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Abstract

A general class of univariate distributions generated by beta random variables, proposed by Eugene et al. (2002)

and Jones (2009), has been discussed for many authors. In this paper, the beta exponentiated Pareto distribution

is introduced and studied. Its density and failure rate functions can have different shapes. It contains as special

models several important distributions discussed in the literature, such as the beta-Pareto and exponentiated Pareto

distributions. We provide a comprehensive mathematical treatment of the distribution and derive expressions for

the moments, generating and quantile functions and incomplete and L-moments. An explicit expression for Rényi

entropy is obtained. The method of maximum likelihood is used for estimating the model parameters and the

observed information matrix is derived. The flexibility of the new model is illustrated with an application to a real

data set.
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1. Introduction

The Pareto distribution was originally proposed to model the unequal distribution of wealth since he observed the

way that a larger portion of the wealth of any society is owned by a smaller percentage of the people. Ever since,

it plays an important role in analysing a wide range of real-world situations, not only in the field of economics.

Examples of approximately Pareto distributed phenomena may be found in sizes of sand particles and clusters of

Bose-Einstein condensate close to absolute zero.

There are several forms and extensions of the Pareto distribution in the literature. Pickands (1975) was the first

to propose an extension of the Pareto distribution with the generalized Pareto (GP) distribution when analysing

the upper tail of a distribution function. The GP has been used for modeling extreme value data because of its

long tail feature (see Choulakian & Stephens, 2001). Naturally, the Pareto distribution is a special case of the GP.

The exponentiated Pareto (EP) distribution was introduced by Gupta et al. (1998) in the same settings that the

generalized exponential (GE) distribution extends the exponential distribution (see Gupta & Kundu, 1999). The

EP distribution can be defined by raising the cumulative distribution function (cdf) of a Pareto distribution to a

positive power. Thus, the random variavel T with EP distribution has cdf given by

G(t) =
[
1 −

(
β

t

)k]α
, (1)

where α > 0, β > 0, k > 0 and, t ≥ β. The corresponding probability density function (pdf) is given by

g(t) =
α k βk

tk+1

[
1 −

(
β

t

)k]α−1

.

This kind of extension has been receiving considerable attention over the last decade. See, for instance, the expo-

nentiated Fréchet, exponentiated Weibull, exponentiated gamma and exponentiated Gumbel distributions, which

extend the Fréchet, Weibull, gamma and Gumbel distributions in the same way that the GE distribution extends
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the exponential distribution. All these generalizations were proposed by Nadarajah and Kotz (2006a). In a recent

paper, Silva et al. (2010) introduced the generalized exponential-geometric (GEG) distribution by raising the

cumulative distribution function (cdf) of a exponenatial geometric distribuiton to a positive power, as well as the

mentioned distributions before.

Akinsete et al. (2008) and Mahmoudi (2011) extended the Pareto and GP distributions by defining the beta Pareto

(BP) and beta generalized Pareto (BGP) distributions, respectively, based on the class of generalized (so-called

“beta-G”) distributions introduced by Eugene et al. (2002). These extensions are obtained by taking any parent

G distribution in the cdf of a beta distribution with two additional shape parameters, introducing skewness and

varying tail weight. Following the same idea, many beta-type distributions were introduced and studied, see, for

example, Barreto-Souza et al. (2010), Silva et al. (2010) and Cordeiro et al. (2011).

In this paper, we propose the beta exponentiated Pareto (BEP) which extends the Pareto, BP and EP distributions

in the same set-up carried out by Eugene et al. (2002) with the hope that it will attract wider application in

economics, additionally as in several areas of study. The univariate class of distributions, generated by a parent G,

with parameters a > 0 and b > 0 is defined as follows

F(x) = IG(x)(a, b), (2)

where Iy(a, b) = By(a, b)/B(a, b) denotes the incomplete beta function ratio and By(a, b) =
∫ y

0
wa−1(1 − w)b−1dw is

the incomplete beta function.

In the same sense, several extensions were introduced and studied over the last years, notoriously after the works

of Eugene et al. (2002) and Jones (2009). Eugene et al. (2002) introduced the beta normal distribution by taking

G in (2) to be the normal cumulative distribution with parameters μ and σ, and then they calculated some of its

first moments. Gupta and Nadarajah (2004) provided more general results for these moments. Nadarajah and Kotz

(2004), Nadarajah and Gupta (2004) and Nadarajah and Kotz (2006) proposed the beta Fréchet (BF), beta Gumbel

(BGu) and beta exponential (BE) distributions by taking G(t) in Equation (2) to be the cdf of the Fréchet, Gumbel

and exponential distributions, respectively. Another instance of the generalization given by (2) is the beta logistic

distribution, which has been around for over 20 years (Brown et al., 2002), although it did not originate directly

from this equation. Recently, Barreto-Souza et al. (2010) proposed the beta generalized exponential distribution

by taking G(t) in (2) to be the cdf of the exponentiated exponential (EE) distribution and discussed maximum

likelihood estimation of its parameters.

The increasing usage of the EP distribution is the main motivation to introduce the BEP distribution, in addition to

the fact that the current generalization provides means of its continuous extension to still more complex analysis.

We derive some structural properties of the new distribution, deal with maximum likelihood estimation of the

parameters and derive the observed information matrix.

The article is outlined as follows. In Section 2, we define the cumulative, density and hazard functions of the BEP

distribution and list some special cases. In Section 3, we write the BEP density function as an infinite weighted

sum of Pareto densities. In addition, we study the limit behaviour of its pdf and hazard rate function. A range of its

mathematical properties is considered in Sections 3-6. These include generating function, incomplete moments,

L-moments, quantile function and mean deviations. The Rényi entropy is determined in Section 7. In Section 8,

we derive the order statistics. Maximum likelihood estimation is performed and the observed information matrix

is calculated in Section 9. In Section 10, we provide an application of the BEP distribution to remission times of

bladder cancer. Finally, some conclusions are addressed in Section 11.

2. The Beta Exponentiated Pareto Distribution

If G(x) is the cdf of the EP distribution with parameters α > 0, β > 0 and k > 0, then Equation (2) gives the cdf of

the proposed BEP distribution as

F(x) = I[1−(β/x)k]
α (a, b), (3)

for x ≥ β and a, b > 0. The corresponding density and hazard rate functions are expressed as

f (x) =
α k β k

B(a, b)

1

x k+1

[
1 −

(
β

x

)k]αa−1 {
1 −

[
1 −

(
β

x

)k]α}b−1

(4)
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and

τ(x) =
α k β k

[
1 − (β/x)k

]αa−1 {
1 −

[
1 − (β/x)k

]α}b−1

x k+1
{
B(a, b) − B

([
1 − (β/x)k]α ; a, b

)} , (5)

respectively. If X has BEP distribution with parameters a, b, α, β and k, we denote X ∼ BEP(a, b, α, β, k). In Figure

1, we plot the density and hazard rate functions for different parameters values.
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Figure 1. Plots of the BEP densities and hazard rate functions for α = 2, k = 0.5 and β = 1.5 and some parameter

values

Note that the BEP distribution has several well known models as special cases, which make it of distinguishable

scientific importance from other distributions.

• For α = 1, Equation (4) reduces to the BP distribution studied by Akinsete et al. (2008).

• By setting a = b = α = 1 or a = 1/α and b = 1, we obtain the Pareto distribution with parameters β and k.

Furthermore, if α = a = 1, the BEP distribution becomes the Pareto distribution with parameters β and kb.

• By setting a = b = 1, Equation (4) reduces to the Pareto distribution in (1). Furthermore, if we take b = 1,

then Equation (4) reduces to Equation (1) with parameters αa, β and k. This case shows non-identifiability.

• If X ∼ BEP(a, b, α, β, k), then the random variable Y = 1 − (β/X)k has the Weibullized beta distribution (see

Johnson et al., 1994, p. 248).

Proof : Using the transformation method, the random variable Y has density function given by

g(y) =
α

B(a, b)
y α (a−1) (1 − y α)b−1, 0 < y < 1.

• If X ∼ BEP(a = 1/2, b = 1/2, α = 1, β, k), then the random variable Y = (X/β)−k has the arcsine distribution.

• If X ∼ BEP(a, b, α = 1, β, k), then the random variable Y = b log(X/β) has the log-beta distribution with

parameters a, k and k/b.

• If X ∼ BEP(a = 1, b, α = 1, β, k), then the random variable Y = b log(X/β) follows the exponential distribution

with mean 1/k.

Proof : The proofs of the last three items can be obtained from Akinsete et al. (2008).

• If X ∼ BEP(a, b, α = 1, β, k), then the pdf of the random variable Y = b log(X/β) is an integral representation

of a beta function when k = b, or a special case of the beta-Weibull distribution, BW(a, b, c, γ).

3. Properties of the BEP Distribution

In this section, we analyse some properties of the BEP distribution such as the asymptotic behavior of density and

hazard functions. Furthermore, we provide the BEP density as a infinite weighted sum of Pareto densities.
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From Equation (4), it is easily seen that the limit of the BEP density function as x→ ∞ is 0 and

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞, for 0 < α < 1/a
αkb
β
, for α = 1/a

0, for α > 1/a.

as x approaches β.

In a similar way, the BEP hazard function approaches zero when x→ ∞ and

τ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞, for 0 < α < 1/a
αkb
β
, for α = 1/a

0, for α > 1/a.

as x approaches β. This result is straightforward from Equation (5).

We now give an interesting and useful expansion for the BEP density (4). For any positive real number r, and for

|z| < 1, a generalized binomial expansion holds

(1 − z)−r =

∞∑
j=0

Γ(r + j)
Γ(r) j!

z j. (6)

By using this in the last term of Equation (4), we can write

f (x) =
α k β k

B(a, b)

1

x k+1

∞∑
i=0

(−1)i
(
b − 1

i

) [
1 −

(
β

x

)k]α (i+a)−1

.

Again, by using (6) in the last factor of each summand in the last equation, we obtain

f (x) =
αk

B(a, b)

∞∑
j=0

∞∑
i=0

(−1)i+ j
(
b − 1

i

) (
α(i + a) − 1

j

)
β k( j+i)

x k( j+1)+1
,

and then

f (x) =

∞∑
j=0

wj h(x; β, k( j + 1)), (7)

where

wj =
α

B(a, b)

∞∑
i=0

(−1)i+ j

j + 1

(
b − 1

i

) (
α(i + a) − 1

j

)

and h(x; β, k( j + 1)) denotes the Pareto density with parameters β and k( j + 1). Equation (7) is the main result of

this section.

The above result ensures that some mathematical properties such as ordinary and incomplete moments, generating

function and mean deviations can be derived from those quantities of the reparametrized (with parameters β and

k( j + 1)) Pareto distribution.

4. Moments

Here after, let X be a random variable having the BEP distribution (3). Using Equation (7), it is easy to obtain the

rth moment of X. If we assume that Y is a Pareto distributed random variable, then the rth moment of Y is given

by

E(Yr) =
k β r

k − r
, r < k.

From Equation (7), we obtain

E(Xr) = k β r
∞∑
j=0

( j + 1)wj[
k( j + 1) − r

] , (8)
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whenever r < k. By setting r = 1 in Equation (8), gives the mean of X

μ = E(X) =

∞∑
j=0

wj
k ( j + 1)β[

k ( j + 1) − 1
] ,

whenever k > 1. Setting α = a = b = 1, we obtain

wj =

{
1, for j = 0

0, for j ≥ 1 .

So, the mean μ reduces to

E(X) =
k β

k − 1
,

which is precisely the mean of the Pareto distribution.

4.1 Moment Generating Function

The moment generating function (mgf) MY (t) corresponding to a random variable Y with Pareto distribution with

parameters β and k is only defined for negative values of t. It is given by

MY (t) = k (−βt)k Γ(−k,−βt) ,
where Γ(·, ·) denotes the incomplete gamma function:

Γ(s, x) =

∫ ∞

x
ts−1e−tdt .

From Equation (7), the mgf MX(t) of X reduces to

MX(t) = k (−β t)k
∞∑
j=0

wj ( j + 1) (−βt)k j Γ(−k( j + 1),−βt) , for t < 0.

4.2 Incomplete Moments

If Y is a random variable with Pareto distribution with parameters β and k, the rth incomplete moment, for r < k,

is given by

mr(y) =
k β r

k − r

[
1 −

(
β

y

)k−r]
.

From this formula we verify that mr(y) → E(Yr) when y → ∞, whenever r < k . So, the rth incomplete moment

of X follows from Equation (7) as

mr(y) =

∞∑
j=0

wj

∫ y

β

x r h(x; β, k( j + 1))dx = k β r
∞∑
j=0

( j + 1) wj[
k( j + 1) − r

] [
1 −

(
β

y

)k( j+1)−r]
,

where the last equality holds provided that r < k.

4.3 L-moments

The L-moments are equivalent to the ordinary moments but can be estimated by linear combinations of order

statistics. These quantities are linear functions of expected order statistics defined by

λm+1 =
m

(m + 1)

m∑
k=0

(−1)k

k
E(Xm+1−k:m+1), r = 0, 1, . . .

The first four L-moments are: λ1 = E(X1:1), λ2 =
1
2
E(X2:2 − X1:2), λ3 =

1
3
E(X3:3 − 2X2:3 + X1:3) and λ4 =

1
4
E(X4:4−3X3:4+3X2:4−X1:4). The L-moments have the asset that they exist whenever the mean of the distribution

exists, in despite of some higher moments may not exist, and are relatively robust to the effects of outliers.
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From Equation (11) the expansion for the means of the order statistics corresponding to r = 1, we can easily obtain

the L-moments of the BEP distribution.

5. Quantile Function

The quantile function corresponding to (3) is

Q(u) = F−1(u) =
β{

1 − [I−1
u (a, b)]1/α

}1/k , 0 < u < 1, (9)

where I−1
u (a, b) is the inverse of the incomplete beta function. The function I−1

u (a, b) can be expressed as a power

series

I−1
u (a, b) =

∞∑
i=1

qi [a B(a, b) u]i/a,

where q1 = 1 and the remaining coefficients satisfy the following recursion

qi =
1

i2 + (a − 2)i + (1 − a)

⎧⎪⎪⎨⎪⎪⎩(1 − δi,2)

i−1∑
r=2

qrqi+1−r[r(1 − a)(i − r) − r(r − 1)]+

i−1∑
r=1

i−r∑
s=1

qrqsqi+1−r−s[r(r − a) + s(a + b − 2)(i + 1 − r − s)]

⎫⎪⎪⎬⎪⎪⎭ ,
where δi,2 = 1 if i = 2 and δi,2 = 0 if i � 2. The shortcomings of the classical kurtosis measure are well-known.

There are many heavy-tailed distributions for which this quantity is infinite. So, it becomes uninformative precisely

when it needs to be. Indeed, our motivation to use quantile-based measures stemmed from the non-existence of

classical kurtosis for many generalized distributions.

The Bowley’s skewness is based on quartiles, Kenney and Keeping (1962):

B =
Q(3/4) − 2Q(1/2) + Q(1/4)

Q(3/4) − Q(1/4)

and the Moors’ kurtosis (Moors, 1998) is based on octiles:

M =
Q(7/8) − Q(5/8) − Q(3/8) + Q(1/8)

Q(6/8) − Q(2/8)
,

where Q(·) represents the quantile function define in (9). Plots of the skewness and kurtosis for some choices of

the parameter b as functions of a, and for some choices of a as functions of b, for α = 1, β = 0.5 and k = 0.5, are

shown in Figure 2. These plots indicate that the skewness and kurtosis decrease when b increases for fixed a and

when a increases for fixed b.
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Figure 2. Plots of the BEP skewness and kurtosis as functions of a for selected values of b and as functions of b

for selected values of a

6. Mean Deviations

The deviation from the mean and deviation from the median are usually used as a measure of spread in a population.

Let μ = E(X) and θ be the mean and the median of the BEP distribution, respectively. The mean deviations about

the mean and about the median of X can be calculated as

D(μ) =

∫ ∞

β

|x − μ| f (x)dx = 2μF(μ) − 2m1(μ)

and

D(θ) =

∫ ∞

β

|x − θ| f (x)dx = μ − 2m1(θ),

respectively, where F(μ) follows from (3) and m1(μ) denotes the first incomplete moment.

7. Rényi Entropy

In the present section, we provide the Rényi entropy, which is a measure of variation of the uncertainty. The

theory of entropy has been successfully used in a wide diversity of applications and has also been used for the

characterization of numerous standard probability distributions. For the density function f (x), the Rényi entropy

is defined by

IR(δ) =
1

1 − δ log {I(δ)} ,
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where I(δ) =
∫

f δ(x)dx, δ > 0 and δ � 1. Using the BEP density, we obtain

I(δ) =
αδkδβ kδ

Bδ(a, b)

∫ ∞

β

1

x(k+1)δ

[
1 − (β/x)k

]δ (αa−1) {
1 −

[
1 − (β/x)k

]α}δ(b−1)
dx.

Applying the binomial expansion to the last factor in the above integrand yields

I(δ) =
αδkδβ kδ

Bδ(a, b)

∫ ∞

β

1

x(k+1)δ

[
1 − (β/x)k

]δ (αa−1)
∞∑
j=0

(−1) j
(
δ(b − 1)

j

) [
1 − (β/x)k

]α j
dx .

Changing variables and simplifying, I(δ) reduces to

I(δ) =
αδkδ−1

βδ−1Bδ(a, b)

∞∑
j=0

(−1) j
(
δ(b − 1)

j

)
B

[
(δ − 1)

(
k + 1

k

)
+ 1, δ(aα − 1) + α j + 1

]
.

Hence, the formula for the Rényi entropy becomes

IR(δ) = log
(
β

k

)
+ (1 − δ)−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩δ log

(
α

B(a, b)

)
+ log

⎡⎢⎢⎢⎢⎢⎢⎣
∞∑
j=0

(−1) j
(
δ(b − 1)

j

)
B

(
(δ − 1)(k + 1)

k
+ 1, δ(aα − 1) + jα + 1

)⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

8. Order Statistics

This Section shall be concerned with order statistics, which play an important supporting role in several applica-

tions such as the statistical study of floods and droughts, in problems of breaking strength and fatigue failure. We

now derive an explicit expression for the density function of the ith order statistic Xi:n, say fi:n(x), in a random

sample of size n from the BEP distribution. We can write

fi:n(x) =
f (x)

B(i, n − i + 1)

n−i∑
l=0

(−1)l
(
n − i

l

)
Fi+l−1(x).

For b real non-integer, we have the series representation for the incomplete beta function

Bx(a, b) = xa
∞∑

m=0

(1 − b)m xm

(a + m)m!
. (10)

Using (6) and (10), we can express (3) as F(x) =
∑∞

r=0 cr zr, where

cr =

∞∑
m=0

(−1)rδm

(
α(a + m)

r

)
,

where δm = (1− b)m/ [B(a, b)(a + m)m!] and z =
(
β
x

)k
. Using the identity

(∑∞
r=0 cr zr

)n
=

∑∞
r=0 dr zr(see Gradshteyn

& Ryzhik, 2000), where d0 = ci+l−1
0

and

ds = (sc0)−1
s∑

r=1

[r(i + l) − s] cr ds−k

for s = 1, 2, . . ., the pdf of the ith order statistic can be written as

fi:n(x) =

∞∑
j,r=0

w∗j,r h(x; β, k( j + r + 1)), (11)

where

w∗j,r =
n−i∑
l=0

(−1)l( j + 1)wj dr

(
n−i

l

)
( j + r + 1)B(i, n − i + 1)
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and h(x; β, k( j + r + 1)) denotes a Pareto density function with parameters β and k( j + r + 1). Hence, some

mathematical properties of the Pareto order statistics can be immediately obtained from Equation (11) and those

properties of the Pareto distribution, including the sth moment E(Xs
i:n).

9. Estimation and Fisher Information Matrix

In this section, we examine estimation by maximum likelihood and inference for the BEP distribution. Let

X1, . . . , Xn be a random sample from X ∼ BEP(a, b, α, β, k) with observed values x1, . . . , xn and let θ = (a, b, α, β, k)T

be the vector of the model parameters. The log-likelihood function for θ reduces to


(θ) = n log(α) + n log(k) + n k log(β) − n log[B(a, b)] − (k + 1)

n∑
i=1

log(xi)

+ (αa − 1)

n∑
i=1

log

⎡⎢⎢⎢⎢⎢⎣1 −
(
β

xi

)k⎤⎥⎥⎥⎥⎥⎦ + (b − 1)

n∑
i=1

log

⎧⎪⎪⎨⎪⎪⎩1 −
⎡⎢⎢⎢⎢⎢⎣1 −

(
β

xi

)k⎤⎥⎥⎥⎥⎥⎦
α⎫⎪⎪⎬⎪⎪⎭ . (12)

The score vector is U(θ) = (∂
/∂α, ∂
/∂k, ∂
/∂a, ∂
/∂b)T , where the score components corresponding to the model

parameters are calculated by differentiating (12). By setting zi = 1 − (β/xi)
k, we obtain

∂


∂α
=

n
α
+ a

n∑
i=1

log(zi) + (b − 1)

n∑
i=1

zαi log(zi)

1 − zαi
, (13)

∂


∂k
=

n
k
+

1

k

n∑
i=1

log(1 − zi) − (αa − 1)

k

n∑
i=1

(1 − zi) log(1 − zi)

zi

+
α(b − 1)

k

n∑
i=1

(1 − zi) log(1 − zi) zα−1
i

1 − zαi
, (14)

∂


∂a
= n

[
ψ(a + b) − ψ(a)

]
+ α

n∑
i=1

log(zi) , (15)

∂


∂b
= n

[
ψ(a + b) − ψ(b)

]
+

n∑
i=1

log(1 − zαi ) , (16)

where ψ(·) is the digamma function.

The maximum likelihood estimates (MLEs) of the parameters can be obtained by solving iteratively Equations

(13)-(16). Since x ≥ β, the MLE of β is the first-order statistic x(1). For interval estimation and hypothesis tests on

the model parameters, we require the observed information matrix

Kn(θ) = n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
καα καk καa καb

κkα κkk κka κkb

κaα κak κaa κab

κbα κbk κba κbb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
whose entries are obtained from standard calculations:

καα = − n
α2
− (b − 1)

n∑
i=1

log2(zi) zαi(
1 − zαi

)2
, καa =

n∑
i=1

log(zi) , καb = −
n∑

i=1

zαi log(zi)

1 − zαi
,

καk =
(b − 1)

k

n∑
i=1

(1 − zi) log(1 − zi)z
α−1(1−zαi +log zαi )
i

(1 − zαi )2
− a

k

n∑
i=1

(1 − zi) log(1 − zi)

zi
,

κkk = − n
k2
− (αa − 1)

k2

n∑
i=1

(1 − zi) log2(1 − zi)

z2
i

+
α(b − 1)

k2

n∑
i=1

[
1 − α(1 − zi) − zαi

]
zα−2

i (1 − zi) log2(1 − zi)

(1 − zαi )2
,
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κaa = n
[
ψ′(a + b) − ψ′(a)

]
, κbb = n

[
ψ′(a + b) − ψ′(b)

]
,

κak = −α
k

n∑
i=1

(1 − zi) log(1 − zi)

zi
, κab = nψ′(a + b) , κbk =

α

k

n∑
i=1

zα−1
i (1 − zi) log(1 − zi)

1 − zαi
.

10. Application

Here, we use a real data set to compare the fits of the BEP distribution and those of other sub-models, i.e., the

beta Pareto (BP), EP and Pareto distributions. We make a results comparison of the models fit. We consider

an uncensored data set corresponding to remission times (in months) of a random sample of 128 bladder cancer

patients. These data were previously studied by Lee and Wang (2003) and Lemonte and Cordeiro (2011). Bladder

cancer is a disease in which abnormal cells multiply without control in the bladder. The most common type of

bladder cancer recapitulates the normal histology of the urothelium and is known as transitional cell carcinoma.The

data are as follows: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02,

2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52,

3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32,

5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62,

7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25,

11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62,

17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01,

46.12, 79.05. These remission times are a subset of the bladder cancer data and are used here only for illustrative

purposes. The required numerical evaluations are carried out using the SAS (PROCNLMIXED) and R softwares.

Tables 1 and 2 provide some descriptive statistics and the MLEs (with corresponding standard errors in parentheses)

of the model parameters. The model selection is carried out using the AIC (Akaike information criterion), the BIC

(Bayesian information criterion) and the CAIC (consistent Akaike information criteria):

AIC = −2
(θ̂) + 2q, BIC = −2
(θ̂) + q log(n) and CAIC = −2
(θ̂) +
2qn

n − q − 1
,

where 
(θ̂) denotes the log-likelihood function evaluated at the maximum likelihood estimates, q is the number of

parameters, and n is the sample size.

Table 1. Descriptive statistics for the remission times of bladder cancer data

Min. Q1 Q2 Mean Q3 Max. Var. Skewness Kurtosis

0.080 3.348 6.395 9.366 11.840 79.050 110.425 3.248 15.195

Table 2. MLEs of the model parameters, the corresponding SEs (given in parentheses) and the statistics AIC, BIC

and CAIC
Estimates Statistic

Model â b̂ k̂ β̂ α̂ AIC BIC CAIC

BEP 0.3477 159831 0.05080 0.0800 8.6121 874.8 886.2 875.1

(0.0965) (183.7501) (0.0185) (2.0925)

BP 4.8049 100.5023 0.0109 0.0800 970.7 979.2 970.9

(0.0552) (0.2512) (0.0005)

EP 0.4722 0.0800 4.1518 992.2 997.9 992.3

(0.0247) (0.5508)

Pareto 0.1519 0.0800 1189.3 1192.1 1189.3

(0.0134)

Since the values of the AIC, BIC and CAIC are smaller for the BEP distribution compared with those values of the

other models, the new distribution seems to be a very competitive model to these data.

Plots of the estimated pdf and cdf of the BEP, BP, EP and Pareto models fitted to these data are given in Figure 3.

They indicate that the BEP distribution is superior to the other distributions in terms of model fitting.

Table 3 lists the values of the Kolmogorov-Smirnov (K-S) statistic and of −2
(θ̂). From these figures, we conclude

that the BEP distribution provides a better fit to these data than the BP, EP and Pareto models.
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Figure 3. Estimated pdf (a) and cdf (b) of the BEP, BP, EP and Pareto models for the remission times of bladder

cancer data

Table 3. K-S and −2
(θ̂) statistics for the remission times of bladder cancer data

Model BEP BP EP Pareto

K–S 0.1427 0.2231 0.2515 0.3729

−2
(̂θ) 866.8 964.7 988.2 1187.3

In summary, the proposed BEP distribution produces better fits to the data than its sub-models.

11. Concluding Remarks

The well-known three-parameter exponentiated Pareto distribution, introduced by Gupta et al. (1998), is extended

by introducing two extra shape parameters, thus defining the beta exponentiated Pareto (BEP) distribution having

a broader class of hazard rate and density functions. This is achieved by taking (1) as the baseline cumulative

distribution of the generalized class of beta distributions defined by Eugene et al. (2002). A detailed study on the

mathematical properties of the new distribution is presented. The new model includes as special sub-models the

Pareto, exponentiated Pareto (EP) (Gupta et al., 1998) and beta Pareto (BP) (Mahmoudi, 2011) distributions. We

obtain the moment generating function, ordinary moments, quantile function, order statistics and Rényi entropy.

The estimation of the model parameters is approached by maximum likelihood and the observed information

matrix is obtained. An application to a real data set indicates that the fit of the new model is superior to the fits

of its principal sub-models. We hope that the proposed model may be interesting for a wider range of statistical

research.
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