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Abstract

Modelling the spatial extreme events uses the approach of max-stable processes which describe the stochastic

behaviour of point-referenced data. Max-stable processes form the natural extension of multivariate extreme values

distributions to infinite dimensions. In this paper we consider a max-stable stochastic process over space index. We

extend the modelling to time-varying setting using new characterizations of the multivariate distribution underlying

the process. A distortional measure is introduced to describe the marginal laws and joint dependence.
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1. Introduction

Stochastic processes play a fundamental role in modelling data behaviour on a set of spatial observations. Max-

stable processes are stochastic distributions over some index set (space or time) such that all the finite dimensional

distributions are max-stable. Space-time (ST) max-stable processes form a class of asymptotically justified models

describing spatial dependence among extreme time valued. Max-stability is the foundation of multivariate extreme

values (MEV) analysis. With a vast field of applications, statistics of extremes are concerned with modelling

asymptotic behaviour of distributions mainly for component-wise maxima of laws when appropriatetly normalized.

In one-dimensional extreme setting the well-known theorem of Fisher-Tippet-Gnedenko (See Beirlant) shows that

three possible distributions can characterize these asymptotic behaviours such as:

Λ(x) = exp
{− exp (−x)

}
;∞ < x < ∞,Gumbel distribution

Φθ(x) = exp
{
−x−θ
}

; x > 0, θ > 0,Fréchet distribution

Ψθ(x) = exp
(
− (−x)θ

)
; x > 0, θ > 0,Weibul distribution

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

Multivariate extension of the univariate case leads instead to various non-trivial problems and no fully parametric

model can summary the whole families.

In a spatial framework, modelling of extremes is an important adequat risk management in environment sciences.

Indeed, many environment extremal problems are spatial or temporal in extent (sea height, annual maxima, daily

rainfall, snow depth etc.). Specifically, the prospect of climatic change and its impact have brought spatial statis-

tics of extreme events into sharper focus. Compared to their applications to classical statistics, the use of extreme

values settings to spatial analysis is still in an evolutionary stage. In a pioneering work in this field (Smith, 1990;

unpublished data) proposed a approach to model continuous max-stable processes using the canonical represen-

tations of de Haan (see Coles, 2001) of the underlying MEV distributions. This approach have been applied to

ozone data in North Carolina by Naveau et al. (2006), to rainfall data by Smith and Stephenson (2009), Padoan

et al. (2010) and Ribatet et al. (2010). More recently Blanchet and Davidson (2011) used max-stable processes

to model maxima of annual snow height. All these approaches for modelling spatial aspects of rare events are

based on generalization of the classical MEV distributions whose margins are usually standardized to unit-Fréchet

models (Beirlant et al., 2005).
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The main contribution of this paper is to use another approcah to extend continuous max-stable canonical represen-

tations to stochastic ST process. In particular, we characterize the marginal and the joint dependence of distribution

functions underlying these processes but under some distortional contraints. The ST marginals of the process have

been shown to be also max-stable and the joint distribution can be given via a spatial and parametric stable tail

dependence function.

2. Materials and Methods

In this study, we consider a random process {Y(x), x ∈ χ} which describes point-referenced data on a spatial do-

main χ ⊂ R
2. The dependence of this process is captured by a parametric multivariate distribution Hθ, that is,

P (Y (x) ≤ y) = Hθ (y (x)) ; x ∈ χ. Assuming that the process is max-stable, then Hθ lies in the max-domain of at-

traction (MDA) of a parametric MEV distribution Gθ. The novelty here is that we are interested to characterize this

spatial dependence using a time-varying extreme values distribution and under a distortional condition on the joint

dependence. For this purpose, the spatial max-stable results (Schlather et al., 2002), the canonical representations

of MEV structures and the conditional discordant measure (Barro, 2009) would be useful.

2.1 One-dimensional Model in Spatial Max-stability

Let Y1, ..., Yn be independent copies of the process {Y (x)} recorded on a domain χ. The stochastic spatial process

is max-stable if there exist normalizing constants
{
σn,χ > 0

}
and

{
μn,χ ∈ R

}
such that Y is identical in law to the

reduced process Y∗n,χ such as

Y∗n,χ = σ
−1
n,χ

(
max
1≤i≤n
{Yi} − μn,χ

)
.

In particular, if χ is reduced to a single site x, the law of Y∗ is either the Fréchet distribution, the Gumbel or

the Weibull distribution (Giné, 1990). These three models are referred to be the one-dimensional extreme values

distributions and they are unified by a three real-valued parametric distribution, the so-called generalized extreme

values (GEV) model, defined in spatial context here by

GEV(μχ,σχ,ξχ)(y) = exp

{
−
[
1 + ξχ (x)

(
y−μχ(x)

σχ(x)

)] −1
ξχ(x)

+

}
if ξχ (x) � 0 (2)

where u+ = max (u, 0) and
{
μχ (x) ∈ R

}
,
{
σχ (x) > 0

}
and

{
ξχ (x) ∈ R

}
are respectively the parameters of location,

scale and shape at the location site x of the domain χ. Even in a spatial context, it is usual to standardize the

marginal to unit-Fréchet distribution. But, whatever may be the type of the marginal, there is no loss of generality

in making this standardization since, for any continuous function f, the transformation f (Yi (x)) = −1
log(Yi(x))

gives

approximatively this distribution (See Brown, 1977).

In a spatial study Padoan and Ribatet have modeled the parameters of the GEV in (2) as smooth function of the

explanatory variables (longitude, altitude, elevation etc.) such as:

Y (x) = μ (x) +
σ (x)

ξ (x)

[
Z (x)ξ(x) − 1

]
where Z (x) ∼ Unit-Fréchet

for some partially correlation (Padoan, 2010). That needs to model both spatial behaviour of marginal parameters

and spatial joint dependence.

2.2 Conditional Measure for Pareto Distributions

Dealing with the dependence of generalized Pareto distributions (Barro, 2009) has introduced a new measure to

describe discordant probability of lower margins. Specifically he pointed out that, in extreme values context, every

trivariate Pareto distribution describing a given conditional probability of order 1 can be expressed as a function of

a convex parametric bivariate Dθ such as for all i = 1, 2, 3

H(x) = 1 +
{
−
∑

yi (xi) Dθ
(

y1(x1)∑
yi(xi)

)}
; yi (xi) =

[
1 + ξi

(
xi−μi
σi

)]−1
ξi
+

This paper makes the transition from classical extreme analysis to a spatial by making assumption that any real-

ization of the spatial max-stable process is measured at a time-parametric station xt.

3. Main Results

Let {Y(x)} be a stochastic process observed at a finite number of locations χD = {x1, ..., xD} ∈ RD.We describe the

main properties of this process assuming that at all site xi, i = 1, ...,D, the observation is made at the same date
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t ∈ T ⊂]0,+∞[. This assumption allows us to consider the time varying vector of station xt = (x1 (t) , ..., xD (t)) .
Then, the corresponding component-wise maxima vector is also ST dependent:

Mn (xt) =
({

max
1≤k≤n

{Yk (x1 (t))}
}

; ...;
{

max
1≤k≤n

{Yk (xD(t)}
})T

where n is the lenght of block e.g., n = 365, is large enough in the year.

3.1 Marginal Characterization of Space-time Max-stable Process

Like in the classical extreme values setting, several canonical representations of max-stable processes have been

suggested. In this paper the following result allows us to characterize the general form of the one-dimensional

marginal of the max-stable ST process {Yt} where Yt (x) = Y (xt); xt ∈ χD × T ⊂ R
3.

Theorem 1 Assume that the ST process is max-stable. Then the one-dimensional marginal law of the reduced
process Y∗t,χ is a ST parametric GEV. Equivalently, there exist ST-parametric normalizing sequences {σi (xt) > 0}
and {μi (xt) ∈ R} such that, for all i,

− log P
(
Y∗i,χ (xt) ≤ yi

)
−→

n−→+∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
1 + ξi (xt)

(
yi(xt)−μi(xt)

σi(xt)

)] −1
ξi (xt )

+
if ξi (xt) � 0

exp
{
−
(

yi(xt)−μi(xt)

σi(xt)

)}
if ξi (xt) = 0

(3)

where {μi (xt) ∈ R}, {σi (xt) > 0} and {ξi (xt) ∈ R} are respectively the ST parameters of location, scale and shape
of the observation at the parametric site xt.

For proving Theorem 1, we require the following results on the well-known functional equations of Cauchy.

Lemma 2 Let h a function defined on R+.

i) If for all v,w > 0; h (vw) = h (v) h (w)then h has the form: h (x) = xθ; θ ∈ R.
ii) If for all v,w > 0; h(v,w) = h (v) + h (w) then, h has the form: h (x) = c log (x) where c > 0, x ∈ R.
Proof (of Theorem 1). A sufficient condition for proving the theorem is to establish that (3) holds for the standard

form of the GEV, that is, for all i;

lim
n−→+∞P

(
Y∗i,χ (xt) ≤ yi

)
= G∗i (yi (xt)) = exp

{
− [1 + ξi (xt) yi (xt)

] −1
ξi(xt)

}
(4)

where G∗i (yi (xi)) = GEV(0,1,ξi(xt)) (yi (xt)) on Dξi(xt) =
{
xt ∈ χD × T ⊂ R

3; 1 + ξi (xt) yi (xt) > 0
}
.

The process {Yt} being max-stable by assumption, there exist appropriate ST parametric normalizing sequences

(μn (xt) , σn (xt)) ∈ R × R+ such that

Y∗n,χ (xt) = σ
−1
n (xt)

(
max
1≤i≤n
{Yi (xt)} − μn (xt)

)
D
= Y (xt) . (5)

Furthermore, since the observation date t is the same for all station xi, we can follow Smith and Stephenson

(2009) by assuming that the parametric process {Yt} is independent over t. Recall that the distribution of the time

parametric maxima is given by P
(
Mn,t (x) ≤ y (xt)

)
=
[
H (y (xt))

]n .
Therefore, for any continuous transformation f , it follows that

In (xt) = E
[
f
(

Mn(xt)−μn(xt)

σn(xt)

)]
−→

n−→+∞ E
[
f (H (y (xt)))

]

where

E
[
f
(

Mn(xt)−μn(xt)

σn(xt)

)]
= n

∫

R

f
(

y (xt) − μn (xt)

σn (xt)

)
H (y (xt))

n−1 h (y (xt)) dy (6)

Let Q denote the tail quantile function of H such as: Q (u) = H−1
(
1 − 1

u

)
; u > 0 where H−1 (u) = inf{xt ∈ χD × T ;

H(y (xt)) ≥ u} is the left-continuous inverse of H.

This result inserted in (3.4) gives

E
[
f
(

Mn(xt)−μn(xt)

σn(xt)

)]
=

∫

]0,n[

f
(

Q
(

n
y(xt )

)
−μn(xt)

σn(xt)

) [
1 − y(xt)

n

]n−1
dy
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where it is known that lim
n−→+∞

[
1 − y(xt)

n

]n−1
= exp (−y (xt)) as y (xt) is finite and fixed since t is fixed.

Moreover applying the theorem of Fisher-Tippet-Gnedenko (See Resnick) implies that every index i,

lim
n−→+∞

Q (wi (xt) n) − Q (n)

σn (xt)
= hi (wi (xt)) on

{
xt ∈ χD × T ; wi (xt) > 0

}

where the function h satisfies particularly the properties i) and ii) of Lemma 2.

Therefore, in a spatial framework, there exists ST-real parametric {ξi (xt) ∈ R} such that h (yi (xt)) = c (xt)
(
wξi(xt) − 1

)

for a convenient constant c (xt).

Furthermore, the appropriate choice of c (xt) =
1
ξi(xt)

and Q (n) = μn (xt) gives

lim
n−→+∞

Q
(

n
y(xt )

)
−μn(xt)

σi(t)
= h

(
1

yi (xt)

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

yi (xt)
−ξi(xt ) − 1
ξi(xt)

if ξi (xt) � 0

− log (yi (xt)) if ξi (xt) = 0

Thus, the well-known dominated convergence theorem of Lebesgue implies that

lim
n−→+∞In (xt) =

∫

Dξi(xt )

f (yi (xt))
[
exp {− (1 + ξy (xt))}−1/ξ

]
dy.

Then, the law in (4) is obtained asymptotically by Hi (yi (xt)) = exp

⎧⎪⎪⎨⎪⎪⎩−
[
1 + ξi (xt) (yi (xt))

] −1
ξt(xt)
+

⎫⎪⎪⎬⎪⎪⎭ provided ξi (xt) �

0 while lim
ξi(xt)−→0

Hi (yi (xt)) = exp (−yi (xt)) .

Finally, the linear transform ỹi (xt) =
yi(xt)−μi(xt)

σi(xt)
gives relation (3) as disserted.

Remark 3 Notice that in Theorem 1, instead of the generalized type of marginal, it is not restrictive to consider

any other of the three types given by (1). Indeed these models are linked each to others by the following functional

transformations, even in spatial context:

Y ∼ Φθ ⇔ ln Yθ ∼ Λ⇔ −1
Y ∼ Ψθ ⇔ Z = μ (x) + σ(x)

ξ(x)

[
Yξ(x) − 1

]
∼ GEV(σ(x),μ(x),ξ(x)).

3.2 Space-time Parametric Multivariate Extreme Distributions

The following consequence gives a space-time version of a stable tail dependence function.

Corollary 4 Let H be the joint distribution of a ST and max-stable process {Yt}. Then, there are real constants α
and β and a time parametric function lt,ξ: [0,+∞]D −→ [0,+∞] such as

lim
n−→+∞H (αy (xt) + β) = exp

{
−lt,ξ (x1, ..., xD)

}
for all xt ∈ χD × T.

Moreover, the function lt,ξ is convex, homogenuous of order one and satisfies:

lt,ξ (y (x)) = lim
s−→0

1

s
P

⎡⎢⎢⎢⎢⎢⎣
n⋃

i=1

{Hi (yi (x) > 1 − syi (x))}
⎤⎥⎥⎥⎥⎥⎦ .

Definition 5 Two distributions F1 and F2 are of the same type if there are constants a > 0 and b such that F1(ax +
b) = F2(x) for all x.

Proof. The Theorem 1 shows that the one-dimensional marginal of H lies in the MDA of a time-parametric GEV.

Furthermore by assumption the margins are standardized to unit-Fréchet distribution. Finally proposition 5.15 of

(Resnick,1987) allows us to conclud that their joint dependence function lies also in the MDA of a joint MEV

distribution. Equivalently the distribution H is of the same type that a MEV distribution.

Furthermore, in classical extreme values setting, every MEV G model is canonicaly characterized via the stable

tail dependence function (de Haan, 1984) as

G
(
x1,..., xn

)
= exp

{−l
(− log G1 (x1)

)
, ..,− log Gn (xn)

}
for

(
x1,..., xn

) ∈ Rn (7)
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In a ST framework, for all realization yi of the process: − log
[
Gi (yixt)

]
= 1 + ξi (xt) yi (xt)

−1
ξt (x) for all xt ∈ χD × T

provided that ξi (xt) � 0.

Finally, we conclude by considering the transform lt,ξ of l defined by its univariate margins lt,ξi (xi) = l
(
1 + ξi (xt) yi (xt)

−1
ξi (x)

)

Figure 1. Graphic of lt,ξ for negative bilogistic trivariate θ1 = θ2 = 2

3.3 Space-time Distortional Dependence Measure

In spatial study, the class of areal data is one of the basic types of datasets. In areal data analysis the domain

of interest χ is partitioned into a finite number of areal units χ1, ..., χn which can represent regions, zip codes,

countries, etc. Suppose we are interested in modelling stochastic behaviour of annual maxima of climate for

example but under following distortional contraint: at a given region χA ⊂ χ, the values of the process exceed a

known value yA given that somewhere else (on χ̄A = �χA
χ = χ\χA) they do not reach an other given yĀ. That means

in particular that if
{
YtA

}
denotes the restriction of the ST process {Yt} to the sub-domain χA we have to characterize

the stochastic distortion defined in terms of probabilities as follows

Definition 6 Let χA be a given sub-region of the process domain. For all realizations y at a time parametric station

xt, we define the ST-upper coefficient of distortion at y (xt) as the conditional probability:

δ+A(y (xt)) = P(YA
(
xtA

)
> yA/YĀ

(
xtĀ

)
≤ yĀ) (8)

where yĀ (xt) is the real value of the realization y (xt) on the sub-domain.

Similarly, the ST-lower coefficient of distortion of the process is given by:

δ−A(y (xt)) = P
(
YA

(
xtA

) ≤ yDA/YĀ

(
xtĀ

))

In this case, χA is referred to be a ST-distortional sub-region of the process {Y (x)} .
It follows this result.

Theorem 7 Let χA be a given ST-distortional region of the process {Yt}. Then, under the condition of the max-
stability of {Yt}, the distributions underlying the marginal processes

{
YtA

}
and

{
YtĀ

}
lie respectively in the MDA of

two parametric MEV models GA and GĀ. Moreover the distributions GA and GĀ are marginal distributions of G.

Proof. The process {Yt} is max-stable by assumption, so Corollary 4 implies that the underlying distribution lies in

the MDA of a parametric extreme values model G. Equivalently there exist the normalizing sequences as in (3.3)

such as, for all xt ∈ χ × T,

lim
n−→+∞P

⎛⎜⎜⎜⎜⎜⎝
n⋂

i=1

{
Mi (xt) − μi (xt)

σi (xt)
≤ yi

}⎞⎟⎟⎟⎟⎟⎠ = G (y1 (xt) , ..., yn (xt)) . (9)
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Setting xt = (xtA , xtĀ
) ∈ χ × T, the marginal distribution GA of G defined on the sub-domain χA is obtained

asymptotically by

GA(y
(
xtA

)
) = lim

xtĀ
−→x∗tĀ

G(y (xt))

= lim
xtĀ
−→x∗tĀ

⎡⎢⎢⎢⎢⎢⎣ lim
n−→+∞P

⎛⎜⎜⎜⎜⎜⎝
n⋂

i=1

{
Mi (xt) − μi (xt)

σi (xt)
≤ yi

}⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

where x∗tĀ
is the right endpoint of the distribution GĀ. Then, it follows that

GA(y
(
xtA

)
) = lim

n−→+∞

⎡⎢⎢⎢⎢⎢⎣ lim
xtĀ
−→x∗tĀ

P

⎛⎜⎜⎜⎜⎜⎝
n⋂

i=1

{
Mi (xt) − μi (xt)

σi (xt)
≤ yi

}⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

= lim
nA−→+∞

⎡⎢⎢⎢⎢⎢⎢⎣P
⎛⎜⎜⎜⎜⎜⎜⎝

nA⋂

iA=1

{
MiA (xtA )−μiA (xtA )

σiA (xtA )
≤ y

(
xtA

)}
⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦

where the index iA is such as that xtA ∈ χA. Therefore, there exist marginal ST normalizing sequences (σnA (xtA ),

μnA (xtA )) ∈ R
+ × R such that, the corresponding marginal component-wise maxima converge to GA according

equality (3.2) . Finally, the underlying distribution of the ST marginal process YA lies in the MDA of the nA-

dimensional parametric MEV distribution GA, nA = |χA|, the number of observations sites in the sub-domain χA.

Similarly, we establish that for the ST normalizing sequences σnĀ

(
xtA

)
> 0 and μnĀ

(
xtĀ

)
∈ R the (n − kA)-

dimensional parametric MEV GĀ is the limit of a suitably normalised maxima.

Corollary 8 Let G be a time parametric spatial MEV distribution. Then, there exists a convex and ST measure Dt

mapping [−1
2
, 1] × T to [0, 1] such as

Gt (y (xt)) = exp

⎧⎪⎪⎨⎪⎪⎩−
⎡⎢⎢⎢⎢⎢⎣

n∑

i=1

yi (xt) Dt

(
yi∑n

i=1 yi
, ...,

yn−1∑n
i=1 yi

)⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭ ; xt ∈ χDA
× T.

Proof. Let’s consider in (3.6) the simplest case where the sub-domain χA is reduced to a single observation station.

Therefore, it is easy to check that:

δ+A(y (xt)) = P(YA
(
xtA

)
> yA/YĀ

(
xtĀ

)
≤ yĀ) = 1 − P(Yi(xt)≤yi;1≤i≤n)

P(Yi(xt)≤yi;2≤i≤n)
.

The process {Yt} being max-stable, the Theorem 7 allows us to suppose the existence of two non-degenerated

distributions G and GĀ respectively associated with the ST processes{Yt} and deal
{
YtA

}
such as

lim
n−→+∞δ

+
A(y1 (xt) , ..., yn (xt)) = 1 − G (y1 (xt) , ..., yn (xt))

GĀ (y2 (xt) , ..., yn (xt))
.

Furthermore, writing equivalently their corresponding canonical representation of (4) in ST context, we get the

following results
G(y(xt))

GĀ

(
y
(
xtĀ

)) = exp {lĀ (y2 (xt) , ..., y2 (xt)) − lG (y1 (xt) , ..., y1 (xt))}

where lĀ and lG are the stable tail dependence function respectively of GĀ and G.

Finally the restriction on unit simplex S m−1 of Rn−1 gives the measure

Dt(t1, ..., tm−1) = l
(
1 −

∑
ti, t2, . . . , tm−1

)
+
(∑

ti
)

lN̄1

(
t2

1 −∑ ti
, . . . ,

tm−1

1 −∑ ti

)

where S m−1 =
{
(t1, ...tm−1) ∈ [0, 1]m−1 ,

∑m
i=1 ti ≤ 1

}
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Figure 2. Graphic of Dθ for negative logistic trivariate θ1 = θ2 = 2

4. Discussion

The results of the study show that under the assumption of independence of copies of a max-stable and ST para-

metric process, the underlying joint distribution lies in the MDA of a ST distribution of MEV family. These results

differ from the previous models because, at a fixed date t and for a given observation site x, they characterize both

the joint dependence of the model and the possible distortional univariate margins

5. Conclusion

In this study, we have investigated about max-stability of continuous and stochastic model of ST process. We have

built a new measure and function which describe this conditional dependence.The classical canonical representa-

tions have been extended to time-varying models. Specifically, we have introduced a new measure which describes

a distortional constraint on the underlying marginal distributions.
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