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Abstract

Geostatistics of extremes lies at the intersection of extreme values analysis and modelling the behavior of spatial

events. In this paper we present a second-order stationary random field which describes the behavior of geosta-

tistical data. The spatial dependence is characterized using the copula of the multivariate distribution underlying

the process in multivariate extreme values context. The spatial copulas underlying the marginal processes are

also characterized. The F-madogram of the distribution corresponding to the process is also modeled using a new

conditional dependence function.
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1. Introduction

Geostatistics form a domain of statistics focusing on predicting probability distributions of spatial or spatiotempo-

ral datasets. Many environmental statistical analysis are spatial: temperature, precipitation, stream flow, waves, air

pollution etc. Considered for a time as statistics applied to mining operations and more generally to problems in

the earth sciences, geostatistics became rapidly developing branch of statistics with important applications areas

including public health (epidemiology), petroleum geology, hydrogeology, meteorology, oceanography, geochem-

istry, geography, forestry, agricultural and landscape ecological sciences, econometrics and image processing.

Necessarily multivariate as they are recorded at multiple locations, spatial data can be classified into one of three of

basic types: (i) point-referenced or geostatistical data which are described by a random vector {Y(x), x ∈ χ} defined

on the continuum χ of R but observed only at fixed sites S = {x1, ..., xs} ⊂ χ; (ii) point pattern data, where the

observations sites are assumed to be random i.e., independent replications of points of stochastic processes; (iii)

areal data, where the spatial domain is a fixed subset which can be partitioned into a finite number of areal units as

in atmospheric sciences models (Ribatet, 2011).

In geostatistics fields the variograms, which are inverses of covariance functions, describe how the spatial continu-

ity changes with a given separating distance between two pair of stations h. The classical variogram γ(h) provides a

framework for modelling and predicting the variability of the stochastic process {Y(x), x ∈ R}. In particular, while

modelling spatial extreme variablity of an isotropic and max-stable field, Cooley et al. (2006) have introduced the

F-madogram γF(h) which transforms the process via its marginal F such as

γ (h) = 1
2
E
{
[Y (x + h) − Y (x)]2

}
and γF (h) = 1

2
E {|F (Y (x)) − F (Y (x + h))|} (1)

Wisely used in quantitative financial analysis and in statistics of economics (Tangho, 2007) and introduced in a

pioneer-work of Sklar (Nelsen, 1999), the copulas have until recently been little used in geostatistics analysis.

Copulas are multivariate structures which capture the joint dependence without influence of the margins. In a

spatial context where data are observed at many stations, it become of great interest to use copula in modelling

high dimensional structure by expressing lower marginal dependence with the vector separating two points space.

Therefore, copulas present number of opportunities in the spatial sciences by providing efficient means to address

dependence structures which vary over locations.
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In particular for a second-order stationary random field {Y(x)} and in a copulas framework, Bondar et al. (2005)

investigated the spatial variability between pairs of points
{
xi, x j ∈ χ

}
that are h-unit distant, that is, h =

∥∥∥xi − x j

∥∥∥ .
They defined spatial copulas such as

P
[
Y (xi) < u; Y

(
x j

)
< v
]
= Ch ((FY (u) ; FY (v))) for all u, v ∈ R (2)

where the marginal distribution FY is the same for each location x of the domain χ, due to the stationarity. There-

fore, the spatial copulas describe the dependence over the whole range of quantiles and not only the mean depen-

dence as variograms. Furthermore, Kazianka and Pilz (2009) suggested the use of models for spatial interpolation

focused on copulas.

The main contribution of this study is to describe spatial variability with the copulas of the process under given

conditions on subdomains of the space of interest. In particular, we show that the copula of the process is a

spatial extremal copula. The copulas of two complementary subsets of the domain of study are also shown to be

the marginal extremal copulas of the asymptotic copula of the process. A new spatial measure is constructed to

characterize the λ−madograms of the distribution of the process.

2. Materials and Methods

In this study, we consider a random process {Y (x) , x ∈ S ⊂ R
n} which models point-referenced data on a spatial

domain S with distribution H. We are interested in modelling the copula of the process and two of marginal copulas

related to the process under a max-stability assumption of H. For this purpose, the copulas of multivariate stochastic

processes and the some multivariate settings of extremal copulas (Beirlant, 2005) would be useful.

2.1 Copulas of Multivariate Stochastic Processes

Recall that a n-dimensional stochastic process is a collection of random variables defined on a space probability

and taking values in R
n, where T is the parameters set (space or time). The following result shows that a collection

of copulas and marginal distributions also define a stochastic process, see Schmitz (2003).

Theorem 1 Let C =
{
Ct1,...,tn ; t1 < ... < tn, n ∈ N} be a collection of copulas satisfying the consistent condition

lim
uk→1−

Ct 1,...,t n (u1, ..., un) = Ct 1,...,t n (u1, ..., uk−1, uk+1, ..., un)

and D = {Ft, t ∈ T } a collection of one-dimensional distribution functions. Then, there exists a probability space
(Ω,F , P) and a stochastic processes {(Yx) , x ∈ T } such that

P
(
Yt1 < x1, ..., Ytn < xn

)
= Ct 1,...,t n

(
Ft1 (x1) , ..., Ftn (xn)

)
(3)

and {(Yt) , t ∈ T } is measurable for all t ∈ T.

Assume that the process {Y (x)} is a second-order stationary random field defined on a set of observation locations

S. That means in particular, that in addition to its stationarity the covariance function do not depend on the direction,

that is:

Cov (Y (xi) ,Y (x + h)) = C (h) with xi, xi + h ∈ S for any lag h.

Modelling spatial dependence via copulas-based models, Kazianka and Pilz (2009a) define multivariate spatial

copulas associated to such as

P (Y (x1) ≤ y1, ..., Y (xs) ≤ ys) = Cθ,ρ
(
Fη (y1) , ..., Fη (ys)

)
for all xi ∈ R.

where Fη is the univariate marginal of the stochastic process, assumed to be the same for all locations xi with

parameter η, θ being the specific parameter of the copula and ρ its correlation.

2.2 Multivariate Settings of Extremal Copulas

Multivariate extreme values (EV) analysis is based on interpolating appropriately normalized vectors of the max-

ima of the observed events. The theory and statistical practice of univariate extremes is well developed and the

three possible asymptotic behaviors (Fréchet, Gumbel, Weibull) are summarized by the generalized EV (GEV) dis-

tribution. For high dimensional analysis however, the results of extremal models turn out to be more complicated

since the joint structure depend both on parametric and not parametric components.
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Let (X1, ..., Xn) , n ∈ N, be a vector of random i.i.d variables with a joint distribution F with continuous margins Fi.

According to Sklar’s theorem (Nelsen, 1999), there exists a unique copula CF providing a canonical parameterisa-

tion of F via its univariate marginal quantile functions F−1
i such that:

CF (u1, ..., un) = F
(
F−1

1 (u1) , ..., F−1
n (un)

)
with F−1

i (u) = inf {xi ∈ R, Fi (xi) ≥ u} . (4)

If in addition F is an EV distribution, then CF satisfies the max-stability property, that is,

Ck
F (u1, ..., un) = CF

(
uk

1, ..., u
k
n

)
for all (u1, ..., un) ∈ [0, 1]n and k > 0. (5)

Such a copula is called extremal copula and is represented by a convex function V such as:

CF(u1, ..., un) = exp{−V(− (log u1

)−1 , ...,− (log un
)−1

)}; ui ∈ [0, 1] (6)

The function V is referred to as the extremal dependence function of CF . It satisfies the following constraint

V(x1, ..., xn) = D
∫
Ωn

max

(
w1

x1

, ...,
wn

xn

)
dH (w) ;

where H is a finite non-negative measure of probability, arbitrary except for the moments constraint∫
Ωn

widH (w1, ...,wn) = 1. The setΩn is the well-known unit simplex of Rn, that isΩn = {(t1, ..., tn) ∈ [0, 1]n;
∑n

1 ti =
1} (see Beirlant).

3. Main Results

3.1 Extremal Copulas in a Geostastical Field

Let S = {x1, ..., xs} ⊂ R
2, be the set of locations where the process is observed. Suppose that Yk,1; ...; Yk,s

denote independent copies from the second-order stationary random field where k = 1, ..., n. In all the study,

the key-assumption is that the s-dimensional distribution H underlying the process {Y (x)} is of the same type

that a parametric max-stable distribution. Therefore, every spatial univariate marginal laws lies in the domain

of attraction of the real-value parametric GEV distribution, defined spatially on the subdomain Dξ = {xi ∈ S ;

σi (xi) + ξi (xi) (yi (xi) − μi (xi)) > 0} ⊂ S by

Gi (yi (xi)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp
{
−
[
1 + ξi (xi)

(
yi(xi)−μi(xi)

σi(xi)

)] −1
ξi(xi)
}

if ξi (xi) � 0

exp
{
− exp

{
−
(

yi(xi)−μi(xi)

σi(xi)

)}}
if ξi (xi) = 0

(7)

where the parameters {μi ∈ R}, {σi > 0} and {ξi ∈ R} are referred to as the location, the scale and the shape param-

eters for the site xi respectively. In particular, if H is continuous the asymptotic copula the process derives from

the following result.

Theorem 2 Let CH be the spatial copula of the process {Y (x)}. Then, under the key assumption, the copula CH

converge to a spatial extremal copula CG.

Proof. The key assumption insures that the distribution of the process {Y (x)} lies in the domain of attraction of a

multivariate EVdistribution G. In particular, marginally there exist appropriate spatial coefficients of normalization{
σn,i (xi) > 0

}
and
{
μn,i (xi) ∈ R} such as

lim
n−→+∞Hn

i
(
σn,i (xi) yi (xi) + μn,i

(
xn,i
))
= Gi (yi (xi)) for all i = 1, .., n. (8)

More generally, in one hand, applying (7) to the joint dependence structure, it follows that

lim
n−→+∞Hn (σn,1 (x1) y1 (x1) + μn,1

(
xn,1
)

; ...;σn,s (xs) ys (xs) + μn,s
(
xn,s
))

= G (y1 (x1) ; ...; ys (xs)) = CG (G (y1 (x1)) ; ...; Gs (ys (xs))) .

On the other hand however,

Hn (σn,1 (x1) y1 (x1) + μn,1
(
xn,1
)

; ...;σn,s (xs) ys (xs) + μn,s
(
xn,s
))

= Cn
H
(
H1

(
σn,1 (x1) y1 (x1) + μn,1 (x1)

)
; ...; Hs

(
σn,s (xs) ys (xs) + μn,s (xs)

))
. (9)
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Moreover, the copula CH verifies the property of max-stability given by the relation (5).

Then, it results an asymptotical copula such as

lim
n−→+∞Hn (σn,1 (x1) y1 (x1) + μn,1

(
xn,1
)

; ...;σn,s (xs) ys (xs) + μn,s
(
xn,s
))

= lim
n−→+∞Cn

H
(
H1

(
σn,1 (x1) y1 (x1) + μn,1 (x1)

)
; ...; Hs

(
σn,s (xs) ys (xs) + μn,s (xs)

))
= CH ((Gy1 (x1)) ; ...; Gs (ys (xs))) . (10)

Therefore, using simultaneously (9) and (10) it follows that, for all realization y(x) of {Y (x)}
CG (G (y1 (x1)) ; ...; Gs (ys (xs))) = CH ((Gy1 (x1)) ; ...; Gs (ys (xs))) .

Therefore, the uniqueness of the copula associated to the continuous distribution H (Sklar, 1959) allows us to

conclud that CH is max-stable. Finally, the max-stability implies that CH is an extremal copula.

Corollary 3 Let CH be the spatial copula associated to H. Then, there exists a space-varying function Ah convex,
defined on the unit simplex ΩS such as

CH (u) = exp {−rh (u) Ah (v1; ..., vs−1)} for all u = (u1, ..., us) ∈ [0, 1]s ; (11)

where rh (u) = −∑n
1 log ui and vi (h) = −

(
r−1

h

)
log ui, h being the mean value of the separating distance.

Proof. In multivariate EV analysis, many tools have been developed to describe properties of joint dependence

structures. Pickands (1981) reduced extremal dependence modelling to the unit simplex ΩS and introduced a new

convex function A such as:

A (t1, ..., ts) =
∑s

1 z−1V (z1, ..., zs) where ti =
zi∑s
1 z

Then, using the relation (6), it follows that

CH (u1, ..., us) = exp

{(∑s
1 ln ui

)
A
(

log u1∑s
1 log ui

; ...,
log us∑s
1 log ui

)}
for all ui ∈ [0, 1] .

In spatial context, let h denote the mean value of the separating distances hi j between the pairs of sites
{
xi, x j

}
; 1 ≤

i, j ≤ s, in the domain S. It results that,

h =
1

2s (s − 1)

∑s
i=1

(∑s
j=1

∥∥∥xi, x j

∥∥∥) for all xi, x j ∈ S .

Then, the Pickands dependence function of the spatial copula depends on h too. Finally, by setting rh (u) =

−∑n
1 log ui and vi (h) = −

(
r−1

h

)
log ui, it results (11).

3.2 Margins of Spatial Extremal Copulas

Climate statistical analysis is often concerned with areal data on the domain of interest. In such a case the domain

is partitioned into finite numbers of areal units (regions, zip codes, counties etc.). So, any given sub-domain of

S may contain a number of areal units. Let’s be interested by characterizing the stochastic behavior of climate

data under a distortional contrast in this behavior for two given complementary sub-domains S A and S Ā of S . In

such a context, let’s define a spatial version of the conditional partition of a stochastic based on the Gibbs sampler

Beirlant et al. (2004) and referred in Barro (2009) or in Dossou-Gbété et al. (2009) to as the discordant measure.

Definition 4 The stationary process of second-order {Y (x)} is said to have distortion on a sub-domain SA if , for all

vector of location sites x = (x1, ..., xs);

{YA (x) > yA (x)} given {YĀ (x) > yĀ (x)} (12)

where {YA (x)} and {YĀ (x)} denote the restrictions of the process {Y (x)} to S A and S Ā respectively.

This following result characterize the spatial copulas on the marginal processes.

Theorem 5 Let CH be the spatial copula of the process {Y (x)} and SA a given subdomain of S. Then, under the
key assumption, the copulas CA and CĀ associated to the marginal processes {YA (x)} and {YĀ (x)} respectively are
spatial extremal copulas. Moreover, they are margins of CH.
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Proof. According to Sklar’s theorem, the copula CH is canonically associated to the distribution H by the spatial

relation:

H ((y1 (x1)) , ..., ys (xs)) = CH ((H1 (x1)) , ...,Hs (ys (xs))) .

In the same way, the copula CA of the marginal process {YA (x)} is such that for all u = (u1, ..., us) = (uA, uĀ) ∈
[0, 1]s;

CA

(
uA,1; ...; uĀ,nA

)
= HA

(
H−1

A,1
(
uA,1
)

; ...; H−1
A,nA

(
uA,nA

))
= lim

uĀ−→1−
CH (u1, ..., us) , (13)

where nA = |S A|, the number of areal units in the sub-region S A while uA is the nA−componentwise vector with

index in SA. Then, using simultaneously relation (12) and the max-stability in (5), it follows that

Ck
A

(
uA,1; ...; uĀ,nA

)
= lim

uĀ−→1−
CH (u1, ..., us) = lim

uĀ−→1−
CH

(
uk

1, ..., u
k
s

)
= CA

(
uk

A,1; ...; uk
Ā,nA

)
.

Then, the copula CA is also max-stable and then is a spatial extremal copula. Similarly, the marginal copula of the

process, defined by

CĀ

(
uĀ,1; ...; uĀ,s−nA

)
= HĀ

(
H−1

Ā,1

(
uĀ,1

)
; ...; H−1

Ā,s−nA

(
uĀ,s−nA

))
= lim

uA−→1−
CH (u1, ..., us) ,

is also shown to be a spatial extremal copula.

3.3 Characterization of Conditional λ − Madogram

A generalized form of the F-madogram in (1) has been introduced by Cooley et al. (2006). It is the λ−madogram
associated to the distribution underlying the stochastic process {Y (x)} and defined by

γF (h) = 1
2
E
{∣∣∣[F (Y (x))]λ − [F (Y (x + h))]1−λ∣∣∣} ; λ ∈ [0, 1]

where h is the average value of the separating distance between the two points (see Cooley). The following result

gives a property in bivariate spatial study.

Proposition 6 Suppose H is a bivariate distribution satisfying the key assumption. If its associated multivariate
EV distribution marginal are unit-Fréchet distributed, then, the λ − madogram is given by

γλ (h) =
1

Dh (λ, 1 − λ) + λ − c (λ) with c (λ) =
2λ (1 − λ) + 1

2 (λ + 1) (2 − λ) (14)

where Dh is a conditional spatial measure convex defined on the unit simplex of R2.

Proof. Let’s consider in Defintion 4 the simplest case of distorsion where the sub-region SA contains only one areal

unit. So, the quantification of the occurrence of events (12) are summarized by the probability pA such as

pA = P({YA (x) > yA (x)} / {YĀ (x) ≤ yĀ (x)}) = 1 − H(y1(x1),...,ys(xs))

HĀ(yĀ,1(xĀ,1),...,yĀ,s(xĀ,s))
; (15)

where every yĀ,i

(
xĀ,i

)
represents a component of the spatial realization (y1 (x1) , ..., ys (xs)) .

In terms of copulas (13) is equivalent to

p+A = 1 − C (u1, ...; us)

CĀ (u2, ...; us )
with (u1, ...; us) ∈ [0, 1]s (16)

where the marginal spatial copula CĀ is such as

CĀ

(
u

Ā,1
, ...; u

Ā,s−1

)
= P
{(

H
Ā,1

(
y

Ā,1

(
xĀ,1

))
≤ u

Ā,1
; ...,H

Ā,s−nA

(
yĀ,s−nA

(
xĀ,s−nA

))
≤ u

Ā,s−nA

)}

Furthermore, under the key assumption, the two copulas in (16) are space-varying extremal copulas. So, using

their canonical parameterizations via their extremal dependence functions yields

p+A = 1 − exp{−Vh,CA

(
(ũ1)−1 , ..., (ũs)

−1
)
+ Vh,C̄A

(
(ũ2)−1 , ..., (ũs)

−1
)
}

where ũi = − ln ui for i = 1, ..., s, h being the mean value of the separating distance.
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Therefore, by setting

Dh (t1, . . . , ts) = VH (t1, . . . , ts) − VHĀ

(
tĀ,1, . . . , tĀ,s−1

)
;

one obtains a convex h-parametric dependence function defined on the unit simplex.

In particular, in bivariate case, it is easy to chek that

Ds (t1, t2) = Vh,CA (t1, t2) − VHĀ
(t2) .

Finally, using the relationship between the λ-madogram and the extremal dependence measure Vh given by Cooley

et al. (2006), it results (14) as disserted.

4. Discussion

The results of the study show that under the assumption of max-stability of a stochastic process, the copula un-

derlying a spatial process converge to an extremal copula. These results differ from the previous studies on spatial

modelling because they focus specificly on max-stable GEV-marginally distributed models. The extremal results

in this study are not on Gaussian patterns like in many others papers. Moreover, the spatial measure Dh presents a

number of opportunities both in the spatial dependence modelling and in extreme values theory because its domain

ΩR2 can be reduced of one dimension.

5. Conclusion

In this study, we have investigated about properties and characterization of a multivariate copula associated to the

distribution of a max-stable process. In particular, the results show that if the distribution of the process is a spatial

max-stable model its copula also lies in the max-domain of attraction of spatial extremal copula. Specifically, it

has been shown that the copulas of two complementary sub-processes are the marginal extremal copulas of the

asymptotic copula of the process. A new spatial measure is constructed to characterize the λ − madograms of the

distribution of the process under a distortional constraint.
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