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Abstract

The gamma distribution has been widely used in many research areas such as engineering, hydrology and survival analy-
sis. We propose a new distribution, called the McDonald gamma distribution, which presents greater flexibility to model
scenarios involving non-negative data. The new density function is represented as a double linear combination of gamma
densities. We also propose analytical expressions for some mathematical quantities: moments, moment generating func-
tion, log-moment, mean deviations, Lorentz and Bonferroni curves, order statistics, entropy and quantile function. The
score function and the observed information matrix of this new distribution are derived. A real data set is used to illustrate
the importance of the proposed model.

Keywords: Beta-Generated class, Entropy, Generalized distribution, Maximum likelihood estimation, Moment

1. Introduction

The gamma distribution is a very general distribution that belongs to the Pearson type III family of distributions. It
includes, among other well-known distributions, the exponential and chi-square distributions. Some of its structural
properties can be found in Jambunathan (1954). It has a variety of applications and can be used to model the queuing
systems, the flow of items through manufacturing and distribution processes, the risk management and some distributions
in hydrology. More detailed information on hydrology can be found in (Yevjevich, 1972; Bobee & Ashkar, 1991).

Several generalized distributions have been studied in recent years. The generalization of continuous distributions began
with Amoroso (1925). He introduced the generalized gamma (GG) distribution for income rate data. It is also discussed
by Stacy (1962). Esteban (1981) showed that the GG distribution has several distributions as special cases or limiting
forms, for example, the log-normal, Weibull, gamma, exponential, normal and Pareto distributions. The GG distribution
has several applications in areas such as engineering, hydrology and survival analysis, and it is very useful in discrimi-
nating between alternative probabilistic models. Nadarajah & Gupta (2007) applied it to drought data. Nadarajah (2008)
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presented a study on its use in electrical and electronic engineering. Cox (2008) studied the F-generalized family by
comparing it with the GG model. Cordeiro et al. (2011) proposed the exponentiated GG distribution with application
to lifetime data and Pascoa et al. (2011) defined the called Kumaraswamy GG distribution with application in survival
analysis, since it is capable of modeling a bathtub-shaped hazard rate function.

In recent years, several authors published new distributions. Eugene et al. (2002) introduced a class of generalized
distributions based on the logit of the beta random variable. They proposed the beta normal distribution. After their
work, new distributions have been developed in this class, such as the beta Fréchet (Nadarajah & Gupta, 2004), beta
Gumbel (Nadarajah & Kotz, 2004), beta exponential (Nadarajah & kotz, 2005), beta Weibull (Lee et al., 2007), beta
Pareto (Akinsete et al., 2008), beta half-normal (Pescim et al., 2006), beta generalized exponential (Barreto-Souza et al.,
2010) and beta power (Cordeiro & Brito, 2012) distributions.

In this sense, our purpose is to present a new distribution, called the McDonald gamma distribution (Mc-Γ for short),
which extends the gamma model and has several other models as special cases. Some of its mathematical properties are
obtained and the method of maximum likelihood estimation is discussed. The new model provides greater flexibility than
other distributions, since it has more shape parameters, yielding a large variety of forms. It can also be useful for testing
the goodness of fit of its sub-models.

The rest of the article is organized as follows. In Section 2, we discuss the modeling of the Mc-Γ distribution, in which
the class Mc is contextualized. We also present its density function, cumulative distribution and hazard function. Some
expansions of its mathematical quantities are derived in Section 3. Additionally, its moment generating function (mgf)
and the limiting density and cumulative distribution functions are derived. Moreover, we propose analytical expressions
for the following statistical measures: Shannon and Rényi entropies, mean deviations, Bonferroni and Lorentz curves,
skewness, kurtosis, order statistics and quantile function. In Section 4, we discuss maximum likelihood estimation. In
Section 5, the Mc-Γ distribution is applied to a real data set. Finally, in Section 6, we provide some concluding remarks.

2. The Mc-Γ Distribution

The Mc-Γ distribution originated from the work of Eugene et al. (2002) who defined a general class of distributions
as follows: if G denotes the cumulative distribution function (cdf) of a random variable, then a generalized class of
distributions can be defined as

F(x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
ωa−1(1 − ω)b−1dω, (1)

for a > 0, b > 0, where Iy(a, b) = By(a, b)/B(a, b) denotes the incomplete beta function ratio and By(a, b) =
∫ y

0 ω
a−1(1 −

ω)b−1dω is the incomplete beta function. The probability density function (pdf) corresponding to (1) can be expressed as

f (x) =
1

B(a, b)
G(x)a−1 [1 −G(x)]b−1 g(x),

where g(x) = ∂G(x)/∂x is the baseline density function.

We start with the generalized beta distribution of the first kind (or beta type I) introduced by McDonald (1984). Its pdf is
given by

f (x) =
c

B
(

a
c , b

) xa/c−1 (1 − xc)b−1,

where a > 0, b > 0 and c > 0 are shape parameters.

Alexander et al. (2011) introduce the generalized beta-generated (GBG) distribution which has as sub-models the classical
beta-generated, Kumaraswamy-generated and exponentiated distributions. Consider starting from an arbitrary baseline
continuous distribution function G(x), the cdf F(x) of the GBG distribution can be expressed as

F(x) = IG(x)c

(a
c
, b

)
=

1

B
(

a
c , b

) ∫ G(x)c

0
ωa/c−1(1 − ω)b−1dω. (2)

We follow the works of Eugene et al. (2002), Jones (2004), Cordeiro & de Castro (2011) and Alexander et al. (2011) to
define the Mc-Γ distribution. If we substitute the gamma cdf in (2), we obtain the Mc-Γ cumulative distribution.

Here and henceforth, consider the pdf of the Γ(α, β) distribution given by

h(x;α, β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0,
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where α > 0 and β > 0 are shape and scale parameters, respectively.

Thus, the Mc-Γ cumulative distribution is

FMc-Γ(x;α, β, a, b, c) =
1

B
(

a
c , b

) ∫ γ1(α,βx)c

0
w

a
c−1(1 − w)b−1dw, (3)

where γ1(α, βx) = 1
Γ(α)

∫ βx
0 tα−1e−tdt is the incomplete gamma function ratio, β > 0 is a scale parameter and α, a, b, c > 0

are shape parameters.

The Mc-Γ density function is obtained by differentiating (3). We have

fMc-Γ(x;α, β, a, b, c) =
c βα xα−1 e−βx

Γ(α) B( a
c , b)

γ1(α, βx)a−1 [1 − γ1(α, βx)c]b−1. (4)

If X is a random variable with density (4), we write X ∼ Mc-Γ(α, β, a, b, c). Two important special sub-models are the beta
gamma (B-Γ) distribution (when c = 1), proposed by Jones (2004), and the Kumaraswamy gamma (Kw-Γ) distribution
(when a = 1), studied by Cordeiro & de Castro (2011). The Mc-Γ density function for selected parameter values is plotted
in Figs. 1(a)-1(b).

The survival and hazard rate function of the Mc-Γ distribution are

S Mc-Γ(x;α, β, a, b, c) = 1 − 1

B
(

a
c , b

) ∫ γ1(α,βx)c

0
w

a
c −1(1 − w)b−1dw

and

hMc-Γ(x;α, β, a, b, c) =
c βα xα−1e−βx γ1(α, βx)a−1 [1 − γ1(α, βx)c]b−1

Γ(α) B( a
c , b) S Mc-Γ(x;α, β, a, b, c)

,

respectively.

In Figs. 2(a)-2(b), we plot the hazard function for selected parameter values. This function is quite flexible and may take
different forms: constant, increasing, decreasing and bathtub.

To generate random numbers from the Mc-Γ(α, β, a, b, c) distribution, we have to solve the nonlinear equation

γ1(α, βX) − U1/c = 0, (5)

where U ∼ B
(

a
c , b

)
. We use the R programming language (R Development Core Team, 2008) for solving this equation.

Figs. 3(a)-3(b). present the theoretical and approximate densities for different sample sizes, n ∈ {500, 2000, 10000}. In
Fig. 3(b), we provide the histogram of the simulated data for n = 500. Clearly, the data are well-fitted by the Mc-Γ
theoretical density.

2.1 Special Sub-models

The Mc-Γ distribution contains as special cases several well-known distributions shown in Fig. 4. In addition to these
distributions, it contains other special cases such as: Mc-χ2 (α = k/2, β = 1/2), Mc-Exp (α = 1), Kw-χ2 (α = k/2, β =
1/2, a = 1), Kw-Exp (α = 1, a = 1), B-χ2 (α = k/2, β = 1/2, c = 1), B-Exp (α = 1, c = 1), L1-χ2 (α = k/2, β = 1/2, b =
1), L1-Exp (α = 1, b = 1), L2-χ2 (α = k/2, β = 1/2, a = 1, c = 1), L2-Exp (α = 1, a = 1, c = 1). Here, Kw-G denotes the
family of Kumaraswamy G distributions, B-G the family of beta G distributions, L1-G the family of Lehmann type I G
distributions and L2-G the family of Lehmann type II G distributions.

3. Theoretical Properties

3.1 Expansions for Important Mathematical Quantities

Theorem 1. Here and henceforth, let X ∼ Mc-Γ(α, β, a, b, c). If s is a non-negative real number, we obtain the double
linear combination

f s
Mc-Γ(x;α, β, a, b, c) =

∞∑
v,m=0

w(s)
v,m h(x;αv + m + 1 + s(α − 1), β),

where h(x;αv+m+ 1+ s(α− 1), β) is the gamma density with shape parameter αv+m+ 1+ s(α− 1) and scale parameter
β,

w(s)
v,m =

tm,v Γ(αv + m + 1 + s(α − 1))

βm+1−sΓ(α)v ∑∞
i,k=0

(
ic+s(a−1)

k

)(
s(b−1)

i

)(
k
v

)
(−1)i+k+v

,

and the quantity tm,v is defined in Appendix A.
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The proof of this theorem is given in Appendix A.

Corollary 1. We obtain the double linear combination for the density function of X

fMc-Γ(x;α, β, a, b, c) =
∞∑

v,m=0

w(1)
v,m h(x;αv + m + α, β),

where w(1)
v,m is given in Theorem 1.

Corollary 2. If Y ∼ Γ(αv + m + α, β), explicit expressions for the cdf, nth moment and mgf of X are given by

FMc-Γ(x;α, β, a, b, c) =
∞∑

v,m=0

w(1)
v,m γ1(αv + m + α, β),

E(Xn) =
∞∑

v,m=0

w(1)
v,m E(Yn) =

∞∑
v,m=0

w(1)
v,m
Γ(αv + m + α + n)
Γ(αv + m + α)βn ,

MX(t) =
∞∑

v,m=0

w(1)
v,m MY (t) =

∞∑
v,m=0

w(1)
v,m (1 − βt)−(αv+m+α),

for t < β, respectively, where w(1)
v,m is given in Theorem 1.

3.2 Asymptotic Density and Cumulate Distribution Functions

Consider the representation in power series in Appendix B and the asymptotic results for the exponentiated gamma density
function given by Nadarajah and Kotz (2006). The following approximations for the asymptotic density and cumulate
distribution functions hold:

fMc-Γ(x;α, β, a, b, c) ∼


∑∞

k=1 w′k
{

(ck+1)α−ck xαck

Γ(α)ck+1

}
, x→ 0,∑∞

k=1 w′k

{
(ck+1)xα−1 exp(−x)

Γ(ck+1)

}
, x→ ∞

and

FMc-Γ(x;α, β, a, b, c) ∼


∑∞
k=1 w′k

{
(ck+1)α−ck xαck+1

(αck+1)Γ(α)ck+1

}
, x→ 0,∑∞

k=1 w′k
{

(ck+1)Γ(α)
Γ(ck+1)

}
, x→ ∞

where

w′k =
cβ(−1)k

(
b−1

k

)
(ck + 1)B( a

c , b)
.

3.3 Alternative Forms for Ordinary Moments

The following discussion proposes an alternative expression for the nth ordinary moment of X. We have

E(Xn) =
cβ

Γ(α)B( a
c , b)

∫ ∞

0
xn+α−1e−βx[γ1(α, βx)]a−1[1 − γ1(α, βx)c]b−1dx. (6)

Since γ1(α, βx) < 1 and c > 0, the following expansion holds

[1 − γ1(α, βx)c]b−1 =

∞∑
i=0

(−1)i
(

b−1
i

)
γ1(α, βx)ci.

Additionally, we work with an expansion for the incomplete gamma function

γ1(α, βx) =
(βx)α

Γ(α)

∞∑
m=0

(−βx)m

(α + m)m!
. (7)
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Thus, equation (6) can be reduced to

E(Xn) =
cβα

Γ(α)B( a
c , b)

∞∑
i=0

(−1)i
(

b−1
i

) ∫ ∞

0
xn+α−1e−βx γ1(α, βx)ic+a−1dx

=
cβα

Γ(α)B( a
c , b)

∞∑
i=0

(−1)i

Γ(α)ic+a−1

(
b−1

i

)∫ ∞

0
xn+α−1e−βx

{
(βx)α

∞∑
m=0

(−βx)m

(α + m)m!

}ic+a−1

dx.

Setting u = βx, we have

E(Xn) =
cβ−n

Γ(α)B( a
c , b)

∞∑
i=0

(−1)i

Γ(α)ic+a−1

(
b−1

i

) ∫ ∞

0
un+α−1 exp(−u)

{
uα

∞∑
m=0

(−u)m

(α + m)m!

}ic+a−1

du︸                                                          ︷︷                                                          ︸
Lauricella function of type A (Cordeiro & Nadarajah, 2011)

.

=
cβ−n

Γ(α)B( a
c , b)

∞∑
i=0

(−1)iα−(ic+a−1)

Γ(α)ic+a−1

(
b−1

i

)
Γ(n + α(ic + a))F(ic+a−1)

A (n + α(ic + a);α, . . . , α;α + 1, . . . , α + 1;−1, . . . ,−1).

3.4 Expression for the Rényi Entropy

Let Y be a random variable with density f (y; θ) and support y ∈ D ⊂ R. The Rényi entropy is defined by

Hs
R(Y) =

1
1 − s

log
{
E[ f (y; θ)s−1]

}
=

1
1 − s

log
(∫
D

f (y; θ)sdy
)
,

where s ≥ 0 and s , 1.

From the expansion given in Theorem 1, we can write

Hs
R(X) =

1
1 − s

log

 ∞∑
v,m=0

w(s)
v,m

∫ ∞

0
h(x;αv + m + 1 + s(α − 1), β)dx


=

1
1 − s

log

 ∞∑
v,m=0

w(s)
v,m

 ,
where w(s)

v,m is given in Theorem 1.

3.5 Expressions for the Log-moment and Shannon Entropy

Let Y be defined as in Section 3.4. The log-moment is given by

E{[log(Y)]n} =
∫
D

log(y)n f (y; θ)dy.

Now, we consider Y ∼ Γ(α, β) with density function h(x;α, β). Minor manipulations yield

E{[log(Y)]n} = βα

Γ(α)

{
∂(n)

∂αn

(
Γ(α)
βα

)}
n=1−−−→ E[log(Y)] = ψ(α) − log(β),

where ψ(·) is the digamma function.

Combining this result with Corollary 1, if Z ∼ Γ(αv + m + α, β), we have

E{[log(X)]n} =
∞∑

v,m=0

w(1)
v,m E{[log(Z)]n}

=

∞∑
v,m=0

w(1)
v,m

βαv+m+α

Γ(αv + m + α)

{
∂(n)

∂ jn

(
Γ( j)
β j

)}
j=αv+m+α

n=1−−−−−−−→

E[log(X)] =
∞∑

v,m=0

w(1)
v,m {ψ(αv + m + α) − log(β)}.
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In the following discussion, we derive the Shannon entropy defined by

HS(X) = E{− log[ fMc-Γ(X)]} =
∫ ∞

0
− log[ fMc-Γ(x)] fMc-Γ(x)dx.

The log-likelihood function relative to one observation follows from (4) as

ℓ(α, β, a, b, c; x) = log

 cβα

Γ(α)B
(

a
c , b

)  + (α − 1) log(x) − βx + (a − 1) log[γ1(α, βx)] + (b − 1) log[1 − γ1(α, βx)c].

It is known that the expected value of the score function vanishes, and then from E{∂ℓ(θ)/∂a} = 0 and E{∂ℓ(θ)/∂b} = 0,
we obtain

E{log[γ1(α, βX)]} =
ψ( a

c ) − ψ( a
c + b)

c
and

E{log[1 − γ1(α, βX)c]} = ψ(b) − ψ
(a

c
+ b

)
,

respectively.

Hence, the Shannon entropy of the Mc-Γ distribution reduces to

HS(X) = log

Γ(α)B
(

a
c , b

)
cβα

 − (α − 1)
∞∑

v,m=0

w(1)
v,m {ψ(αv + m + α) − log(β)}

+

∞∑
v,m=0

w(1)
v,m (αv + m + α) +

(a − 1)
c

{
ψ

(a
c

)
− ψ

(a
c
+ b

)}
+ (b − 1)

{
ψ(b) − ψ

(a
c
+ b

)}
.

3.6 Means Deviations

The mean deviations of a random variable X with respect to the mean and the median are

δ1(X) =
∫ ∞

0
|x − µ| f (x) dx and δ2(X) =

∫ ∞

0
|x − M| f (x) dx,

respectively, where µ = E(X) and M = Median(X) denotes the median. These quantities can be expressed as

δ1(X) = 2 µ F(µ) − 2 µ + 2 T (µ) and δ2(X) = 2 T (M) − µ,

where F(µ) is the cdf of X and T (q) =
∫ ∞

q x f (x)dx.

Based on the Corollary 1, the quantity T (q) for the Mc-Γ distribution becomes

T (q) =
∞∑

v,m=0

w(1)
v,m

∫ ∞

q
x h(x;αv + m + α, β)dx

=

∞∑
v,m=0

w(1)
v,m

[
1 −

∫ q

0
x h(x;αv + m + α, β)dx

]

=

∞∑
v,m=0

w(1)
v,m

[
1 − (αv + m + v)

β
γ1(αv + m + v + 1, βq)

]
and F(x) comes from equation (3).

3.7 Bonferroni and Lorentz Curves

Bonferroni (B(·)) and Lorentz (L(·)) curves have been applied in many fields such as economics, reliability, demography,
insurance and medicine. Expressions of these measures for several important probability distributions were proposed by
Giorgi & Nadarajah (2010). For the Mc-Γ distribution, these quantities are defined by

B(p) =
1
pµ

∫ q

0
x fMc-Γ(x) dx and L(p) =

1
µ

∫ q

0
x fMc-Γ(x) dx = p B(p),
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where q = F−1(p) = QMc-Γ(p) is the Mc-Γ quantile function for a given probability p and µ = E(X). The Mc-Γ quantile
function can be calculated by inverting (5) and it will be studied in Section 3.8 (see also equation (8)). We obtain

B(p) =
1

pµβ

∞∑
v,m=0

w(1)
v,m (αv + m + α)

∫ q

0
x h(x;αv + m + α, β)dx

=
1
p


∑∞

v,m=0 w(1)
v,m (αv + m + α) γ1(αv + m + α, βq)∑∞

v,m=0 w(1)
v,m (αv + m + α)

 .
3.8 Skewness and Kurtosis

We can express the Mc-Γ quantile function in terms of the quantile functions of the Γ(α, β) and B
(

a
c , b

)
distributions,

denoted by QΓ(p) and QB(p), respectively. Using (3), we have FMc-Γ(x) = Iγ1(α,βx)c ( a
c , b). By inverting Iγ1(α,βx)c ( a

c , b) = p,
we obtain γ1(α, βx)c = QB(p), and the Mc-Γ quantile function becomes

QMc-Γ(p) = QΓ(QB(p)1/c). (8)

There are several robust measures in the literature for location and dispersion. The median, for example, can be used for
location and the interquartile range. Both the median and the interquartile range are based on quantiles. From this fact,
Bowley (1920) proposed a coefficient of skewness based on quantiles given by

S K =
Q(3/4) + Q(1/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
,

where Q(·) is the quantile function of a given distribution F. It can be shown that Bowley’s coefficient of skewness takes
the value zero for symmetric distributions. Additionally, its largest value is one and the lowest is -1.

Moors (1986) demonstrated that the conventional measure of kurtosis may be interpreted as a dispersion around the values
µ + σ and µ − σ. Thus, the probability mass focuses around µ or on the tails of the distribution. Therefore, based on
this interpretation, Moors (1988) proposed, as an alternative to the conventional coefficient of kurtosis, a robust measure
based on octiles given by

KR =
(Q(7/8) − Q(5/8)) + (Q(3/8) − Q(1/8))

Q(6/8) − Q(2/8)
.

Figs. 5(a)-5(b) provide the plots of the Bowley’s skewness and Moors’s kurtosis, respectively, for the proposed distribu-
tion.

3.9 Order Statistics

In the following discussion, we derive the order statistics and their vth moments. The pdf of the ith order statistic Xi:n, for
i = 1, 2, . . . , n, is given by

fi:n(x) =
f (x)

B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

)
F i+k−1(x).

From equation (18) given in Appendix C, we have

fi:nx) =
1

B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

)  ∞∑
h1,h2,r,m,s1,s2=0

W (i+k−1)
h1,h2,r,m,s1,s2

 h(x;αs1 + s2 + α + αh2 + m, β). (9)

Additionally, the vth ordinary moment of Xi:n is

E(Xv
i:n) =

∫ ∞

0
xv fi:n(x)dx =

1
B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

) ∫ ∞

0
xv f (x)F i+k−1(x)dx︸                       ︷︷                       ︸

µv,i+k−1 ,E{XvFi+k−1(X)}

,

where the quantity µv,i+k−1 is the probability weighted moment (PWM) of the Mc-Γ distribution. From equation (9), we
obtain

E(Xv
i:n) =

1
B(i, n − i + 1)

n−i∑
k=0

(−1)k
(

n−i
k

)
µv,i+k−1,
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where

µv,i+k−1 =

∞∑
h1,h2,r,m,s1,s2=0

W (i+k−1)
h1,h2,r,m,s1,s2

[
Γ(αs1 + s2 + α + αh2 + m + v)
Γ(αs1 + s2 + α + αh2 + m)βv

]
.

3.10 Expansion for the Quantile Function

Quantile functions are in widespread use in general statistics and often find representations in terms of lookup tables for
key percentiles. An extensive discussion of the use of quantile functions in mainstream statistics is given in the book by
Gilchrist (2000).

The quantile function Q(u) usually does not have closed-form expressions for several important distributions, such as the
normal, Student t, gamma and beta distributions. As a potential solution, this function can be expressed in terms of a
power series of a transformed variable v, which takes the form v = p (q u − t)ρ, for p, q, t and ρ known constants:

Q(u) =
∞∑

i=0

ϵi vi, (10)

where the coefficients ϵi are suitably chosen real numbers. Steinbrecher (2002) explored the solution of this equation by
standard power series methods.

According to Steinbrecher & Shaw (2008), the following two results hold:

(r1): For the gamma distribution, equation (10) is defined by v = β[Γ(α + 1)u]1/α and

ϵi = mi =


0, if i = 0
1, if i = 1
ai+1, if i ≥ 1,

where

ai+1 =
1

i(α + i)

{ i∑
r=1

i−s+1∑
s=1

ar as ai−r−s+2 s (i − r − s + 2) − ∆(i)
i∑

r=2

ar ai−r+2 r [r − α − (1 − α)(i + 2 − r)]
}
,

∆(i) = 0 if i < 2 and ∆(i) = 1 if i ≥ 2. Here, the first coefficients are a2 = 1/(α+1), a3 = (3α+5)/[2(α+1)2(α+2)], . . .
Hence, the power series for the gamma quantile is given by

QΓ(u) =
∞∑

i=0

mi [βΓ(α + 1)1/α]i ui/α. (11)

(r2): For the beta quantile, the power series reduces to

QB(u) =
∞∑

i=0

d′i uic/a, (12)

where the transformed variable is v = [ac−1B(ac−1, b)u]ca−1
,

d′i = di [ac−1B(ac−1, b)]ic/a and di is given by

di =


0, if i = 0
1, if i = 1
λi, if i ≥ 2,

λi =
1

[i2 + (a/c − 2)i + (1 − a/c)]

{
(1 − δi,2)

i−1∑
r=2

λr λi+1−r [r(1 − a/c)(i − r)

− r(r − 1)] +
i−1∑
r=1

i−r∑
s=1

λr λs λi+1−r−s [r(r − a/c) + s(a/c + b − 2)(i + 1 − r − s)]
}
,
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δi,2 = 1 if i = 2 and δi,2 = 0 if i , 2. The first quantities are:

λ2 =
b − 1

a/c + 1
,

λ3 =
(b − 1) (a/c2 + 3ba/c − a/c + 5b − 4)

2(a/c + 1)2(a/c + 2)
,

λ4 = (b − 1)[a/c4 + (6b − 1)a/c3 + (b + 2)(8b − 5)a/c2 + (33b2 − 30b + 4)a/c

+ b(31b − 47) + 18]/[3(a/c + 1)3(a/c + 2)(a/c + 3)], . . .

Inserting equation (11) into (8), we obtain

QMc-Γ(p) =
∞∑

i=0

mi [βΓ(α + 1)1/α]i [QB(p)]i/cα. (13)

Since 0 < QB(p) < 1 and i/cα > 0, we have

[QB(p)]i/cα =

∞∑
k,v=0

(−1)k+v
(
i/cα

k

)(
k
v

)
[QB(p)]v.

Additionally, the beta quantile function (12) can be expressed as pc/a ∑∞
j=0 w j p jc/a, where w j = d′j+1 = d j+1[ac−1B(ac−1, b)]( j+1)c/a

for j = 0, 1, . . . In this case, the first two quantities are

w0 = [ac−1B(ac−1, b)]c/a and w1 = [(b − 1)c/(a + c)][ac−1B(ac−1, b)]2c/a.

Applying the previous expressions in (13) and using the power series for the beta quantile function in (12), we obtain

QMc-Γ(p) =
∞∑

i,k,v=0

mi β
i Γ(α + 1)i/α(−1)k+v

(
i/cα

k

)(
k
v

)
︸                                     ︷︷                                     ︸

Ei,k,v

pc/a
∞∑
j=0

w j p jc/a

v

.

Thus, using a power series raised to a positive integer v (Gradshteyn & Ryzhik, 1980, p. 17), it follows that

QMc-Γ(p) =
∞∑

i,k,v, j=0

Ei,k,v sv, j pc(v+ j)a−1
.

where sv,0 = wv
0 and sv, j = ( jw0)−1 ∑ j

m=1[m(v+1)− j] wm sv, j−m. Notice that the coefficient sv, j can be recursively obtained
from {sv,0, . . . , sv, j−1} and {w0, . . . ,w j}.
Finally, setting ℓ = v + j, the quantile function can be rewritten as

QMc-Γ(p) =
∞∑
ℓ=0

Nℓ π
ℓ,

where Nℓ =
∑∞

i,k=0
∑ℓ

v=0 Ei,k,v sv,ℓ−v and π = pca−1
. The last expansion can be used as an alternative way for calculating

some mathematical quantities of the new distribution. For example, the result

E(Xn) =
∫ ∞

0
xn f (x)dx =

∫ 1

0
Q(p)ndp

combined with a power series raised to a positive integer, leads to an alternative form for the ordinary moments

E(Xn) = ac−1
∫ 1

0

 ∞∑
ℓ=0

Nℓ π
ℓ

n

πac−1−1dπ = ac−1
∞∑
ℓ=0

N′n,ℓ

∫ 1

0
πℓ+ac−1−1dπ = ac−1

∞∑
ℓ=0

N′n,ℓ
ℓ + ac−1 ,

where N′n,0 = Nn
0 and N′n,ℓ = (ℓN0)−1 ∑ℓ

m=1 [m(n + 1) − ℓ] Nm N′m,ℓ−m.
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4. Estimation

The parameters of the Mc-Γ distribution can be estimated by the method of maximum likelihood. Let x1, · · · , xn be a
random sample of size n from the Mc-Γ(α, β, a, b, c) distribution given by (4). The log-likelihood function for the vector
of parameters θ = (α, β, a, b, c)⊤ can be expressed as

l(θ) =n log c + nα log β − n log B
(a

c
, b

)
− n logΓ(α) + (α − 1)

n∑
i=1

log xi − β
n∑

i=1

xi + (a − 1)
n∑

i=1

log γ1(α, βxi)

+ (b − 1)
n∑

i=1

log[1 − γ1(α, βxi)c].

The components of the score vector U(θ) are

Uα(θ) =
∂l(θ)
∂α
=n log β − nψ(α) +

n∑
i=1

log(xi) + (a − 1)
n∑

i=1

{
∂γ1(α, βxi)/∂α
γ1(α, βxi)

}
− c(b − 1)

n∑
i=1

{
γ1(α, βxi)c−1∂γ1(α, βxi)/∂α

1 − γ1(α, βxi)c

}
,

Uβ(θ) =
∂l(θ)
∂β
=

nα
β
−

n∑
i=1

xi + (a − 1)
n∑

i=1

xi

{
∂γ1(α, βxi)/∂β
γ1(α, βxi)

}
− c(b − 1)

n∑
i=1

xi

{
γ1(α, βxi)c−1∂γ1(α, βxi)/∂β

1 − γ1(α, βxi)c

}
,

Ua(θ) =
∂l(θ)
∂a
=

n
c

[
ψ

(a
c
+ b

)
− ψ

(a
c

)]
+

n∑
i=1

log[γ1(α, βxi)],

Ub(θ) =
∂l(θ)
∂b
=n

[
ψ

(a
c
+ b

)
− ψ(b)

]
+

n∑
i=1

log[1 − γ1(α, βxi)c],

Uc(θ) =
∂l(θ)
∂c
=

n
c
− na

c2

[
ψ

(a
c
+ b

)
− ψ

(a
c

)]
− (b − 1)

n∑
i=1

{
γ1(α, βxi)c log γ1(α, βxi)

1 − γ1(α, βxi)c

}
.

These expressions depend on the quantities ∂γ1(·)/∂α and ∂γ1(·)/∂β. Now, we provide formulas for these quantities.
Using MATHEMATICA, we obtain

∂γ(α, βx)
∂α

= Γ(α)ψ(α) − log(βx)γ(α, βx) −G3 0
2 3

(
βx

∣∣∣∣ 1, 1
0, 0, α

)
,

where G3 0
2 3(·) is a particular case of the Meijer G-function (note 2) given by

G3 0
2 3

(
βx

∣∣∣∣ 1, 1
0, 0, α

)
=

(βx)α2F2({α, α}; {α + 1, α + 1};−βx)
α2 − Γ(α) log(βx) + Γ(α)ψ(α),

and 2F2(·; ·; ·) denotes the hypergeometric function defined by

2F2({a1, a2}; {b1, b2}; z) =
∞∑
j=0

(a1) j(a2) j

(b1) j(b2) j

z j

j!
,

where, for some parameter µ, the Pochhammer symbol (µ) j is defined by

(µ)0 = 1, (µ) j = µ(µ + 1) · · · (µ + j − 1), j = 1, 2, . . .

We obtain
∂γ(α, βx)

∂α
= log(βx){Γ(α) − γ(α, βx)} − (βx)α2F2({α, α}; {α + 1, α + 1};−βx)

α2 .

Finally, we have

∂γ1(α, βx)
∂α

= log(βx){1 − γ1(α, βx)} − (βx)α2F2({α, α}; {α + 1, α + 1};−βx)
Γ(α)α2 − ψ(α)γ1(α, βx).

Additionally,
∂γ1(α, βx)

∂β
=

xαβα−1 exp{−βx}
Γ(α)

.
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The maximum likelihood estimate (MLE) θ̂ of θ is the solution of the system of nonlinear equations U(θ) = 0. For
interval estimation and tests of hypotheses on the parameters in θ, we require the 5 × 5 unit observed information matrix
J = J(θ), whose elements are given in Appendix D. Under certain regularity conditions for the likelihood function,
confidence intervals and hypothesis tests can be constructed using the fact that the asymptotic distribution of the MLE θ̂
is
√

n(θ̂− θ) ∼ Np(0, I(θ)−1), where I(θ) is the Fisher information matrix and p is the number of model parameters (Sen &
Singer, 1993). We can substitute I(θ) by J(θ̂), i.e., the observed information matrix evaluated at θ̂.

The multivariate normal N5(0, J(θ̂)−1) approximated distribution can be used to obtain confidence intervals for the in-
dividual parameters. We can compute the maximum values of the unrestricted and restricted log-likelihoods to define
likelihood ratio (LR) statistics for testing some sub-models of the Mc-Γ distribution. We may be interested to check if the
fit using the Mc-Γ distribution is statistically “superior” to a fit using the B-Γ, Kw-Γ and Γ distributions for a given data
set.

5. Application

In this section, we present and compare the performance of the Mc-Γ distribution and its Kw-Γ, B-Γ and Γ sub-models
to describe a real data set from USS Halfbeak diesel engine. The data were previously studied by (Ascher, 1984, p. 75)
and (Meeker, 1998, p. 415). They represent times of unscheduled maintenance actions for the USS Halfbeak number 4
main propulsion diesel engine over 25.518 operating hours. Table 1 gives some statistical measures for these data. These
values indicate that the empirical distribution is skewed to the left and platycurtic.

In order to compare the fits of the Mc-Γ, B-Γ, Kw-Γ and Γ distributions, the maximum likelihood method was adopted
using the subroutine ‘NLMixed’ in the SAS software. Table 2 lists the MLEs, their standard errors, and three goodness-
of-fit statistics: AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion) and CAIC (Consistent Akaike
Information Criterion). The lowest values of these statistics correspond to the Mc-Γ distribution. Fig. 6 shows that the
Mc-Γ distribution provides a closer fit to the histogram of the data than the other three sub-models.

In order to verify the importance of the Mc-Γ distribution in relation to its sub-models by means of hypothesis tests, we
consider the LR statistic given by

Λ = 2{l(̂θ) − l(̃θ)} = 2{l(α̂, β̂, â, b̂, ĉ) − l(α̃, β̃, ã, b̃, c̃)},

where θ̂ and θ̃ are the MLEs of the parameter θ under the alternative and null hypotheses, respectively. The LR statistic
can be used to verify if the fit of the Mc-Γ distribution outperforms statistically those fits of their sub-models. Table 3
lists the values of the LR statistics in order to quantify the adequacy of the new distribution. The results provide evidence
that the additional parameters of the new distribution are statistically significant in these comparisons, justifying its use
for modelling positive real data sets.

6. Conclusions

We present a new five-parameter distribution, called the McDonald gamma (Mc-Γ) distribution, which includes as special
cases several commonly used distributions in the literature. Further, the new distribution has proved to be versatile and
analytically tractable. We provide a mathematical treatment of this distribution including analytical expressions for the
moments, moment generating function, log-moment, mean deviations, Lorentz and Bonferroni curves, order statistics,
entropy and quantile function. Additionally, maximum likelihood estimation of the model parameters was discussed and
the observed information matrix was derived.

An application to real data was performed in order to quantifying the adequacy of the Mc-Γ distribution and some of its
sub-models. The results indicate that the proposed distribution outperforms its main sub-models.
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Appendix

A. Proof of Theorem 1 and Corollary 1: representation in power series for fMc-Γ(x)s, where s is a positive real number.

First, consider the derivation of the following expression:

δ(α, β, a, b, c, s) =
{
γ1(α, βx)a−1[1 − γ1(α, βx)c]b−1

}s
.
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Since γ1(α, βx) < 1 and s(a − 1), c > 0, we have

[1 − γ1(α, βx)c]s(b−1) =

∞∑
i=0

(−1)i[γ1(α, βx)]ci
(

s(b−1)
i

)
. (14)

Thus,

δ(α, β, a, b, c, s) =
∞∑

i=0

(−1)i[γ1(α, βx)]ci+s(a−1)
(

s(b−1)
i

)
.

The kernel of the above function can be represented as

[γ1(α, βx)]ci+s(a−1) = {1 − [1 − γ1(α, βx)]}ci+s(a−1)

=

∞∑
k=0

(−1)k[1 − γ1(α, βx)]k
(

ci+s(a−1)
k

)
=

∞∑
k=0

(−1)k
(

ci+s(a−1)
k

) ∞∑
v=0

(−1)vγ1(α, βx)v
(

k
v

)
.

Combining this result with the power series (7), we obtain

δ(α, β, a, b, c, s) =
∞∑

i,k,v=0

(−1)i+k+v
(

k
v

)(
s(b−1)

i

)(
ci+s(a−1)

k

){ (βx)α

Γ(α)

}v{ ∞∑
m=0

(−β)mxm

(α + m)m!

}v

.

We consider the result concerning a power series raised to a positive integer v (Gradshteyn & Ryzhik, 1980, p. 17) given
by { ∞∑

m=0

(−β)m

(α + m)m!︸       ︷︷       ︸
am

xm
}v

=

∞∑
m=0

tm,v xm,

where t0,v = α−v and tm,v = m−1α
∑m

h=1[h(v + 1) − m] ah tm−h,v for m ≥ 1. Hence,

δ(α, β, a, b, c, s) =
∞∑

i,k,v,m=0

(−1)i+k+v
(

k
v

)(
s(b−1)

i

)(
ci+s(a−1)

k

){βvαxαv+mtm,v
Γ(α)v

}
. (15)

Now, we provide a power series for fMc-Γ(x)s. From equation (15), this quantity can be rewritten as

fMc-Γ(x;α, β, a, b, c, )s =

{
cβαxα−1 exp(−βx)
Γ(α)B( a

c , b)

}s

δ(α, β, a, b, c, s)

=

∞∑
v,m=0

{
Γ(αv + m + 1 + s(α − 1))

βm+1−sΓ(α)v tm,v

} ∞∑
i,k=0

(−1)i+k+v
(

k
v

)(
s(b−1)

i

)(
ci+s(a−1)

k

)}
︸                                                                                 ︷︷                                                                                 ︸

w(s)
v,m

× βαv+m+1+s(α−1)xαv+m+1+s(α−1)−1 exp(−βx)
Γ(αv + m + 1 + s(α − 1))︸                                               ︷︷                                               ︸

h(x;αv+m+1+s(α−1),β)

=

∞∑
v,m=0

w(s)
v,m h(x;αv + m + 1 + s(α − 1), β),

where h(x; ·, ·) denotes the gamma density function. From this result, we have

fMc-Γ(x;α, β, a, b, c, ) =
∞∑

v,m=0

w(1)
v,m h(x;αv + m + α, β), (16)

i.e., the density function of the Mc-Γ distribution is a double linear combination of gamma density functions.

B. Representation for fMc-Γ(x) and FMc-Γ(x) as functions of the exponentiated gamma distribution.

Applying the result (14) for s = 1 in (4), this density can be rewritten as

fMc-Γ(x;α, β, a, b, c) =
∞∑

k=0

[
(−1)k

(
b−1

k

)] [ cβ
β( a

c , b)

]
(βx)α−1 exp(−βx)

Γ(α)
[γ1(α, βx)]ck+a−1.
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Setting u = βx, we have

fMc-Γ(u;α, β, a, b, c) =

=

∞∑
k=1

[
(−1)k

(
b−1

k

)] [ cβ
β( a

c , b)

]
uα−1 exp(−u)
Γ(α)

[γ1(α, u)]ck+a−1

=

∞∑
k=0

[
(−1)k

(
b−1

k

)] [ cβ
(ck + a)β( a

c , b)

]
(ck + a)

uα−1 exp(−u)
Γ(α)

[γ1(α, u)]ck+a−1︸                                          ︷︷                                          ︸
hEG(u;α,ck+a)

=

∞∑
k=0

[
(−1)k

(
b−1

k

)] [ cβ
(ck + a)B( a

c , b)

]
︸                                 ︷︷                                 ︸

w′k

hEG(u;α, ck + a),

where hEG(x; k1, k2) is given by

hEG(x; k1, k2) =
k2xk1−1 exp(−x)

Γ(k1)

{
γ(k1, x)
Γ(k1)

}k2−1

,

which is the exponentiated standard gamma density with parameters k1, k2 > 0 (termed here by EG(k1, k2)) (Nadarajah &
Kotz, 2006). In this case, its cdf can be expressed as

FMc-Γ(u;α, β, a, b, c) =
∞∑

k=0

w′k HEG(u;α, ck + a) =
∞∑

k=0

w′k [γ1(α, βu)]ck+a. (17)

C. A linear combination for the quantity fMc-Γ(x)FMc-Γ(x)v1, where v1 is a positive integer number.

From equations (16) and (17), we can write

fMc-Γ(x)FMc-Γ(x)v1 =
[
γa

1(α, βu)
]v1

 ∞∑
s1,s2=0

w(1)
s1,s2

h(x;αs1 + s2 + α, β)


 ∞∑

k=0

w′k [γ1(α, βu)]ck


v1

.

Since v1 is a positive integer number, we obtain

fMc-Γ(x)FMc-Γ(x)v1 =

 ∞∑
s1,s2=0

w(1)
s1,s2

h(x;αs1 + s2 + α, β)


 ∞∑

k=0

sk,v1 [γ1(α, βu)]ck+av1

 ,
where s0,v1 = w′0

v1 and sk,v1 = (w′0
v1 k)−1 ∑k

i=1(iv1 − k − i)w′i sk−i,v1 for k ≥ 1.

Now, following similar arguments of the result (15), we have

[γ1(α, βx)]ck+av1 =

∞∑
h1,h2,m=0

(−1)h1+h2
(

h1
h2

)(
ck+av1

h1

) { tm,h2 xαh2+mβαh2

Γ(α)h2

}
.

Thus,

fMc-Γ(x)FMc-Γ(x)v1 =

=

∞∑
h1,h2,k,m,s1,s2=0

sk,v1 w(1)
s1,s2

(−1)h1+h2
(

h1
h2

)(
ck+av1

h1

) { tm,h2β
αh2

Γ(α)h2

}
xαh2+mh(x;αs1 + s2 + α, β)︸                            ︷︷                            ︸

Γ(αs1+s2+α+αh2+m)

βαh2+mΓ(αs1+s2+α)
h(x;αs1+s2+α+αh2+m,β)

=

∞∑
h1,h2,k,m,s1,s2=0

W (v1)
h1,h2,k,m,s1,s2

h(x;αs1 + s2 + α + αh2 + m, β), (18)

where

W (v1)
h1,h2,k,m,s1,s2

= sk,v1 w(1)
s1,s2

(−1)h1+h2
(

h1
h2

)(
ck+av1

h1

) { tm,h2 Γ(αs1 + s2 + α + αh2 + m)
βmΓ(αs1 + s2 + α)Γ(α)h2

}
.
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D. Information Matrix.

The elements of the observed information matrix J(θ) for the parameters (α, β, a, b, c) are:

Jαα = − nψ′(α) + (a − 1)
n∑

i=1

yαα1(xi) − c(b − 1)
n∑

i=1

yαα2(xi),

Jαβ =
n
β
+ (a − 1)

n∑
i=1

xi yαβ1(xi) − c(b − 1)
n∑

i=1

xi yαβ2(xi),

Jαa =

n∑
i=1

yαa(xi),

Jαb = − c
n∑

i=1

yαb(xi),

Jαc = − (b − 1)

 n∑
i=1

yαb(xi) + c
n∑

i=1

yαc(xi)

 , Jββ = −nα
β2 + (a − 1)

n∑
i=1

x2
i yββ1(xi) − c(b − 1)

n∑
i=1

x2
i yββ2(xi),

Jβa =

n∑
i=1

xi yβa(xi),

Jβb = − c
n∑

i=1

xi yβb(xi),

Jβc = − (b − 1)

 n∑
i=1

xi yβb(xi) + c
n∑

i=1

xi yβc2(xi)

 ,
Jaa =

n
c2

[
ψ′

(a
c
+ b

)
− ψ′

(a
c

)]
,

Jab =
n
c
ψ′

(a
c
+ b

)
,

Jac =
n
c2

[
ψ

(a
c

)
− ψ

(a
c
+ b

)]
+

na
c3

[
ψ′

(a
c

)
− ψ′

(a
c
+ b

)]
,

Jbb =n
[
ψ′

(a
c
+ b

)
− ψ′(b)

]
,

Jbc = −
na
c2 ψ

′
(a

c
+ b

)
−

n∑
i=1

ybc(xi),

Jcc = −
n
c2 +

2na
c3

[
ψ
(a

c
+ b

)
− ψ

(a
c

)]
+

na2

c4

[
ψ′

(a
c
+ b

)
− ψ′

(a
c

)]
− (b − 1)

n∑
i=1

ycc(xi),

where the quantities yαα1(xi), yαα2(xi), yαβ1(xi), yαβ2(xi), yαa(xi), yαb(xi), yαc(xi), yββ1(xi), yββ2(xi), yβa(xi), yβb(xi), yβc(xi),
ybc(xi) and ycc(xi) are given in Appendix E.

E. Auxiliary terms for the observed information matrix.

yαα1(xi) =
γ1(α, βxi){∂2[γ1(α, βxi)]/∂α2} − {∂[γ1(α, βxi)]/∂α}2

γ1(α, βxi)2 ,

yαα2(xi) =
{
∂[γ1(α, βxi)]

∂α

}2 [γ1(α, βxi)c−2(c − 1) + γ1(α, βxi)2(c−1)]
[1 − γ1(α, βxi)c]2 +

∂2[γ1(α, βxi)]
∂α2

[γ1(α, βxi)c−1 − γ1(α, βxi)2c−1]
[1 − γ1(α, βxi)c]2 ,

yαβ1(xi) =
γ1(α, βxi){∂2[γ1(α, βxi)]/∂α∂β} − {∂[γ1(α, βxi)]/∂α}{∂[γ1(α, βxi)]/∂β}

γ1(α, βxi)2 ,

yαβ2(xi) =
∂[γ1(α, βxi)]

∂α

∂[γ1(α, βxi)]
∂β

[γ1(α, βxi)c−2(c − 1) + γ1(α, βxi)2(c−1)]
[1 − γ1(α, βxi)c]2 +

∂2[γ1(α, βxi)]
∂α∂β

[γ1(α, βxi)c−1 − γ1(α, βxi)2c−1]
[1 − γ1(α, βxi)c]2 ,
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yαa(xi) =
∂[γ1(α, βxi)]/∂α

γ1(α, βxi)
,

yαb(xi) =
γ1(α, βxi)c−1{∂[γ1(α, βxi)]/∂α}

1 − γ1(α, βxi)c ,

yαc(xi) =
γ1(α, βxi)c−1 log[γ1(α, βxi)]{∂[γ1(α, βxi)]/∂α}

[1 − γ1(α, βxi)c]2 ,

yββ1(xi) =
γ1(α, βxi){∂2[γ1(α, βxi)]/∂β2} − {∂[γ1(α, βxi)]/∂β}2

γ1(α, βxi)2 ,

yββ2(xi) =
{
∂[γ1(α, βxi)]

∂β

}2 [γ1(α, βxi)c−2(c − 1) + γ1(α, βxi)2(c−1)]
[1 − γ1(α, βxi)c]2 +

∂2[γ1(α, βxi)]
∂β2

[γ1(α, βxi)c−1 − γ1(α, βxi)2c−1]
[1 − γ1(α, βxi)c]2 ,

yβa(xi) =
∂[γ1(α, βxi)]/∂β

γ1(α, βxi)
,

yβb(xi) =
γ1(α, βxi)c−1{∂[γ1(α, βxi)]/∂β}

1 − γ1(α, βxi)c ,

yβc(xi) =
γ1(α, βxi)c−1 log[γ1(α, βxi)]{∂[γ1(α, βxi)]/∂β}

[1 − γ1(α, βxi)c]2 ,

ybc(xi) =
γ1(α, βxi)c log[γ1(α, βxi)]

1 − γ1(α, βxi)c ,

ycc(xi) =
γ1(α, βxi)c log[γ1(α, βxi)]2

[1 − γ1(α, βxi)c]2 .
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Table 1. Descriptive statistics for diesel engine data from the USS Halfbeak

Mean Median Std. Desv. Variance Skewness Kurtosis Min Max

19.3997 21.4610 5.8165 33.8322 -1.5104 4.3305 1.3820 25.5180

Table 2. MLEs and Goodness-of-fit measures
M

od
el Estimates Goodness-of-fit

(standard errors) measures

α̂ β̂ â b̂ ĉ AIC BIC CAIC

Mc-Γ 99.8654 2.0299 0.0421 200.0400 0.2796 444.7 456.1 445.7(0.2942) (0.0221) (0.0058) (60.1782) (0.0135)

Kw-Γ 6.3844 0.1996 1 2.4034 0.0013 486.4 503.5 495.0(0.9922) (0.0404) × (0.0011) (0.0000)

B-Γ 46.4007 3.4952 0.1536 0.0851 1 496.8 505.9 497.4(0.0311) (0.0017) (0.0253) (0.0115) ×
Γ 5.8339 0.3007 1 1 1 492.9 497.4 493.0(0.9525) (0.0513) × × ×

Table 3. LR tests under Mc-Γ parameters based on real data

Model Hypotheses Statistic Λ p-value

Mc-Γ vs Kw-Γ H0 : a = 1 vs H1 : a , 1 51.7 <0.0001
Mc-Γ vs B-Γ H0 : c = 1 vs H1 : c , 1 54.1 <0.0001
Mc-Γ vs Γ H0 : a = b = c = 1 vs H1 : not H0 54.2 <0.0001

Figure 1. The Mc-Γ density function for some parameter values
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Figure 2. Plots of the Mc-Γ hazard function for some parameter values

Figure 3. Approximate density (a) and histogram (b) of the values generated from the theoretical density

Figure 4. Relationships of the Mc-Γ sub-models

70 ISSN 1927-7032 E-ISSN 1927-7040



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

Figure 5. Skewness and kurtosis of the Mc-Γ distribution for different values of c : (a) For α = 1.0 and β = 10
(skewness), (b) For α = 0.2 and β = 10 (kurtosis)

Figure 6. Estimated densities of the Mc-Γ, Kw-Γ, B-Γ and Γ models for USS Halfbeak diesel engine data

Notes

Note 1. This author also is a doctoral student at the Federal University of Pernambuco.

Note 2. This result can be obtained in Wolfram Alpha website http://www.wolframalpha.com/
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