f (ξ)

σ∞ (ξ)

]∣∣∣∣∣∣ ≤ C√
n
,
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where Φ is the standard normal distribution. In particular they obtained as n→ ∞,
√

n (ξn − ξ) −→d N
(
0,
σ2∞ (ξ)

f 2 (ξ)

)
.

Observe that for the CLT to hold for strong mixing sequences, we only need that α (k) ≤ Cn−θ with θ > 1 +
√

2.

Remark 2 Our results also apply for stochastic differential equations and stochastic volatility models discretely

observed. Indeed, Genon-Catalot et al. (2000) showed that, under some conditions, these models as well as theirs

discrete versions, satisfies geometric α or ρ−mixing. Therefore the main hypothesis H(p, X) is then fulfilled for any

p ≥ 2. Regarding GARCH models which are also widely used in financial modeling, we mention that Davis et al.

(1999) showed that under conditions on the moment of the innovations and on the Lyapunov exponent associated

to the sequence, the squared of the GARCH sequence is geometric α−mixing. Hence, our results apply also for

GARCH models.

5. Simulation Studies

In this section we present some numerical studies which illustrate the conditions under which V̂aR (q) converges to

VaR (q). In these simulations, we choose a correlated Gaussian and Pareto sequences. In both cases, we compare

the VaR(q) where q = 0.95 to the empirical estimate of VaR(q). For each set of parameters, we run (M = 10000)

Monte Carlo simulations and compute the mean absolute error (MAE(n)) between V̂aR (q) and VaR (q)

MAE(n) =
1

M

M∑
i=1

∣∣∣∣V̂aR(i) (q) − VaR (q)
∣∣∣∣ .

We also give a confidence interval with level 95% to the VaR(q). We consider three different models. First, a cor-

related Gaussian sequence, then a correlated sequences with Pareto marginal distributions and finally a stochastic

volatility model.

5.1 Case 1: Dependent Gaussian Process

Let (Xi)0≤i≤n be a Gaussian sequence with zero mean, unit variance and a correlation function given by:

�n (i) := Cov(X0, Xi) = (1 + |i|)−α , i = 1, ..., n

where α > 0. The parameter α tunes the strength of dependence. In particular α = ∞ corresponds to the i.i.d.

sequence, whereas α = 0, (�n (i) = 1) gives perfectly correlated sequence.

We study the process:

Tn :=
√

n
(
V̂aR (q) − VaR (q)

)
.

We show that for α > 1
(
⇒ ∑∞

i=0 |�n (i)| < ∞.
)
,

Tn −→d
n→∞ N

(
0, τ2
∞
)
, (5.1)

where τ2∞ =
σ2∞(VaR(q))

f 2(VaR(q))
. Here we recall that VaR (0.95) = 1.6449.

In Figure 1, we plot the mean absolute error with a 95% confidence interval as a function of n for different values

of α when q = 0.95. Clearly the MAE(n) goes to zero when n large, for any α > 0. The simulations shows that the

V̂aR (q) is consistent when the correlation parameter α > 0. When α > 1, in Figure 2, we plot
√

n MAE against n
to see that it converges to a constant. In Figure 3, we see that the MAE (n) as a function of α for different values

of n with q = 0.95, tends to zero for large values of n. In Figure 4, we compare the histogram of Tn for α = 3 and

n = 800 with the density function of Gaussian distribution N
(
0, τ2∞

)
. Clearly, for α > 1 the histogram of Tn is

close to the normal distribution, confirming our result (5.1).

5.2 Case 2: Dependent Pareto Process

We now consider the V̂aR (q) for a correlated Pareto sequence (Xi)0≤i≤n. Recall that the distribution function of

Pareto is defined for β > 0 by:

Gβ (x) =

⎧⎪⎪⎨⎪⎪⎩ 1 −
(

x0

x

)β
x > x0

0 x ≤ x0
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To construct a correlated Pareto sequence, we let Xi = G−1
β (Φ (Yi)) where Φ is the Gaussian distribution N (0, 1)

and {Yi}0≤i≤n is a correlated Gaussian sequence defined as in the previous example. As in the first case, we study

the process Tn to illustrate the central limit theorem (see (5.1)). Here VaR (0.95) = 2.7144 when β = 3.

In Figure 5, we plot MAE (n) with a 95% confidence interval as a function of n for different values of α when

q = 0.95. Clearly, the MAE goes to zero when n large, for any α > 0. The simulations shows that the V̂aR (q) is

consistent when the correlation parameter α > 0. When α > 1, in Figure 6, we plot
√

n MAE (n) against n to see

that it converges to a constant. In Figure 7, we see that the MAE (n) as a function of α for different values of n with

q = 0.95, tends to zero for large values of n. In Figure 8, we compare the histogram of Tn for α = 3 and n = 800,
with the density function of Pareto distribution. Here again, when α > 1, the CLT is satisfied.

5.3 Case 3: Stochastic Volatility Models

We assume that V̂aR (q) of the correlated sequence (Xi)0≤i≤n with stochastic volatility:

Xi = σi.εi

where (εi)0≤i≤n is an iid Gaussian sequence N (0, 1) and (σi)0≤i≤n correlated Gaussian or Pareto sequences.

As in the first case, we study the process Tn to prove (5.1) where VaR (0.95) ≈ 1.5949 for the Gaussian sequence

and VaR (0.95) ≈ 2.4615 for the Pareto sequence with β = 3. In Figure 9, we compare the histogram of Tn for

α = 3 and n = 800, with the density function of Gaussian distribution N
(
0, τ2∞

)
using two cases (Gaussian and

Pareto for the distribution function of σi). Here again, when α > 1, the CLT is satisfied.
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Figure 1. The Mean Absolute Error (MAE(n)) with 95% confidence intervals for correlated Gaussian sequence

with correlation function �n (i) = (1 + |i|)−α is plotted against the sequence length n for different values of

dependence parameter α
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Figure 2.
(√

nMAE(n)
)

with 95% confidence intervals for correlated Gaussian sequence with correlation function

�n (i) is plotted against the sequence length n for α ∈ {0.5, 1.5,∞}. The value
(√

nMAE(n)
)

tends to a constant for

α > 1 indicating that the optimal convergence rate O(n−
1
2 ) is achieved
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Figure 3. The Mean Absolute Error (MAE(n)) with 95% confidence intervals for correlated Gaussian sequence

with correlation function �n (i) is plotted against the dependence parameter α for different values of n
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Figue 4. Comparing the histogram of Tn for a Gaussian sequence where α = 3 and n = 800, with the density

function of Gaussian distribution N
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Figure 5. The Mean Absolute Error (MAE (n)) with 95% confidence intervals for correlated Pareto sequence with

correlation function �n (i) is plotted against the sequence length n for different values of dependence parameter α
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Figure 6.
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nMAE(n)
)

with 95% confidence intervals for correlated Pareto sequence with correlation function

�n (i) is plotted against the sequence length n for α ∈ {0.5, 1.5,∞}. The value
(√

nMAE(n)
)

tends to a constant for

α > 1 indicating that the optimal convergence rate O(n−
1
2 ) is achieved
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Figure 7. The Mean Absolute Error (MAE(n)) with 95% confidence intervals for correlated Pareto sequence with

correlation function �n (i) is plotted against the dependence parameter α for different values of n
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Figure 8. Comparing the histogram of Tn for a Pareto sequence where α = 3 and n = 800, with the density

function of Gaussian distribution N
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)
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Figure 9. Comparing the histogram of Tn for α = 3 and n = 800, with the density function of Gaussian

distribution N
(
0, τ2∞

)
for two case (Gaussian and Pareto sequence)

6. Conclusion

In this work, we considered the nonparametric estimator of the VaR. We proved the consistency of the empirical

estimator and a central limit theorem for
√

n (ξn − ξ) . Ours results apply as soon as we have a moment inequality

for the partial sums. Although the limit is normal like the i.i.d. case, the limiting variance is different and typically

larger with dependent observations. One consequence is: the confidence interval for the VaR will be larger. Another

question arise about the estimation of this variance. Our results apply for weakly dependent sequences, including

mixing sequences, linear process, gaussian sequences and others. It would be interesting to study the estimation of

the VaR for long-range dependent sequences.
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