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Abstract

Inflated beta regression models bear practical applicability in modeling rates and proportions measured continu-

ously in the presence of zeros and/or ones. In this article, the second-order bias of maximum likelihood estimators

for zero-or-one inflated beta regression model parameters is derived. This enables one to obtain corrected estima-

tors that are approximately unbiased. Numerical results exhibit that corrected estimators show better performance

in terms of mean-square error and bias when compared to maximum likelihood estimators.

Keywords: inflated beta distribution, inflated beta regression model, bias, bias correction, maximum likelihood

estimation

1. Introduction

Conventional estimation methods in statistical models may not be viable or appropriate in small samples. An

important research area is the study of maximum likelihood estimator (MLE) behavior in small-sized samples,

particularly bias analysis. In practice, the bias is usually ignored, the argument being that it is small when compared

to the standard error of the parameter estimator. In fact, it can be shown that, in general, the bias is of order O(n−1),
where n is the sample size, while the asymptotic standard error is of order O(n−1/2). However, for some models,

the bias may be considerably greater than the corresponding standard error in small- or moderate-sized samples.

Therefore, it is useful to obtain the second-order biases of MLEs, which allow us to evaluate the quality of the

estimates and to obtain bias corrected estimates, particularly for small and moderate sample sizes.

Cox and Snell (1968) presented a general expression for the bias of order O(n−1) of the MLE in both the one-

parameter and multiparameter cases. Based on their formula, Cook et al. (1986) obtained the bias of the MLEs

in nonlinear regression models with normal error. Cordeiro and McCullagh (1991), Botter and Cordeiro (1998),

Cordeiro and Cribari–Neto (1998), and Cordeiro and Toyama (2008) obtained formulas for the second-order biases

of the MLEs in generalized linear models and extensions. A detailed review on the bias correction literature can

be found in Ospina et al. (2006).

The focus of this work is the analytic bias correction in inflated beta regression models. Beta regression models

are suited for modeling data in the form of rates, fractions, and proportions; see, for instance, Paolino (2001),

Kieschnick and McCullough (2003), Ferrari and Cribari–Neto (2004), Vasconcellos and Cribari–Neto (2005),

Smithson and Verkuilen (2006), Cribari–Neto and Zeileis (2010), and Grün et al. (2012), among others. Among

the different specifications of the beta regression models, the proposed structure of Ferrari and Cribari–Neto (2004)

is the one presented here, as the parameterization they use allows for direct modeling of the distribution mean using

a linear predictor and a general link function, in a similar way to what is done in generalized linear models.

In many practical situations, proportions and fractions present zeros and/or ones. In these cases, a statistical model

that allows the addition of a point mass in the extremes of the interval (0, 1) seems to be more appropriate than

the beta law. Ospina and Ferrari (2010) developed inflated beta distributions as natural alternatives to the beta

distributions for modeling data observed in [0, 1), (0, 1], or [0, 1]. In addition, Ospina and Ferrari (2012) studied

beta regression models that allow for a point mass at one of the extremes of the unit interval and in which it is

possible to model the parameters of the inflated beta distribution using adequate nonlinear predictors and link

functions. In their work, inferential results are discussed focusing on likelihood theory. Also, diagnostic tools to

identify violations of model assumptions are proposed.
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Works focusing on bias correction of the MLEs for the parameters that index the beta distribution were conducted

by Cordeiro et al. (1997) and Cribari–Neto and Vasconcellos (2002). Vasconcellos and Cribari–Neto (2005)

obtained corrected bias MLEs for the parameters of the beta distribution, where such parameters are modeled

through regression structures. Ospina et al. (2006) obtained a formula to calculate the biases of the MLEs in

the beta regression model proposed by Ferrari and Cribari–Neto (2004). The authors noticed that, for small or

moderate sample sizes, the MLE of the precision parameter can be markedly biased. Our objective is to extend the

results obtained by Ospina et al. (2006) to the zero-or-one inflated beta regression models.

This article is organized as follows. In Section 2, the zero-or-one inflated beta regression models is defined and

likelihood inference is presented. In Section 3, analytical expressions for the term of order O(n−1) of the biases of

the MLEs for the zero-or-one inflated beta regression model parameters are obtained. This term will be used to

define corrected estimators that have bias of order O(n−2). In Section 4, the corrected estimators are numerically

evaluated using Monte Carlo simulations. Finally, our conclusions are presented in Section 5.

2. Model and Likelihood Inference

2.1 Model Definition and Likelihood Function

For simplicity, the linear version with constant precision of the zero-or-one inflated beta regression model proposed

by Ospina and Ferrari (2012) is adopted. Consider independent random variables y1, . . . , yn, each with an inflated

beta density function at point c (c = 0 or c = 1)(Note 1) given by

bic(y;α, μ, φ) =

⎧⎪⎪⎨⎪⎪⎩α, if y = c ,
(1 − α) f (y; μ, φ), if y ∈ (0, 1) ,

(1)

with 0 < α < 1, 0 < μ < 1, φ > 0, and f (y; μ, φ) being the beta density function

f (y; μ, φ) =
Γ(φ)

Γ(μφ)Γ((1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, y ∈ (0, 1). (2)

Here,

E(yr) = αc + (1 − α)μr,

Var(y) = (1 − α)Var(y | y ∈ (0, 1)) + α(1 − α)(c − μ)2,

where μr = E(yr | y ∈ (0, 1)) = (μφ)(r)/(φ)(r), with a(r) = a(a + 1) · · · (a + r − 1), is the rth moment of the beta

distribution (2), and Var(y | y ∈ (0, 1)) = μ(1 − μ)/(1 + φ). Note that, φ can be interpreted as a precision parameter

and α = P(y = c) represents the probability of observing zero (c = 0) or one (c = 1). For more details about this

distribution, refer to Ospina and Ferrari (2010).

The inflated beta linear regression model at point c is defined as follows. The independent random variables y1,

. . . , yn are such yt, for t = 1, . . . , n, has density (1) with parameters α = αt, μ = μt, and φ. It is assumed that αt and

μt are defined as

h(αt) =

M∑
i=1

ztiγi = ζt, g(μt) =

m∑
i=1

xtiβi = ηt, (3)

where γ = (γ1, . . . , γM)� and β = (β1, . . . , βm)� are unknown regression parameter vectors, such that γ ∈ IRM and

β ∈ IRm, and zt1, . . . , ztM and xt1, . . . , xtm are observations of known exogenous variables, with m + M < n. Note

that the values of z’s and x’s may fully or partially coincide. It is assumed that the link functions h : (0, 1) → IR
and g : (0, 1) → IR are strictly monotone and twice differentiable. Here, φ is a precision parameter that is constant

for all observations.

The likelihood function for the parameter vector θ = (γ�, β�, φ)�, of the zero-or-one inflated beta linear regression

model is given by

L(θ) =

n∏
t=1

bic(yt;αt, μt, φ) = L1(γ)L2(β, φ), (4)

with

L1(γ) =

n∏
t=1

α
1l{c}(yt)
t (1 − αt)

1−1l{c}(yt) and L2(β, φ) =
∏

t:yt∈(0,1)

f (yt; μt, φ),
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where 1lA(y) = 1 if y ∈ A, and 1lA(y) = 0 if y � A, and the parameters μt and αt satisfy (3), that is, αt = h−1(ζt)
and μt = g−1(ηt). Note that the likelihood function (4) can be factored into two terms, one that depends solely on

the parameter vector γ and another that depends solely on β and φ. Therefore, the parameter vectors γ and (β�, φ)�

are separable (Pace & Salvan, 1997, p. 128) and maximum likelihood inference on (β�, φ)� can be conducted

separately from that for γ, as if the value of γwere known, and vice-versa. Further, note that the discrete component

L1(γ) involves only the parameters used to model the probability of occurrence of zero or one. In contrast, the

continuous component L2(β, φ) only involves the parameters used to model the conditional distribution of the

response variable, given that it belongs to the interval (0, 1).

The log-likelihood function for θ is given by

	(θ) = 	1(γ) + 	2(β, φ) =

n∑
t=1

	t(αt) +
∑

t:yt∈(0,1)

	t(μt, φ), (5)

where

	t(αt) = 1l{c}(yt) logαt + (1 − 1l{c}(yt)) log(1 − αt),

	t(μt, φ) = log Γ(φ) − log Γ(μtφ) − logΓ((1 − μt)φ) + (μtφ − 1) log yt + {(1 − μt)φ − 1} log(1 − yt).

By the separability of the parameter vectors γ and (β�, φ)�, one can independently obtain the score for γ and the

score for (β�, φ)�.

2.2 Score Function

The components of the score vector, obtained by differentiation of the log-likelihood function with respect to the

parameters, are given, for R = 1, . . . ,M and r = 1, . . . ,m, as

UR =
∂	1(γ)

∂γR
=

n∑
t=1

∂	t(αt)

∂αt

dαt

dζt

∂ζt
∂γR
=

n∑
t=1

1l{c}(yt) − αt

αt(1 − αt)

dαt

dζt
ztR, (6)

Ur =
∂	2(β, φ)

∂βr
=

∑
t:yt∈(0,1)

∂	t(μt, φ)

∂μt

dμt

dηt

∂ηt

∂βr
= φ

n∑
t=1

(1 − 1l{c}(yt))(y∗t − μ∗t )
dμt

dηt
xtr,

where dαt/dζt = dh−1(ζt)/dζt = 1/h′(αt), dμt/dηt = dg−1(ηt)/dηt = 1/g′(μt), and the conditional moment μ∗t =
E(y∗t | yt ∈ (0, 1)) = ψ(μtφ)−ψ((1−μt)φ),with ψ(·) denoting the digamma function (Note 2) and y∗t = log{yt/(1−yt)}
if yt ∈ (0, 1), and y∗t = 0 otherwise. On the other hand,

Uφ(β, φ) =
∂	2(β, φ)

∂φ
=

∑
t:yt∈(0,1)

∂	t(μt, φ)

∂φ
=

n∑
t=1

(1 − 1l{c}(yt)){μt(y∗t − μ∗t ) + s(yt) + ψ(φ) − ψ((1 − μt)φ)},

where s(yt) = log(1 − yt) if yt ∈ (0, 1), and s(yt) = 0 otherwise.

Defining the vectors y∗ = (y∗1, . . . , y
∗
n)�, yc = (1l{c}(y1), . . . , 1l{c}(yn))�, μ∗ = (μ∗1, . . . , μ

∗
n)�, α∗ = (α1, . . . , αn)�, and

the diagonal matrices H = diag{1−1l{c}(y1), . . . , 1−1l{c}(yn)},G = diag{dα1/dζ1, . . . , dαn/dζn}, P = diag{1/[α1(1−
α1)], . . . , 1/[αn(1 − αn)]}, and T = diag{dμ1/dη1, . . . , dμn/dηn}, the score vectors for γ and β can be written as

Uγ(γ) = Z�PG(yc − α∗),
Uβ(β, φ) = φX�T H(y∗ − μ∗),

respectively. Here, Z is an n×M matrix with the t-th row given by z�t = (zt1, . . . , ztM), and X is an n×m matrix with

the t-th row given by x�t = (xt1, . . . , xtm). Finally, let D∗ = diag{d∗1, . . . , d
∗
n} with d∗t = μt(y∗t − μ∗t ) + s(yt) + ψ(φ) −

ψ((1 − μt)φ). The score function for the precision parameter is given by Uφ = tr(HD∗), where tr(·) represents the

trace of a square matrix.

From the separability of the parameters γ and (β�, φ)�, the MLE of γ is obtained independently from that of

(β�, φ)� as the solution to the nonlinear system Uγ(γ) = 0. Likewise, the MLE of (β�, φ)� is obtained as the

solution of the nonlinear system (Uβ(β, φ)�,Uφ(β, φ))� = 0. Note that, in both cases, such estimators do not have

closed form. They can be obtained numerically by maximizing the log-likelihood function using a nonlinear
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optimization algorithm, such as the Newton algorithm (Newton-Raphson, Fisher score, BHHH, etc.) or a quasi-

Newton algorithm (BFGS); refer to Press et al. (1992, Chapters 9 and 10).

2.3 Fisher’s Information Matrix

Let Q = GPG = diag{q1, . . . , qn}, Δ = diag{δ1, . . . , δn}, W = diag{w1, . . . ,wn}, D = diag{d1, . . . , dn} and c =
(c1, . . . , cn)�, where qt = pt

(
dαt/dζt

)2
, δt = 1 − αt, wt = ψ

′(μtφ) + ψ
′(1 − μt)φ, dt = (1 − μt)

2ψ′((1 − μt)φ) +
μ2

t ψ
′(μtφ)−ψ′(φ) and ct = φ[μtψ

′(μtφ)− (1−μt)ψ
′((1−μt)φ)], for t = 1, . . . , n. The Fisher information matrix K(θ)

for the zero-or-one inflated beta regression model is given by

K(θ) =

(
Kγγ 0

0 Kϑ(ϑ)

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Kγγ 0 0

0 Kββ Kβφ
0 Kφβ Kφφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (7)

where Kγγ = Z�QZ, Kββ = φ2X�ΔTWT X, Kβφ = K�βφ = X�ΔTc, Kφφ = tr(ΔD). Note that the matrix in (7) does

not depend on the inflation point c. Also, note that Kγγ does not depend on (β, φ) and that Kββ, Kβφ, Kβφ and Kφφ
do not depend on γ. Additionally, γ is orthogonal to ϑ = (β�, φ)�, which implies that the respective elements of

the score vector are asymptotically uncorrelated. Consequently, the MLE of γ is asymptotically independent of the

MLEs of β and φ.

Let Wββ = φ2ΔTWT,Wβφ = ΔTc,Wφβ = W�βφ and Wφφ = tr(ΔD). Also, let

X̃ =
(
X 0

0 1

)
(8)

and

W̃ =
(
Wββ Wβφ
Wφβ Wφφ

)
. (9)

The Fisher information matrix for ϑ = (β�, φ)� can be written as Kϑ(ϑ) = X̃�W̃X̃.

From the standard formula for the inverse of partitioned matrix (see, for instance, Rao, 1973, p. 33), it can deduced

that the Fisher information matrix inverse is given by

K(θ)−1 =

(
K−1
γγ 0

0 Kϑ(ϑ)−1

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Kγγ 0 0

0 Kββ Kβφ

0 Kφβ Kφφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (10)

where

Kγγ = (Z�QZ)−1,

Kββ = (X�WββX)−1

{
Im +

X�Tcc�T�X(X�WββX)−1

tr(D) − c�T�X(X�WββX)−1X�Tc

}
,

Kβφ = (Kφβ)� = −[tr(D) − c�T�X(X�WββX)−1X�Tc]−1(X�WββX)−1X�Tc,

Kφφ = [tr(D) − c�T�X(X�WββX)−1X�Tc]−1,

with Im being the m × m identity matrix. The inverse of Fisher’s information matrix is useful for computing

asymptotic standard errors of MLEs. For more details see Ospina and Ferrari (2012).

3. Bias Correction of MLEs

3.1 Cox and Snell’s Formula

Let L(ω) be the log-likelihood function of a parameter vector ω = (ω1, . . . , ωk) for a sample of n observations, and

let ω̂ = (ω̂1, . . . , ω̂k) be the MLE of ω obtained as the solution of the system of equations U(ω) = ∂L(ω)/∂ω = 0.

Cox AND Snell (1968) obtained the O(n−1) term of the bias of ω̂r as

B(ω̂r) =
∑
s,t,u

κrsκtu
(
κst,u +

1

2
κstu

)
, r = 1, . . . , k, (11)

where −κrs = κr,s is the (r, s) element of the Fisher information matrix inverse, κstu = E(∂3L(ω)/∂ωs∂ωt∂ωu),

and κst,u = E(∂2L(ω)/∂ωs∂ωt × ∂L(ω)/∂ωu). In many situations, it is convenient to use the Bartlett identity
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κst,u +
1
2
κstu = κ

(u)
st − 1

2
κstu, , where κ(u)

st = ∂κst/∂ωu, to facilitate expressing the bias in matrix notation. The great

usefulness of (11) is in defining a corrected MLE, which is unbiased up to order O(n−1), given by

ω̃r = ω̂r − B̂(ω̂r),

where B̂(ω̂r) is given by (11) evaluated at ω̂. This new estimator, ω̃r, has bias of order O(n−2), as E(ω̃r) = ωr +

O(n−2), and may be preferred over ω̂r that has bias of order O(n−1).

Our aim is to obtain an expression to calculate the second-order bias of the vector of the MLEs for zero-or-one

inflated beta regression models using formula (11).

3.2 Bias of γ̂ and (̂β�, φ̂)�

Now, we obtain an expression for the second order biases of the MLEs in a class of inflated beta regression models

using the Cox and Snell’s (1968) general formula. This expression will, in turn, allow us to obtain bias corrected

estimates of the unknown parameters. The notation to be used is introduced below. The derivatives of the log-

likelihood function (5) with respect to the unknown parameters are indicated by indices, where the letters R, S , . . .
correspond to the derivatives with respect to the elements of γ, the letters r, s, . . . correspond to the derivatives

with respect to the elements β, and φ corresponds to the derivatives with respect to φ. For instance, UR = ∂	/∂γR,
Ur = ∂	/∂βr, Uφ = ∂	/∂φ, Uφs = ∂

2	/∂φ∂βs, Ursφ = ∂
3	/∂βr∂βs∂φ, and so forth. The notation for the cumulants

of log-likelihood derivatives is borrowed from Lawley (1956): κRS = E(URS ), κrs = E(Urs), κφφ = E(UφUφ),
κrs,φ = E(UrsUφ), κRS U = E(URS U), κrst = E(Urst), etc., where all κs are of order O(n). The derivatives of

cumulants are denoted by κ(U)
RS = ∂κRS /∂γU , κ

(t)
rs = ∂κrs/∂βt, κ

(φ)
rφ = ∂κrφ/∂φ, and so on.

In the zero-or-one inflated beta regression model, the separability between γ and ϑ = (β�, φ)� enables us to

independently obtain the second-order bias of γ̂ and (̂β�, φ̂)�. From (11) and the aforementioned Bartlett identity,

the second-order bias of the b-th element of γ̂ = (̂γ1, . . . , γ̂M) reduces to

B(̂γb) =
∑

R,S ,U

κbRκS U
{
κ(U)

RS −
1

2
κRS U

}
. (12)

The terms in (12) are obtained from the cumulants of the log-likelihood function given in the Appendix.

Let Z̃ = Q−1W0δγγ, where W0 = diag{w01, . . . ,w0n} is an n × n diagonal matrix with t-th diagonal element given

by

w0t =
1

2
pt

( ∂
∂ζt

dαt

dζt

)(dαt

dζt

)2
,

and δγγ represents the n × 1 vector obtained from the main diagonal of ZKγγZ� = Z(Z�QZ)−1Z�. We obtain

B(̂γ) = (Z�QZ)−1Z�QZ̃, (13)

where Z is the covariate matrix used to model the discrete component of the model.

Now, from (11), the second-order bias of the a-th element of ϑ̂ = (̂β1, . . . , β̂m, φ̂) can be written as

B(ϑ̂a) =
∑
r,s,u

κarκsu
{
κ(u)

rs −
1

2
κrsu

}
+ κaφ

∑
s,u

κsu
{
κ(u)
φs −

1

2
κφsu

}

+
∑
r,u

κarκφu
{
κ(u)

rφ −
1

2
κrφu

}
+
∑
r,s

κarκsφ
{
κ

(φ)
rs −

1

2
κrsφ

}

+ κaφ
∑

u

κφu
{
κ(u)
φφ −

1

2
κφφu

}
+ κaφ

∑
s

κsφ
{
κ

(φ)
φs −

1

2
κφsφ

}

+ κφφ
∑

r

κar
{
κ

(φ)
rφ −

1

2
κrφφ

}
+ κaφκφφ

{
κ

(φ)
φφ −

1

2
κφφφ

}
,

(14)

for a = 1, . . . ,m+ 1. Note that β and φ are not orthogonal parameters, as the block Kβφ in the information matrix is

not a null matrix. It forces us to calculate all the terms in B(ϑ̂a). The cumulants of 	2(β, φ) that appear in (14) are

given in the Appendix. After some calculations we arrive at

B(̂β) = KββX�[ΔW1δββ + Δ(W3 +W2)XKβφ + (diagonal(ΔW4))�Kφφ]

+ Kβφ[tr(ΔW3XKββX�) + Kφφtr(ΔS ) + diagonal(Δ(W5 +W4))XKβφ],
(15)
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where diagonal(·) represents the row vector formed by the main diagonal of a square matrix, Kββ, Kφφ and Kβφ are

blocks of the Fisher information matrix inverse, and Wi, for i = 1, . . . , 5 are given in the Appendix.

Now, let

δ̃ =

(
ΔW1δββ + Δ(W3 +W2)XKβφ + (diagonal(ΔW4))�Kφφ

tr(ΔW3XKββX�) + Kφφtr(ΔS ) + diagonal(Δ(W5 +W4))XKβφ

)
,

and Kβ∗ = (Kββ Kβφ).

The second-order bias of β̂ can be written as

B(̂β) = Kβ∗X̃�δ̃,

where X̃ is given in (8).

As earlier, after some algebraic manipulations, we have that

B(φ̂) = KφβX�(ΔW1δββ + Δ(W3 +W2)XKβφ + (diagonal(ΔW4))�Kφφ)

+ Kφφ(tr(ΔW3XKββX�) + Kφφtr(ΔS ) + diagonal(Δ(W5 +W4))XKβφ).
(16)

Let Kφ∗ = (Kφβ Kφφ) be a 1 × (m + 1) matrix. The second-order bias of φ̂ can be written as

B(φ̂) = Kφ∗X̃�δ̃.

Let ϑ = (β�, φ)�. The second-order bias of the MLE of ϑ can be written as

B(ϑ̂) = (X̃�W̃X̃)−1X̃�W̃ ξ̃,

where ξ̃ = W̃−1δ̃ with W̃ given in (9). Consequently, B(ϑ̂) can be estimated from a generalized least squares

regression in the auxiliary variable ξ̃. Note that the expression for the correction of the second-order bias of ϑ̂
involves the parameters of the discrete and continuous components of the model.

3.3 Bias of μ̂ and α̂

Let ζ = (ζ1, . . . , ζn)� = Zγ and η = (η1, . . . , ηn)� = Xβ be the linear predictors. The MLEs of ζ and η are ζ̂ = Zγ̂
and η̂ = Xβ̂, respectively. Hence, ζ̂ − ζ = Z (̂γ − γ) and η̂ − η = X(̂β − β). Consequently, the second-order bias of ζ̂
is

B(̂ζ) = ZB(̂γ) = Z(Z�QZ)−1Z�QZ̃, (17)

where B(̂γ) is the second-order bias of γ̂ given in (13). Similarly, the second-order bias of η̂ is

B(̂η) = XB(̂β) = XKβ∗X̃�δ̃. (18)

Now, let μ = (μ1, . . . , μn)� and α = (α1, . . . , αn)�, where αt = h−1(ζt) and μt = g−1(ηt), for t = 1, . . . , n, with g
and h being the corresponding link functions. To obtain the second-order bias of α̂t, h−1(̂ζt) is expanded in Taylor

series up to the second order in a neighbourhood of ζt as

h−1(̂ζt) = h−1(ζt) +
dh−1(ζt)

dζt
(̂ζt − ζt) +

1

2

d2h−1(ζt)

dζ2
t

(̂ζt − ζt)2 + Op(n−3/2).

By arranging the terms and taking the expected value, the second-order bias of α̂t is given by

B(α̂t) = B(h−1(̂ζt)) = B(̂ζt)
dαt

dζt
+

1

2
V(̂ζt)

d2αt

dζ2
t
,

where V(̂ζt) is the asymptotic variance of ζ̂t, obtained from the (t, t)-th element of the matrix Z(Z�QZ)−1Z� and

B(̂ζt) is the O(n−1) bias of ζ̂t. Consequently, we can write

B(α̂) = G1Z(Z�QZ)−1Z�QZ̃ +
1

2
G2diagonal(Z(Z�QZ)−1Z�),

where G1 = diag(dα1/dζ1, . . . , dαn/dζn), G2 = diag(d2α1/dζ
2
1 , . . . , d

2αn/dζ
2
n ), and B(̂ζ) is the n−1 bias of ζ̂ given

in (17).
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Similarly, the second-order bias of μ̂ can be obtained. By expanding g−1(̂ηt) in Taylor series up to the second order

in a neighbourhood of ηt, we have

g−1(̂ηt) = g−1(ηt) +
dg−1(ηt)

dηt
(̂ηt − ηt) +

1

2

d2g−1(ηt)

d2ηt
(̂ηt − ηt)

2 + Op(n−3/2).

By rearranging the terms and taking the expected value, the second-order bias of μ̂t is given by

B(̂μt) = B(g−1(̂ηt)) = B(̂ηt)
dμt

dηt
+

1

2
V(̂ηt)

d2μt

dη2
t
,

where V(̂ηt) is the asymptotic variance of η̂t obtained from the (t, t)-th element of XKββX�, and B(̂ηt) being the

O(n−1) bias of η̂t given in (18). We can now write

B(̂μ) = T XKβ∗X̃�δ̃ +
1

2
T1diagonal(XKββX�),

where T = diag(dμ1/dη1, . . . , dμn/dηn), T1 = diag(d2μ1/dη
2
1, . . . , d

2μn/dη
2
n).

3.4 Bias of Smooth Functions of φ̂

For the zero-or-one inflated beta regression model, a reparameterization of the precision parameter, φ, can be

considered. Let σ = T (φ), where T (·) is a continuous strictly monotone twice differentiable function. From the

invariance property of the MLEs, we have σ̂ = T (φ̂). From a Taylor series expansion of T (φ) up to the third term

in a neighbourhood of φ, we get

T (φ̂) = T (φ) + T ′(φ)(φ̂ − φ) +
1

2
T ′′(φ)(φ̂ − φ)2 + Op(n−3/2).

By taking the expected value, the second-order bias of σ̂ can be written as

B(σ̂) = T ′(φ)B(φ̂) +
1

2
T ′′(φ)V(φ̂),

where B(φ̂) is the second-order bias of φ̂ given in (16), and V(φ̂) = Kφφ is the asymptotic variance of φ̂. In Table 1,

different specifications for σ are presented along with the second-order bias of the respective MLE.

Table 1. Bias of σ̂ = T (φ̂)

σ = T (φ) B(σ̂)

1/(φ + 1) − B(φ̂)
(φ+1)2 +

V(φ̂)
(φ+1)3

1/(φ + 1)2 − 2B(φ̂)
(φ+1)3 +

3V(φ̂)
(φ+1)4

log φ B(φ̂)
φ
− V(φ̂)

2φ2

Through simulated data, the behavior of the relative bias of B(σ̂)/σ as a function of φ is illustrated. We consider a

zero-inflated beta regression model with

g(μt) = β0 + β1xt, h(αt) = γ0 + γ1zt,

t = 1, . . . , n, where g and h are logit link functions. The values of the covariates xt and zt are independent re-

alizations of a uniform random variable, U(0, 1). The sample size is n = 100 and the true parameter values are

γ0 = −0.5, γ1 = 0.5, β0 = −0.5, and β1 = 1.5. Here, φ takes the values 2, 5, 10, 20, 40, 60, 100, 150, 500, and 1000.

In Figure 1 the behavior of relative bias of B(σ̂)/σ as a function of φ is presented. Note that the relative bias of

the MLEs corresponding to the parameterizations σ = φ and σ = 1/(φ + 1)2 goes to a non-zero constant value as

φ increases. Also, note that for the parameterization σ = 1/(φ + 1), the relative bias behaves approximately as a

constant function at zero and this is valid even for moderate sample sizes (for instance, n = 80). Finally, for the

parameterization σ = log φ, it is observed that the relative bias decreases to zero as φ grows. In light of these facts,

the use of the parameterization σ = 1/(φ + 1) can be suggested because even with moderate values of n and small

values of φ, the relative bias remains stable and close to zero.

275



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 2; 2012

Figure 1. Second-order relative bias of σ̂

4. Numerical Evaluation

Through Monte Carlo simulations, we now investigate the performances of MLEs for the inflated beta regression

model parameters and their corrected versions in finite-sized samples. First, we consider a zero-inflated beta

regression model with

h(αt) = γ0 + γ1zt, g(μt) = β0 + β1xt, (19)

t = 1, . . . , n. Here, h and g are logit link functions. The true parameter values are γ0 = −0.5, γ1 = 1.5, β0 = 0.5,
β1 = 1.8, and φ = 120; the covariate values, zt and xt, are independently selected from theU(0, 1) distribution. For

this experiment, the sample sizes are n = 30, 60, and 90, and 5000 Monte Carlo replications. For each simulated

sample, we fitted the regression model (19); that is, by maximizing the log-likelihood function, we obtained the

estimates γ̂ = (̂γ0, γ̂1), ϑ̂ = (̂β0, β̂1, φ̂), and σ̂ = 1/(φ̂ + 1). In addition, from the results in Section 3, we calculated

the corrected MLEs, γ̃ = (̃γ0, γ̃1), ϑ̃ = (̃β0, β̃1, φ̃), and σ̃.

Table 2. Simulation results for estimation of γ0 and γ1

n Estimator Bias Rel. bias
√

MSE

30 γ̂0 −0.0617 0.1235 0.7496

γ̃0 −0.0514 0.1028 0.7376

60 γ̂0 −0.0340 0.0680 0.5607

γ̃0 −0.0285 0.0571 0.5556

90 γ̂0 −0.0113 0.0227 0.4003

γ̃0 −0.0079 0.0158 0.3980

30 γ̂1 0.1786 0.1191 1.6488

γ̃1 0.1472 0.0981 1.6193

60 γ̂1 0.0878 0.0585 0.9763

γ̃1 0.0732 0.0488 0.9671

90 γ̂1 0.0394 0.0263 0.7442

γ̃1 0.0295 0.0197 0.7397

In the Monte Carlo experiment, we used the “multiply-with-carry” algorithm (GM) as a pseudorandom number

generator, with period 260. The log-likelihood function is maximized through the BFGS method with analytical

derivatives, which, in general, is the method that presents the best performance (Mittelhammer, Judge, & Miller,

2000, p.199). All the simulations were programmed using the Ox matrix programming language Ox (Cribari–Neto

& Zarkos, 2003). For each sample size, the bias, relative bias, and root-mean-square error of the 5000 estimates

were calculated. Tables 2 and 3 present the simulation results.
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Notice that the bias, relative bias, and mean square error decrease as the sample size increases, as expected. In

Table 2, we observe that the bias of the MLEs of the regression parameters that model the discrete component are

non-negligible for small sample sizes. We note that the analytical correction improves the performance of MLEs

when the sample size is small in terms of the bias and relative bias. For example, when n = 30, the relative biases

are 0.1235 for γ̂0, and 0.1028 for γ̃0.

The MLEs and their corrected versions show similar performance in terms of root-mean-square error. We note

that in general, the corrected estimators present a negligible precision gain in comparison to the MLEs of the

parameters that model the discrete component, even in small sample sizes.

Table 3. Simulation results for estimation of β0, β1 and φ

n Estimator Bias Rel. Bias
√

MSE

30 β̂0 0.0004 0.0009 0.1308

β̃0 −0.0001 −0.0001 0.1541

60 β̂0 −0.0016 −0.0030 0.0821

β̃0 −0.0024 −0.0046 0.0818

90 β̂0 −0.0004 −0.0007 0.0678

β̃0 −0.0008 −0.0015 0.0677

30 β̂1 0.0043 0.0024 0.2531

β̃1 −0.0213 −0.0118 1.0772

60 β̂1 0.0060 0.0033 0.1757

β̃1 −0.0005 −0.0002 0.1748

90 β̂1 0.0024 0.0013 0.1433

β̃1 −0.0016 −0.0008 0.1429

30 φ̂ 42.3195 0.3526 86.5712

φ̃ −8.6485 −0.0720 68.2596

60 φ̂ 16.7394 0.1395 41.2450

φ̃ 0.8568 0.0071 33.6214

90 φ̂ 8.9504 0.0745 27.4915

φ̃ 2.5856 0.0215 24.8168

30 σ̂ −0.0010 −0.1409 0.0029

σ̃ 0.0002 0.0285 0.0074

60 σ̂ −0.0005 −0.0683 0.0020

σ̃ −0.0001 −0.0199 0.0021

90 σ̂ −0.0003 −0.0441 0.0015

σ̃ −0.0001 −0.0199 0.0015

Table 3 shows the results regarding the MLEs of the regression parameters of the continuous component of the

model and their corrected versions. We note that the performance of these estimators is similar, regardless of

the sample size. For example, for n = 60, the mean of β̂1 differs from the mean of β̃1 in the third decimal

place. Likewise, the root-mean-square errors are close. For example, for n = 60,
√

MSE = 0.1757 for β̂1 and√
MSE = 0.1748 for β̃1. Further, note that the biases and relative biases are close to zero. This indicates that
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the MLEs for the regression parameters of the continuous component present good sample properties; that is, the

estimated values of the regression parameters are close to the true values of the regression parameters, even when

the sample size is relatively small. These results are consistent with those obtained by Ospina et al. (2006) for beta

regression models.

The figures in Table 3 indicate that the MLEs of φ are markedly biased, and the estimated bias is positive for the

different sample sizes considered. The bias correction proposed in this article significantly reduces the bias. For

example, for n = 60, the bias of φ̂ is 16.7394 while the bias of φ̃ is 0.8568. Consequently, the bias correction be-

comes very important, because if φ is overestimated, the variance of the response variable may be underestimated.

In hypothesis testing, this may lead to the investigator erroneously rejecting the hypothesis that the regression pa-

rameters are zero. We also notice that the corrected estimator φ̃ presents smaller root-mean-square errors than φ̂
for all the sample sizes considered. In other words, the corrected estimator is less biased and more accurate than

the uncorrected MLE of φ. Therefore, we recommend the use of the bias corrected estimator for φ in practical

applications.

Finally, we note that the MLE of σ = 1/(φ+1) has a relative bias smaller than that of φ. For instance, for n = 60, φ̂
has a relative bias equal to 0.1395 while the relative bias of σ̂ is −0.0683. In order to compare the accuracy of the

MLE of σ with that of φ it is more convenient to use the scaled root-mean-square error (
√

MSE/parameter). In all

of the cases, the MLE of σ outperforms the MLE of φ. For example, for n = 60, the scaled root-mean-square errors

for φ̂ is
√

MSE/φ = 0.34371 and for σ̂ is
√

MSE/σ = 0.2420. It is therefore more convenient to parameterize the

zero-or-one inflated beta regression model in terms of σ instead of the precision parameter φ, since the MLE of σ
is less biased and more accurate than the MLE of φ.

5. Concluding Remarks

In this article, we derived expressions for the second-order bias of MLEs for inflated beta regression model param-

eters. We showed that the second-order biases obtained using the Cox and Snell (1968) formula may be written in

terms of generalized least square regressions, which facilitates the calculation. The expressions found allow one to

construct analytically modified MLEs with reduced bias.

The simulation results show that the bias corrections of the MLEs for the regression parameters that model the

discrete and continuous components of inflated beta regression models are effective in reducing bias. However,

bias corrections are not imperative because the uncorrected MLEs are not markedly biased. On the other hand,

the MLE of the precision parameter is highly biased, and therefore, we recommend the use of the bias correction

obtained in this article. Also, almost unbiased estimators are obtained if the model is parameterized in terms of

σ = 1/(φ + 1) and the bias correction proposed in this paper is employed.

Appendix

Cumulants and their derivatives with respect to γ

For R = 1, . . . ,M, we have

URS U =

n∑
t=1

{(
−2(1 − 1l{c}(yt))

(1 − αt)3
+

21l{c}(yt)

α3
t

)(
dαt

dζt

)2

+3

(
−(1 − 1l{c}(yt))

(1 − αt)2
−

1l{c}(yt)

α2
t

)( ∂
∂ζt

dαt

dζt

)dαt

dζt

+

(
1l{c}(yt)

αt
−

(1 − 1l{c}(yt))

(1 − αt)

)[(
∂2

∂α2
t

dαt

dζt

)
dαt

dζt
+

(
∂

dαt

dαt

dζt

)2]}
dαt

dζt
ztS ztRztU .

By taking expected value, we have

κRS U =

n∑
t=1

{
2p∗t

(dαt

dζt

)2
−3pt

( ∂
∂ζt

dαt

dζt

)dαt

dζt

}
dαt

dζt
ztS ztRztU , (20)

where p∗t = {−1/(1 − αt)
2} + {1/α2

t }. Also,

κ(U)
RS =

∂κRS

∂γU
=

n∑
t=1

{
p∗t
(dαt

dζt

)2
− 2pt

(
∂

dαt

dαt

dζt

)
dαt

dζt

}
dαt

dζt
ztS ztRztU , (21)

for U = 1, . . . ,M. From the global orthogonality between γ and (β�, φ)� we obtain κ
(φ)
RS = κ

(u)
RS = 0.

278



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 2; 2012

Now, from (20) and (21) we have

κ(U)
RS −

1

2
κRS U = −

1

2

n∑
t=1

{
pt

( ∂
∂ζt

dαt

dζt

)dαt

dζt

}
dαt

dζt
ztS ztRztU ,

where pt = 1/[αt(1 − αt)]. Let W0 = diag{w01, . . . ,w0n} be the n × n diagonal matrix with t-th diagonal element

given by

w0t =
1

2
pt

( ∂
∂ζt

dαt

dζt

)(dαt

dζt

)2
. (22)

Hence,

κ(U)
RS −

1

2
κRS U =

n∑
t=1

w0tztRztS ztU .

Consequently, the Cox and Snell (1968) formula to calculate the second-order bias of the MLE of the b-th element

of γ is

B(̂γb) =
∑

R,S ,U

κbRκS U
{
κ(U)

RS −
1

2
κRS U

}
=

n∑
t=1

w0t

∑
R

κbRztR

∑
S ,U

ztS κ
S UztU .

Let e∼b
be the b-th column of the M × M identity matrix. We have

n∑
t=1

w0t

∑
R

κbRztR

∑
S ,U

ztS κ
S UztU = =e∼

�
b

Kγγ
n∑

t=1

w0tzt(z�t Kγγzt),

where zt is the column vector obtained from the t-th row of Z. Now, let δγγ represent the n×1 vector obtained from

the main diagonal of ZKγγZ�.We have

B(̂γb) =
∑

R,S ,U

κbRκS U
{
κ(U)

RS −
1

2
κRS U

}
=e∼
�
b

KγγZ�W0δγγ. (23)

Cumulants and their derivatives with respect to β and φ

We define the quantities mt = [ψ′′(μtφ)−ψ′′((1−μt)φ)], ut = −φ{2wt+φ[μtmt+ψ
′′((1−μt)φ)], st = (1−μt)

3ψ′′((1−
μt)φ) + μ

3
t ψ
′′(μtφ) − ψ′′(φ), ‡t = [μtwt − ψ′((1 − μt)φ)] + φ[μ

2
t ψ
′′(μtφ), ct = φ[μtψ

′(μtφ) − (1 − μt)ψ
′((1 − μt)φ)],

∇t = 2[μtwt − ψ′((1 − μt)φ)] + φ[μ
2
t ψ
′′(μtφ) − (1 − μt)

2ψ′′((1 − μt)φ)]
dμt
dηt

,

at = 3
(
∂

∂μt

dμt

dηt

)(
dμt

dηt

)2

, bt =
dμt

dηt

[(
∂2

∂μ2
t

dμt

dηt

)
dμt

dηt
+

(
∂

∂μt

dμt

dηt

)2]
.

We have

Ursu = −φ
∑

t:yt∈(0,1)

{
φ2mt

(
dμt

dηt

)3

+φwtat − [y∗t − μ∗t ]bt

}
xtsxtr xtu,

Ursφ =
∑

t:yt∈(0,1)

{
(ut

(
dμt

dηt

)
+[y∗t − μ∗t ]

(
∂

∂μt

dμt

dηt

)
−ct

(
∂

∂μt

dμt

dηt

)}
dμt

dηt
xtr xts,

Urφφ = −
∑

t:yt∈(0,1)

∇t xtr, Uφφφ = −
∑

t:yt∈(0,1)

st,
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for r, s, u = 1, . . . ,m. Also,

κrsu = −φ2
n∑

t=1

(1 − αt)

{
φmt

(
dμt

dηt

)3

+wtat

}
xtsxtr xtu, κφφφ = −

n∑
t=1

(1 − αt)st.

κrsφ =

n∑
t=1

(1 − αt)

{
ut

(dμt

dηt

)
−ct

( ∂
∂μt

dμt

dηt

)}dμt

dηt
xtr xts, κrφφ = −

n∑
t=1

(1 − αt)∇t xtr,

κ(u)
rs = −φ2

n∑
t=1

(1 − αt)

(
φmt

(dμt

dηt

)3
+

2

3
wtat

)
xtr xtsxtu, κ

(φ)
rs =

n∑
t=1

(1 − αt)
{
ut

(dμt

dηt

)2}
xtsxtr,

κ(u)
rφ = −

n∑
t=1

(1 − αt)
{
[φ(wt + μtφmt + φψ

′′((1 − μt)φ))]
dμt

dηt
+ ct

( ∂
∂μt

dμt

dηt

)}dμt

dηt
xtr xtu,

κ
(φ)
rφ = −

n∑
t=1

(1 − αt)‡t
dμt

dηt
xtr, κ(u)

φφ =

n∑
t=1

−(1 − αt)∇t
dμt

dηt
xtu, κ

(φ)
φφ = −

n∑
t=1

(1 − αt)st.

Let W1 = diag{w11, . . . ,w1n}, W2 = diag{w21, . . . ,w2n}, W3 = diag{w31, . . . ,w3n}, W4 = diag{w41, . . . ,w4n} and

W5 = diag{w51, . . . ,w5n} with

w1t = −
φ2

2
[φmt

(dμt

dηt

)3
+

1

3
wtat], w2t =

1

2

{
ut

(
dμt

dηt

)
+ct

(
∂

∂μt

dμt

dηt

)}
dμt

dηt
,

w3t = −
1

2

{
φ2[μtmt + ψ

′′((1 − μ)φ)]
dμt

dηt
+ ct

( ∂
∂μt

dμt

dηt

)}dμt

dηt
,

w4t =
−1

2
φ[μ2

t ψ
′′(μtφ) − (1 − μt)

2ψ′′((1 − μt)φ)]
dμt

dηt
, w5t = −

1

2
∇t

dμt

dηt
.

After some algebra we obtain

κ(u)
rs −

1

2
κrsu =

n∑
t=1

δtw1t xtr xtsxtu, κ
(φ)
rs −

1

2
κrsφ =

n∑
t=1

δtw2t xtr xts,

κ(u)
rφ −

1

2
κrφu =

n∑
t=1

δtw3t xtr xtu, κ
(φ)
rφ −

1

2
κrφφ =

n∑
t=1

δtw4t xtr,

κ(u)
φφ −

1

2
κφφu =

n∑
t=1

δtw5t xtu, κ
(φ)
φφ −

1

2
κφφφ =

n∑
t=1

−
1

2
δt st.

We can now obtain the second-order bias of the MLE a-th element of β̂ from (14), with a = 1, . . . ,m. For

a = 1, . . . ,m we have ∑
r,s,u

κarκsu
{
κ(u)

rs −
1

2
κrsu

}
= i∼
�
a

KββX�ΔW1δββ,

where i∼a
is the a-th column vector of the m ×m identity matrix and δββ is the n × 1 vector obtained from the main

diagonal of XKββX�.We have

∑
r,s,φ

κarκsφ
{
κ

(φ)
rs −

1

2
κrsφ

}
= i∼
�
a

Kββ(X�ΔW2X)Kβφ,

∑
φ,s,u

κaφκsu
{
κ(u)
φs −

1

2
κφsu

}
= i∼
�
a

Kβφ tr(ΔW3XKββX�),

∑
r,φ,u

κarκφu
{
κ(u)

rφ −
1

2
κrφu

}
= i∼
�
a

Kββ(X�ΔW3X)Kβφ.
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Similarly, if ρt is the t-th column vector n × n identity matrix we obtain

∑
φ,s,φ

κaφκsφ
{
κ

(φ)
φs −

1

2
κφsφ

}
= i∼
�
a

Kβφdiagonal(W4)XKβφ,

∑
φ,φ,u

κaφκφu
{
κ(u)
φφ −

1

2
κφφu

}
= i∼
�
a

Kβφdiagonal(ΔW5)XKβφ,

∑
r,φ,φ

κarκφφ
{
κ

(φ)
rφ −

1

2
κrφφ

}
= i∼
�
a

KββX�diagonal(W4)�Kφφ.

Analogously, if S = diag{−s1/2, . . . ,−sn/2} we have

∑
φ,φ,φ

κaφκφφ
{
κ

(φ)
φφ −

1

2
κφφφ

}
= i∼
�
a

KβφKφφtr(ΔS ).

Acknowledgements

We gratefully acknowledge the grants from CNPq (Brazil). The authors are also grateful to editor and two referees

for helpful comments and suggestions.

References

Botter, D. A., & Cordeiro, G. M. (1998). Improved estimators for generalized linear models with dispersion

covariates. Communications in Statistics, Simulation and Computation, 59, 1-14.

http://dx.doi.org/10.1080/00949659808811926

Cook, R. D., Tsai, C., & Wei, B. (1986). Bias in nonlinear regression. Biometrika, 73, 615-623.

http://dx.doi.org/10.1093/biomet/73.3.615

Cordeiro, G. M., & Cribari–Neto, F. (1998). On bias reduction in exponential and non-exponential family

regression models. Communications in Statistics, Simulation and Computation, 27, 485-500.

http://dx.doi.org/10.1080/03610919808813491

Cordeiro, G. M., & McCullagh, P. (1991). Bias correction in generalized linear models. Journal of the Royal-
Statististical Society B, 53, 629-643.

Cordeiro, G. M., Rocha, E. C., Rocha, J. G. C., & Cribari–Neto, F. (1997). Bias-corrected maximum

likelihood estimation for the beta distribution. Journal of Statistical Computation and Simulation, 58, 21-35.

http://dx.doi.org/10.1080/00949659708811820

Cordeiro, G. M., & Toyama, M. C. (2009). Bias correction in generalized nonlinear models with dispersion

covariates. Communications in Statistics, Theory and Methods, 37, 2219-2225.

http://dx.doi.org/10.1080/03610920801931895

Cox, D., & Snell, E. (1968). A general definition of residuals. Journal of the Royal Statistical Society B, 30,

248-275.

Cribari–Neto, F., & Vasconcellos, K. L. P. (2002). Nearly unbiased maximum likelihood estimation for the beta

distribution. Journal of Statistical Computation and Simulation, 72, 107-118.

http://dx.doi.org/10.1080/00949650212144

Cribari–Neto, F., & Zarkos, S. G. (2003). Econometric and statistical computing using Ox. Computational Eco-
nomics, 21, 277-295. http://dx.doi.org/10.1023/A:1023902027800

Cribari–Neto, F., & Zeileis, A. (2010). Beta Regression in R. Journal of Statistical Software, 34(2).

Ferrari, S. L. P., & Cribari–Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied
Statistics, 7, 799-815. http://dx.doi.org/10.1080/0266476042000214501

Grün, B., Kosmidis, I., & Zeileis, A. (2012). Extended Beta Regression in R: Shaken, Stirred, Mixed, and Parti-

tioned. Journal of Statistical Software, 48(11).

Kieschnick R., & McCullough, B. D. (2003). Regression analysis of variates observed on (0,1): percentages,

proportions, and fractions. Statistical Modelling, 3, 1-21. http://dx.doi.org/10.1191/1471082X03st053oa

281



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 2; 2012

Mittelhammer, R. C., Judge, G. G., & Miller, D. J. (2000). Econometric Foundations. New York: Cambridge

University Press.

Ospina, R., Cribari–Neto, F., & Vasconcellos, K. L. P. (2006). Improved point and interval estimation for a beta re-

gression model. Computational Statistics & Data Analysis, 51(2), 960-981.

http://dx.doi.org/10.1016/j.csda.2005.10.002. Erratum: 55, 2445-2445.

http://dx.doi.org/10.1016/j.csda.2011.02.015

Ospina, R., & Ferrari, S. L. P. (2010). Inflated beta distributions. Statistical Papers, 51, 111-126.

http://dx.doi.org/10.1007/s00362-008-0125-4

Ospina, R., & Ferrari, S. L. P. (2012). A general class of zero-or-one inflated beta regression models. Computa-
tional Statistics & Data Analysis, 56, 1609-1623. http://dx.doi.org/10.1016/j.csda.2011.10.005

Pace, L., & Salvan, A. (1997). Principles of Statistical Inference. Singapore: World Scientific in Advanced Series
on Statistical Science & Applied Probability, 4.

Paolino, P. (2001). Maximum likelihood estimation of models with beta-distributed dependent variables. Political
Analysis, 9, 325-346.

Press, W. H., Teulosky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes in C: The Art of
Scientific Computing (2nd ed.). Cambridge: Cambridge University Press.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications (2nd ed.). New York: Wiley.

Smithson, M., & Verkuilen, J. (2006). A better lemon-squeezer? Maximum likelihood regression with

beta-distributed dependent variables. Psychological Methods, 11, 54-71.

http://dx.doi.org/10.1037/1082-989X.11.1.54

Vasconcellos, K. L. P., & Cribari–Neto, F. (2005). Improved maximum likelihood estimation in a new class of beta

regression models. Brazilian Journal of Probability and Statistics, 19, 13-31.

Notes

Note 1. Note that c can be fixed at any constant value in [0, 1]. In practical applications, the inflation point occurs

most frequently in c = 0 or c = 1.

Note 2. The digamma function is defined as ψ(x) = d logΓ(x)/dx, x > 0.
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