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Abstract

This paper is concerned with the problem of obtaining the maximum likelihood prediction (point and interval)

and Bayesian prediction (point and interval) for a future observation from mixture of two exponentiated Weibull

(MTEW) distributions based on generalized order statistics (GOS). We consider one-sample and two-sample pre-

diction schemes using the Markov chain Monte Carlo (MCMC) algorithm. The conjugate prior is used to carry out

the Bayesian analysis. The results are specialized to upper record values.
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1. Introduction

In life testing, reliability and quality control problems, mixed failure populations are sometimes encountered. Mix-

ture distributions comprise a finite or infinite number of components, possibly of different distributional types, that

can describe different features of data. In recent years, the finite mixture of life distributions have to be of consid-

erable interest in terms of their practical applications in a variety of disciplines such as physics, biology, geology,

medicine, engineering and economics, among others. Some of the most important references that discussed dif-

ferent types of mixtures of distributions are Everitt and Hand (1981), Titterington et al. (1985), McLachlan and

Basford (1988), Jaheen (2005), Jaheen and Mohammed (2011) and AL-Hussaini and Hussein (2012).

Mudholkar and Sirvastava (1993) introduced a new distribution, called exponentiated Weibull (EW) distribution

as an extension of the Weibull family of distributions by adding an additional shape parameter. This distribution

is very important distribution in lifetime tests. The probability density function (PDF), cumulative distribution

function (CDF) and reliability function (RF) are given below

f (t) = αθtα−1e−tαηθ−1, t > 0, (α > 0), (θ > 0), (1)

F(t) = ηθ, t > 0, (2)

R(t) = 1 − ηθ, (3)

where α and θ are the shape parameters of the model. Also, the hazard rate function (HRF) takes the form

H(t) = αθtα−1 e−tαηθ−1[1 − ηθ]−1, t > 0, (4)

where η = 1 − e−tα and H(·) = f (·)
R(·) .

The EW distribution includes a number of distributions as particular cases: if the shape parameter θ = 1, then the

PDF is that Weibull distribution, when α = 1 then the PDF is that Exponentiated Exponential distribution, if α = 1

and θ = 1 then the PDF is that Exponential distribution and if α = 2 then the PDF is that One parameters Burr-X

distribution. Mudholkar and Hutson (1996) showed that the density function of the EW distribution is decreasing

when αθ ≤ 1 and unimodal when αθ > 1. Some statistical properties of this distribution are discussed by Jiang
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and Murthy (1999) and Nassar and Eissa (2003). Nassar and Eissa (2004) obtained Bayes estimators for the two

shape parameters, the reliability, and the failure rate function of the EW distribution based on type-II censored and

complete samples. Choudhury (2005) proposed a simple derivation for the moments of the EW distribution. Singh

et al. (2005a, b) derived the maximum likelihood (ML) and Bayes estimates of the two and three parameters of

the EW distribution based on type-II censored samples. Pal et al. (2006) introduced many properties and obtained

some inferences for the three-parameter EW distribution. Kim et al. (2009) obtained the ML and Bayes estimators

for the two shape parameters and reliability function of the EW distribution based on progressive type-II censored

sample.

The PDF, CDF, RF and HRF of the MTEW distribution are given, respectively, by

f (t) = p1 f1(t) + p2 f2(t), (5)

F(t) = p1F1(t) + p2F2(t), (6)

R(t) = p1R1(t) + p2R2(t), (7)

H(t) =
f (t)
R(t)
, (8)

where, for j = 1, 2, the mixing proportions p j are such that 0 ≤ p j ≤ 1, p1 + p2 = 1 and f j(t), F j(t), Rj(t) are given

from (1), (2), (3) after using (θ j, α j) instead of (θ, α).

The property of identifiability is an important consideration on estimating the parameters in a mixture of distribu-

tions. A mixture is identifiable if there exists a one-to-one correspondence between the mixing distribution and a

resulting mixture. That is, there is a unique characterization of the mixture. Therefore, a mixture of Exponentiated

Weibull components is identifiable. Identifiability of mixtures has been discussed by several authors, including

Teicher (1963), AL-Hussaini and Ahmad (1981) and Ahmad (1988).

Recently, there has been a considerable amount of interest in the Bayesian approach which allows prior subjective

knowledge on lifetime parameters, as well as experimental data, to be incorporated into the inferential procedure.

For the Bayesian approach, a loss function must be specified.

Several authors have predicted future order statistics and records from homogeneous and heterogeneous popula-

tions that can be represented by single component distribution and finite mixtures of distributions, respectively. For

more details, see AL-Hussaini and Ahmad (2003), Ali Mousa (2003) and AL-Hussaini (2004). Recently, a few of

authors utilized the GOS’s in Bayesian inference. Such authors are AL-Hussaini and ahmad (2003), Jaheen (2002;

2005) and Ateya and Ahmad (2011). Bayesian inferences based on finite mixture distribution have been discussed

by several authors such that: Papadapoulos and Padgett (1986), Attia (1993), Ahmad et al. (1997), Jaheen (2005b),

Soliman (2006), Saleem and Aslam (2008a; 2008b) and Saleem and Irfan (2010).

A wide variety of loss functions have been developed in the literature to describe various types of loss structures.

The balanced loss function was introduced by Zellner (1994). Jozani et al. (2006) introduced an extended class of

the balanced loss function of the form

LΦ,Ω,δo (Ψ(θ), δ) = ΩΥ(θ)Φ(δo, δ) + (1 −Ω)Υ(θ)Φ(Ψ(θ), δ), (9)

where Υ(·) is a suitable positive weight function and Φ(Ψ(θ), δ) is an arbitrary loss function when estimating Ψ(θ)
by δ. The parameter δo is a chosen prior estimator of Ψ(θ), obtained for instance from the criterion of ML, least

squares or unbiasedness among others. They give a general Bayesian connection between the case of Ω > 0 and

Ω = 0 where 0 ≤ Ω < 1.

Generalized order statistics (GOS) concept was introduced by Kamps (1995) as unify approach to several models

of ordered random variables such as ordinary order statistics, ordinary record values, progressive Type-II censored

order statistics and sequential order statistics, among others. Ahsanullah (1996; 2000), Kamps and Gather (1997),

Cramer and Kamps (2000), Habibullah and Ahsanullah (2000), Jaheen (2002; 2005a), AL-Hussaini and Ahmad

(2003), AL-Hussaini (2004), Ahmad (2007; 2008), Aboeleneen (2010), Ahmad and Abushal (2006-2010), Ahmad

(2011), Abu El Fotouh (2011) and Ateya and Ahmad (2011) among others, utilized the (GOS’s) in their Works.

Suppose that T1;n,m̃,k,T2;n,m̃,k, ..., Tr;n,m̃,k, k > 0, m̃ = (m1, ...,mr−1) ∈ �r−1,m1, ...,mr−1 ∈ �, are the first r (out

of n) GOS drawn from the MTEW distribution. The likelihood function (LF) is given in (Kamps, 1995), for
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−∞ < t1 < ... < tr < ∞, by

L(θ|t) = Cr−1{
r−1∏
i=1

[R(ti)]mi f (ti)}[R(tr)]γr−1 f (tr), (10)

where t = (t1, ..., tr), θ ∈ Θ, Θ is the parameter space, and

Cr−1 =

r∏
i=1

γi, γi = k + n − i + Mi > 0,Mi =

n−1∑
ν=i

mν. (11)

where f (ti) and R(ti) are given, respectively, by (5) and (7).

The purpose of this paper is to obtain the maximum likelihood and the Bayes prediction point and interval in

the case of one-sample scheme and two-sample scheme. The point predictors are obtained based on balanced

square error loss (BSEL) function and the balanced LINEX (BLINEX) loss function. We used ML to estimate

the parameters, α and θ of the MTEW distribution based on GOS. The conjugate prior is assumed to carry out the

Bayesian analysis. The results are specialized to record values.

2. Maximum Likelihood Estimation

Assuming that the parameters θ j and α j are unknown and p j is known, the likelihood equations are given, for

j = 1, 2, by

∂	

∂θ j
= −p j

r−1∑
i=1

miυ
θ j

j (ti) ln υ j(ti)

R(ti)
+ p jα j

r∑
i=1

ω j(ti)υ
θ j

j (ti)[1 + θ j ln υ j(ti)]

f (ti)

− p j(γr − 1)
υ
θ j

j (tr) ln υ j(tr)

R(tr)
= 0,

∂	

∂α j
= −p jθ j

r−1∑
i=1

miυ
θ j−1

j (ti)ξ j(ti)

R(ti)
+ p jθ j

r∑
i=1

υ
θ j

j (ti)[ω j(ti) + α jυ
−1
j (ti)ξ j(ti)(θ jω j(ti) +  j(ti))]

f (ti)

− p jθ j(γr − 1)
υ
θ j−1

j (tr)ξ j(tr)

R(tr)
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

where, 	 ≡ ln L(θ | t) and for j = 1, 2

υ j(ti) = 1 − e−t
α j
i , ξ j(ti) =

∂υ j(ti)
∂α j

= e−t
α j
i tα j

i ln ti,

ω j(ti) =
e−t

α j
i tα j

i

tiυ j(ti)
,  j(ti) =

1 − tα j

i

ti
− ω j(ti)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (13)

Equations (12) do not yield explicit solutions for θ j and α j, j = 1, 2, and have to be solved numerically to obtain

the ML estimates of the four parameters, Newton-Raphson iteration is employed to solve (12).

Remark:

The parameters of the components are assumed to be distinct, so that the mixture is identifiable. For the concept of

identifiability of finite mixtures and examples, see Everitt and Hand (1981), AL-Hussaini and Ahmad (1981) and

Ahmad and AL-Hussaini (1982).

This section deals with studying the maximum likelihood and the Bayes prediction point and interval in the case

of one-sample scheme and two-sample scheme.

3. Prediction in Case of One-sample Scheme

Based on the informative T1;n,m̃,k, T2;n,m̃,k, ..., Tr;n,m̃,k, GOS’s from the MTEW distribution with two parameters, for

the remaining (n − r) components, let Ts;n,m̃,k, s = r + 1, r + 2, ..., n denote the future lifetime of the sth component

to fail, 1 ≤ s ≤ (n− r), the maximum Likelihood prediction (point MLPP and interval MLPI), Bayesian prediction

(point BPP and interval BPI) can be obtained.
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The conditional PDF of Ts ≡ Ts;n,m̃,k given that the Tr ≡ Tr;n,m̃,k components that had already failed are

f �(ts|tr) =
⎧⎪⎪⎨⎪⎪⎩

ks−r

(s−r−1)!
[lnR(tr) − lnR(ts)]

s−r−1[R(ts)]
k−1[R(tr)]−k f (ts), m = −1,

Cs−1

(m+1)s−r−1(s−r−1)!Cr−1
[R(tr)m+1 − R(ts)

m+1]s−r−1[R(ts)]
γs−1 × [R(tr)]−γr+1 f (ts), m � −1.

(14)

In the case when m = −1, substituting (5) and (7) in (14), the conditional PDF takes the form

f �1 (ts|θ j) ∝ [ln[p1R1(tr) + p2R2(tr)] − ln[p1R1(ts) + p2R2(ts)]]
s−r−1[p1R1(ts) + p2R2(ts)]

k−1

×[p1R1(tr) + p2R2(tr)]−k[p1 f1(ts) + p2 f2(ts)], ts > tr. (15)

In the case when m � −1, substituting (5) and (7) in (14), the conditional PDF takes the form

f �2 (ts|θ j) ∝ [[p1R1(tr) + p2R2(tr)]m+1 − [p1R1(ts) + p2R2(ts)]
m+1]s−r−1[p1R1(ts) + p2R2(ts)]

γs−1

×[p1R1(tr) + p2R2(tr)]−γr+1 [p1 f1(ts) + p2 f2(ts)], ts > tr. (16)

Now, we shall study two cases: the first case is when the parameter α is known and the second is when the

parameters θ and α are unknown.

3.1 Prediction When α j Is Known

Suppose that the mixing proportion, pj, j = 1, 2 and α j, j = 1, 2 are known.

3.1.1 Maximum Likelihood Prediction

Maximum likelihood prediction can be obtained using (15) and (16) by replacing the shape parameters θ1 and θ2
by θ̂1(ML)

and θ̂2(ML)
which is obtained from (12).

1- Interval prediction:

The MLPI for any future observation ts, s = r + 1, r + 2, ..., n can be obtained by

Pr[ts ≥ υ|t] =
∫ ∞
υ

f �1 (ts |̂θ1(ML)
, θ̂2(ML)

)dts, m = −1, (17)

=

∫ ∞
υ

f �2 (ts |̂θ1(ML)
, θ̂2(ML)

)dts, m � −1.

A (1−τ)×100 % MLPI (L,U) of the future observation ts is given by solving the following two nonlinear equations

Pr[ts ≥ L(t) | t] = 1 − τ
2
, Pr[ts ≥ U(t) | t] = τ

2
. (18)

2- Point prediction:

The MLPP for any future observation ts, s = r + 1, r + 2, ..., n can be obtained by replacing the shape parameters θ1
and θ2 by θ̂1(ML)

and θ̂2(ML)
which, obtained from (12).

t̂s(ML)
= E(ts) =

∫ ∞
tr

ts f �1 (ts |̂θ1(ML)
, θ̂2(ML)

)dts, m = −1, (19)

=

∫ ∞
tr

ts f �2 (ts |̂θ1(ML)
, θ̂2(ML)

)dts, m � −1.

3.1.2 Bayesian Prediction

Suppose that the mixing proportion, p j and α j are known. Let θ j, j = 1, 2, have a gamma prior distribution with

PDF

π(θ j) =
1

Γ(ν j)
(β j)

ν jθ
ν j−1

j exp[−β jθ j], (θ j, ν j, β j > 0). (20)

These are chosen since they are the conjugate priors for the individual parameters. The joint prior density function

of θ = (θ1, θ2) is given by

π(θ) = π1(θ1)π2(θ2),
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π(θ) ∝
2∏

j=1

θ
ν j−1

j exp[−
2∑

j=1

β jθ j], (21)

where j = 1, 2 θ j > 0, (ν j, β j) > 0.

It follows, from (10) and (21), that the joint posterior density function is given by

π∗1(θ|t) = A1

2∏
j=1

θ
ν j−1

j exp[−
2∑

j=1

β jθ j]

r−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

×
r∏

i=1

[p1 f1(ti) + p2 f2(ti)][p1R1(tr) + p2R2(tr)]γr−1, (22)

where

A−1
1 =

∫
θ

π(θ)L(θ|t) dθ. (23)

The Bayes predictive density function can be obtained using (15), (16) and (22) as follows:

h�1 (ts|t) ∝
∫ ∞

0

π∗1(θ|t) f �1 (ts|θ j)dθ, m = −1,

∫ ∞
0

π∗1(θ|t) f �2 (ts|θ j)dθ, m � −1. (24)

1- Interval prediction:

Bayesian prediction interval, for the future observation Ts;n,m̃,k, s = r + 1, r + 2, ..., n, can be computed by approxi-

mated h∗1(ts|t) using the MCMC algorithm, see Ahmad et al. (2011) and Ateya (2011), using the form

h∗1(ts|t) �
∑μ

i=1
f �(ts|θij)∑μ

i=1

∫ ∞
tr

f �(ts|θij)dts
, (25)

where μ is the number of generated parameters and θij, i = 1, 2, 3, ..., μ, they are generated from the posterior density

function (22) using Gibbs sampler and Metropolis-Hastings techniques, for more details see Press (2003).

A (1− τ)× 100 % BPI (L,U) of the future observation ts is given by solving the following two nonlinear equations∑μ
i=1

∫ ∞
L f �(ts|θij)dts∑μ

i=1

∫ ∞
tr

f �(ts|θij)dts
= 1 − τ

2
, (26)

∑μ
i=1

∫ ∞
U f �(ts|θij)dts∑μ

i=1

∫ ∞
tr

f �(ts|θij)dts
=
τ

2
. (27)

Numerical methods are generally necessary to solve the above two equations to obtain L and U for a given τ.

2- Point prediction:

1- BPP for the future observation ts based on BSEL function can be obtained using

t̃s(BS )
= Ω̂ts(ML)

+ (1 −Ω)E(ts|t), (28)

where t̂s(ML)
is the ML prediction for the future observation ts which can be obtained using (19) and E(ts|t) can be

obtained using

E(ts|t) =
∫ ∞

tr
tsh∗1(ts|t)dts. (29)

2- BPP for the future observation ts based on BLINX loss function can be obtained using

t̃s(BL)
= −1

a
ln[Ω exp[−âts(ML)

] + (1 −Ω)E(e−ats |t)], (30)
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where t̂s(ML)
is the ML prediction for the future observation ts which can be obtained using (19) and E(e−ats |t)] can

be obtained using

E(e−ats |t)] =
∫ ∞

tr
e−ats h∗1(ts|t)dts. (31)

3.2 Prediction When α j and θ j Are Unknown

Let the mixing proportion, p j is known and θ j, α j, j = 1, 2, are unknown.

3.2.1 Maximum Likelihood Prediction

Maximum likelihood prediction can be obtained using (15) and (16), by replacing the parameters α1,α2, θ1 and θ2
by α̂1(ML)

,̂α2(ML)
,̂θ1(ML)

and θ̂2(ML)
which we obtained using (12).

1- Interval prediction:

The MLPI for any future observation ts, s = r + 1, r + 2, ..., n can be obtained by

Pr[ts ≥ υ|t] =
∫ ∞
υ

f �1 (ts |̂α1(ML)
, α̂2(ML)

, θ̂1(ML)
, θ̂2(ML)

)dts, m = −1,

=

∫ ∞
υ

f �2 (ts |̂α1(ML)
, α̂2(ML)

, θ̂1(ML)
, θ̂2(ML)

)dts, m � −1. (32)

A (1 − τ) × 100 % MLPI (L,U) of the future observation ts is given by solving the two nonlinear equations (18).

2- Point prediction:

The MLPP for any future observation ts, s = r + 1, r + 2, ..., n can be obtained by replacing the parameters α1,α2,

θ1 and θ2 by α̂1(ML)
,̂α2(ML)

,̂θ1(ML)
and θ̂2(ML)

which we obtained using (12).

t̂s(ML) = E(ts) =

∫ ∞
tr

ts f �1 (ts |̂α1(ML)
, α̂2(ML)

, θ̂1(ML)
, θ̂2(ML)

)dts, m = −1,

=

∫ ∞
tr

ts f �2 (ts |̂α1(ML)
, α̂2(ML)

, θ̂1(ML)
, θ̂2(ML)

)dts, m � −1. (33)

3.2.2 Bayesian Prediction

Let the mixing proportion, p j is known and θ j, α j, j = 1, 2, are unknown. Suppose that the prior knowledge about

the parameters α and θ is adequately represented by the function g(α, θ) given by

g(α, θ) =

2∏
j=1

g(θ j|α j)g(α j), (34)

where g(θ j|α j) is Gamma (d j,
1
α j

), g(α j) is Gamma (b j,
1
c j

) with respective densities

g(θ j|α j) ∝ α−d j

j θ
d j−1

j e
− θ j
α j , α j, θ j > 0, (d j > 0), j = 1, 2, (35)

g(α j) ∝ αb j−1

j e
− α j

c j , α j > 0, (b j, c j > 0), j = 1, 2. (36)

It then follows, by substituting (35) and (36) in (34), that the prior PDF of α j and θ j is given by

g(α j, θ j) ∝
2∏

j=1

α
b j−d j−1

j θ
d j−1

j e
− (c jθ j+α j

2)

α jc j , α j, θ j > 0, (b j, c j, d j > 0), (37)

where b j, c j and d j are the prior parameters (also known as hyperparameters). It follows, from (10) and (37), that

the joint posterior density function is given by

π∗2(α j, θ j|t) = A2

2∏
j=1

α
b j−d j−1

j θ
d j−1

j e
− (c jθ j+α j

2)

α jc j

r−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi
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×
r∏

i=1

[p1 f1(ti) + p2 f2(ti)][p1R1(tr) + p2R2(tr)]γr−1, (38)

where

A−1
2 =

∫ ∞
0

∫ ∞
0

g(α, θ)L(θ|t) dθdα. (39)

The Bayes prediction density function of Ts ≡ T (s, n,m, k) can be obtained, see Aitchison and Dunsmore (1975),

by

h∗2(ts|t) =
∫ ∞

0

∫ ∞
0

π∗2(α, θ|t) f �1 (ts|θ j, α j)dαdθ, m = −1, (40)

=

∫ ∞
0

∫ ∞
0

π∗2(α, θ|t) f �2 (ts|θ j, α j)dαdθ, m � −1.

1-Interval prediction:

Bayesian prediction interval, for the future observation Ts;n,m̃,k, s = r + 1, r + 2, ..., n, can be computed by h∗
2
(ts|t)

which can be approximated using the MCMC algorithm, see Ahmad et al. (2011), by the form

h∗2(ts|t) �
∑μ

i=1
f �(ts|θij, αi

j)∑μ
i=1

∫ ∞
tr

f �(ts|θij, αi
j)dts
, (41)

where θij, α
i
j, i = 1, 2, 3, ..., μ are generated from the posterior density function (38) using Gibbs sampler and

Metropolis-Hastings techniques. A (1 − τ) × 100 % BPI (L,U) of the future observation ts is given by solving the

following two nonlinear equations ∑μ
i=1

∫ ∞
L f �(ts|θij, αi

j)dts∑μ
i=1

∫ ∞
tr

f �(ts|θij, αi
j)dts

= 1 − τ
2
, (42)

∑μ
i=1

∫ ∞
U f �(ts|θij, αi

j)dts∑μ
i=1

∫ ∞
tr

f �(ts|θij, αi
j)dts

=
τ

2
. (43)

Numerical methods are generally necessary to solve the above two equations to obtain L and U for a given τ.

2- Point prediction:

1- BPP for the future observation ts based on BSEL function can be obtained using

t̃s(BS )
= Ω̂ts(ML)

+ (1 −Ω)E(ts|t), (44)

where t̂s(ML)
is the ML prediction for the future observation ts which can be obtained using (33) and E(ts|t) can be

obtained using

E(ts|t) =
∫ ∞

tr
tsh∗2(ts|t)dts. (45)

2- BPP for the future observation ts based on BLINX loss function can be obtained using

t̃s(BL)
= −1

a
ln[Ω exp[−âts(ML)

] + (1 −Ω)E(e−ats |t)], (46)

where t̂s(ML)
is the ML prediction for the future observation ts which can be obtained using (33) and E(e−ats |t)] can

be obtained using

E(e−ats |t)] =
∫ ∞

tr
e−ats h∗2(ts|t)dts. (47)

4. Prediction in Case of Two-sample Scheme

Based on the informative T1;n,m̃,k,T2;n,m̃,k, ..., Tr;n,m̃,k GOS drawn from the MTEW distribution and let Y1 < Y2 <
· · · < YN , where Yi ≡ Yi;N,M,K , i = 1, 2, . . . ,N, M > 0, K > 0 be a second independent generalized ordered random

sample (of size N) of future observations from the same distribution. We want to predict any future (unobserved)
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GOS Yb ≡ Yb;N,M,K , b = 1, 2, . . . ,N, in the future sample of size N. The PDF of Yb, 1 ≤ b ≤ N given the vector of

parameters θ, is:

g∗(yb|θ) ∝
{

[R(yb)]γ
�
b −1 f (yb)

∑b−1
j=0 ω

b
j [R(yb)] j(M+1), M � −1,

[R(yb)]K−1[ln R(yb)]b−1 f (yb), M = −1,
(48)

where ωb
j = (−1) j

(
b−1

j

)
and γ�j = K + (N − j)(M + 1).

Substituting from (5) and (7) in (48), we have:

g∗1(yb|θ) ∝ [p1R1(yb) + p2R2(yb)]γ
�
b −1[p1 f1(yb) + p2 f2(yb)]

b−1∑
j=0

ωb
j [p1R1(yb) + p2R2(yb)] j(M+1), M � −1, (49)

g∗2(yb|θ) ∝ [p1R1(yb) + p2R2(yb)]K−1[ln [p1R1(yb) + p2R2(yb)]]b−1[p1 f1(yb) + p2 f2(yb)], M = −1. (50)

4.1 Prediction When α Is Known

4.1.1 Maximum Likelihood Prediction

Maximum likelihood prediction can be obtained using (49) and (50) by replacing the shape parameters θ1 and θ2
by θ̂1(ML)

and θ̂2(ML)
.

1- Interval prediction:

The MLPI for any future observation yb, 1 ≤ b ≤ N can be obtained by

Pr[yb ≥ υ|t] =
∫ ∞
υ

g∗1(yb |̂θ1(ML)
, θ̂2(ML)

)dyb, M � −1, (51)

=

∫ ∞
υ

g∗2(yb |̂θ1(ML)
, θ̂2(ML)

)dyb, M = −1.

A (1−τ)×100 % MLPI (L,U) of the future observation yb is given by solving the following two nonlinear equations

Pr[yb ≥ L(t) | t] = 1 − τ
2
, Pr[yb ≥ U(t) | t] = τ

2
. (52)

2- Point prediction:

The MLPP for any future observation yb can be obtained by replacing the shape parameters θ1 and θ2 by θ̂1(ML)
and

θ̂2(ML)

ŷb(ML)
= E[yb|t] =

∫ ∞
0

yb g∗1(yb |̂θ1(ML)
, θ̂2(ML)

)dyb, M � −1, (53)

=

∫ ∞
0

yb g∗2(yb |̂θ1(ML)
, θ̂2(ML)

)dyb, M = −1.

4.1.2 Bayesian Prediction

The predictive density function of Yb, 1 ≤ b ≤ N is given by:

Ψ∗(yb | t) =
∫ ∞

0

g∗(yb | θ)π∗1(θ | t)dθ, yb > 0, (54)

where for M � −1 and m � −1

Ψ∗1(yb | t) =
∫ ∞

0

g∗1(yb|θ)π∗1(θ | t)dθ ∝
2∏

j=1

θ
ν j−1

j exp[−
2∑

j=1

β jθ j][p1R1(yb) + p2R2(yb)]γ
�
b −1

×[p1 f1(yb) + p2 f2(yb)]

b−1∑
j=0

ωb
j [p1R1(yb) + p2R2(yb)] j(M+1)

r−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

×
r∏

i=1

[p1 f1(ti) + p2 f2(ti)][p1R1(tr) + p2R2(tr)]γr−1dθ. (55)
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Also, when M = −1 and m = −1

Ψ∗2(yb|t) =
∫ ∞

0

g∗2(yb|θ)π∗1(θ | t)dθ ∝
2∏

j=1

θ
ν j−1

j exp[−
2∑

j=1

β jθ j][p1 f1(yb) + p2 f2(yb)]

×[ln[p1R1(yb) + p2R2(yb)]]b−1[p1R1(yb) + p2R2(yb)]K−1
r−1∏
i=1

[p1R1(ti) + p2R2(ti)]−1

×
r∏

i=1

[p1 f1(ti) + p2 f2(ti)][p1R1(tr) + p2R2(tr)]γr−1dθ. (56)

1-Interval prediction:

Bayesian prediction interval, for the future observation Yb, 1 ≤ b ≤ N, can be computed using (55) and (56) which

can be approximated using MCMC algorithm by the form

Ψ∗(yb | t) =
∑μ

i=1
g∗(yb|θij)∑μ

i=1

∫ ∞
0

g∗(yb|θij)dyb
, (57)

where θij, i = 1, 2, ..., μ are generated from the posterior density function (22) using Gibbs sampler and Metropolis-

Hastings techniques.

A (1−τ)×100 % BPI (L,U) of the future observation yb is given by solving the following two nonlinear equations

∑μ
i=1

∫ ∞
L g∗(yb|θij)dyb∑μ

i=1

∫ ∞
0

g∗(yb|θij)dyb
= 1 − τ

2
, (58)

∑μ
i=1

∫ ∞
U g∗(yb|θij)dyb∑μ

i=1

∫ ∞
0

g∗(yb|θij)dyb
=
τ

2
. (59)

Numerical methods such as Newton-Raphson are generally necessary to solve the above two nonlinear equations

(58) and (59), to obtain L and U for a given τ.

2- Point prediction:

1- BPP for the future observation yb based on BSEL function can be obtained using

ỹb(BS )
= Ωŷb(ML)

+ (1 −Ω)E(yb|t), (60)

where ŷb(ML)
is the ML prediction for the future observation yb which can be obtained using (53) and E(yb|t) can be

obtained using

E(yb|t) =
∫ ∞

0

ybΨ
∗(yb|t)dyb. (61)

2- BPP for the future observation yb based on BLINX loss function can be obtained using

ỹb(BL)
= −1

a
ln[Ω exp[−âyb(ML)

] + (1 −Ω)E(e−ayb |t)], (62)

where ŷb(ML)
is the ML prediction for the future observation yb which can be obtained using (53) and E(e−ayb |t)] can

be obtained using

E(e−ayb |t)] =
∫ ∞

0

e−aybΨ∗(yb|t)dyb. (63)

4.2 Prediction When α and θ Are Unknown

4.2.1 Maximum Likelihood Prediction

Maximum likelihood prediction can be obtained using (49) and (50) by replacing the parameters θ1, θ2, α1 and α2

by θ̂1(ML)
,̂θ2(ML)

,̂α1(ML)
and α̂2(ML)

.
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1- Interval prediction:

The maximum likelihood Interval prediction (MLIP) for any future observation yb, 1 ≤ b ≤ N can be obtained by

Pr[yb ≥ υ|t] =
∫ ∞
υ

g∗1(yb |̂θ1(ML)
, θ̂2(ML)

, α̂1(ML)
, α̂2(ML)

)dyb, M � −1, (64)

=

∫ ∞
υ

g∗2(yb |̂θ1(ML)
, θ̂2(ML)

, α̂1(ML)
, α̂2(ML)

)dyb, M = −1.

A (1−τ)×100 % MLIP (L,U) of the future observation yb is given by solving the following two nonlinear equations

Pr[yb ≥ L(t) | t] = 1 − τ
2
, Pr[yb ≥ U(t) | t] = τ

2
. (65)

2- Point prediction:

The MLPP for any future observation yb, 1 ≤ b ≤ N can be obtained by replacing the parameters θ1, θ2, α1 and α2

by θ̂1(ML)
,̂θ2(ML)

,̂α1(ML)
and α̂2(ML)

ŷb(ML)
= E(yb) =

∫ ∞
0

yb g∗1(yb |̂θ1(ML)
, θ̂2(ML)

, α̂1(ML)
, α̂2(ML)

)dyb, M � −1, (66)

=

∫ ∞
0

yb g∗2(yb |̂θ1(ML)
, θ̂2(ML)

, α̂1(ML)
, α̂2(ML)

)dyb, M = −1.

4.2.2 Bayesian Prediction

The predictive density function of Yb, 1 ≤ b ≤ N is given by:

Ψ�(yb | t) =
∫ ∞

0

∫ ∞
0

g∗(yb | α, θ)π∗2(α, θ | t)dαdθ, yb > 0, (67)

For M � −1 and m � −1

Ψ�1 (yb | t) =
∫ ∞

0

∫ ∞
0

g∗1(yb|α, θ)π∗2(α, θ | t)dαdθ. (68)

Also, when M = −1 and m = −1

Ψ�2 (yb|t) =
∫ ∞

0

∫ ∞
0

g∗2(yb|α, θ)π∗2(α, θ | t)dαdθ. (69)

1-Interval prediction:

Bayesian prediction interval, for the future observation Yb, 1 ≤ b ≤ N, can be computed using (68) and (69) which

can be approximated using MCMC algorithm by the form

Ψ�(yb | t) =
∑μ

i=1
g∗(yb|αi

j, θ
i
j)∑μ

i=1

∫ ∞
0

g∗(yb|αi
j, θ

i
j)dyb

, (70)

where αi
j, θ

i
j, i = 1, 2, ..., μ are generated from the posterior density function (38) using Gibbs sampler and Metropolis-

Hastings techniques.

A (1 − τ) × 100 % BPI (L,U) of the future observation yb is obtained by solving the following two nonlinear

equations ∑μ
i=1

∫ ∞
L g∗(yb|αi

j, θ
i
j)dyb∑μ

i=1

∫ ∞
0

g∗(yb|αi
j, θ

i
j)dyb

= 1 − τ
2
, (71)

∑μ
i=1

∫ ∞
U g∗(yb|αi

j, θ
i
j)dyb∑μ

i=1

∫ ∞
0

g∗(yb|αi
j, θ

i
j)dyb

=
τ

2
. (72)

Numerical methods such as Newton-Raphson are necessary to solve the above two nonlinear equations (71) and

(72), to obtain L and U for a given τ.
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2- Point prediction:

1- BPP for the future observation yb based on BSEL function can be obtained using

ỹb(BS )
= Ωŷb(ML)

+ (1 −Ω)E(yb|t), (73)

where ŷb(ML)
is the ML prediction for the future observation yb and can be obtained using (66) and E(yb|t)

E(yb|t) =
∫ ∞

0

ybΨ
�(yb|t)dyb. (74)

2- BPP for the future observation yb based on BLINX loss function can be obtained using

ỹb(BL)
= −1

a
ln[Ω exp[−âyb(ML)

] + (1 −Ω)E(e−ayb |t)], (75)

where ŷb(ML)
is the ML prediction for the future observation yb and can be obtained using (66) and E(e−ayb |t)]

E(e−ayb |t)] =
∫ ∞

0

e−aybΨ�(yb|t)dyb. (76)

5. Numerical Computations

The upper record values can be obtained from the GOS by taking m = −1, k = 1 and γr = 1. In this Section, we

will compute point and interval predictors of future upper record values in two cases, one sample and two sample

prediction as following:

5.1 One Sample Prediction

The following steps are used to obtain ML prediction (point and interval) and Bayesian prediction (point and

interval) for the remaining (n − r) failure times Ts ≡ Ts,n,m̃,k, s = r + 1.

1) For given values of α1, α2, θ1 and θ2, upper record values of different sizes are generated from the MTEW

distribution.

2) Generate θi
1
, θi

2
, αi

1
and αi

2
, i = 1, 2, ..., μ, from the posterior PDF using MCMC algorithm.

3) Solving equations (18), numerically, we get the 95% MLPI for unobserved upper record values.

4) The MLPP for the future observation tr+1, is computed using (19) when α j is known and (33) when α j and θ j

are unknown.

5) The 95% BPI for unobserved upper record are obtained by solving equations (26) and (27) when α j is known

and (42) and (43) when α j and θ j are unknown.

6) The BPP for the future observation tr+1, is computed based on BSEL function using (28) when α j is known

and (44) when α j and θ j are unknown.

7) The BPP for the future observation tr+1, is computed based on BLINX loss function using (30) when α j is

known and (46) when α j and θ j are unknown.

5.2 Two Sample Prediction

The following steps are used to obtain ML prediction (point and interval) and Bayesian prediction (point and

interval) for future upper record values Yb, b = 1.

1) For given values of α1, α2, θ1 and θ2, upper record values of different sizes are generated from the MTEW

distribution.

2) Generate θi
1
, θi

2
, αi

1
and αi

2
, i = 1, 2, ..., μ, from the posterior PDF using MCMC algorithm.

3) Solving equations (52) when α j is known and (65) when α j and θ j are unknown we get the 95% MLPI for

unobserved upper record values.

4) The MLPP for the future observation y1, is computed using (53) when α j is known and (66) when α j and θ j

are unknown.

5) The 95% BPI for unobserved upper record are obtained by solving equations (58) and (59) when α j is known

and (71) and (72) when α j and θ j are unknown.

30



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 2; 2012

6) The BPP for the future observation y1, is computed based on BSEL function using (60) when α j is known

and (73) when α j and θ j are unknown.

7) The BPP for the future observation y1, is computed based on BLINX loss function using (62) when α j is

known and (75) when α j and θ j are unknown.

8) Generate 10, 000 samples each of size N = 5 from a MTEW distribution, then calculate the coverage percent-

age (CP) of Y1.

The computational (our) results were computed by using Mathematica 7.0. When α j is known, the prior parameters

chosen as ν1 = 2, ν2 = 4, β1 = 1, β2 = 2 which yield the generated values of θ1 = 2.3008 and θ2 = 2.4297. While,

in the case of four parameters are unknown the prior parameters (b1, b2, c1, c2, d1, d2) chosen as (1,2,0.5,1.5,2,3)

which yield the generated values of θ1 = 1.09192, θ2 = 2.09977, α1 = 1.87056, α2 = 1.45415. In Tables (1), (2)

and (3), (4) point and 95% interval predictors for the first future upper record value are computed in case of the

one- and two sample predictions, respectively.

6. Conclusions

In our study, we obtained the maximum likelihood prediction (point and interval) and Bayesian prediction (point

and interval) for the future observation from mixture of two Exponentiated Weibull (MTEW) distributions. From

Tables (1-4) we observe the following:

1) Point and 95% interval predictors for future observations are obtained using a one-sample and two-sample

schemes based on a MTEW distribution. Our results are specialized to upper record values.

2) It is evident from all tables that, the lengths of the MLPI and BPI decrease as the sample size increase.

3) The percentage coverage improves by use of a large number of observed values.

4) It may be noticed that when ω = 1, we obtain the MLEs while the case ω = 0, yields the Bayes prediction

under SE and LINX loss function.

Table 1. Point and 95% interval predictors for the future upper record values T ∗s , s = r + 1 when (α1 = 2, α2 =

2, θ1 = 2.3008, θ2 = 2.4297, p = 0.4,Ω = 0.5)

point predictions interval predictions

r ML BS EL BLINEX ML Bayes

a = 0.001 a = 2 a = 3 (L,U) Length (L,U) Length

3 1.68679 1.67341 1.6734 1.6422 1.62918 (1.35717,2.38895) (1.3551,2.35294)

1.03179 0.997841

5 2.07701 2.07633 2.07632 2.05588 2.04768 (1.83841,2.65733 ) (1.83833,2.65519 )

0.818921 0.816863

7 2.73883 2.73875 2.73874 2.72607 2.72093 (2.56036,3.19704 ) (2.56035,3.19676 )

0.636678 0.636407

Table 2. Point and 95% interval predictors for the future upper record values T ∗s , s = r+1 when (α1 = 1.87056, α2 =

1.45415, θ1 = 1.09192, θ2 = 2.09977, p = 0.4,Ω = 0.5)

point predictions interval predictions

r ML BS EL BLINEX ML Bayes

a = 0.001 a = 2 a = 3 (L,U) Length (L,U) Length

3 1.47888 1.47275 1.47273 1.44914 1.43914 (1.19352,2.07271) (1.1927,2.05073 )

0.879189 0.858027

5 1.76718 1.76758 1.76757 1.75595 1.75108 (1.58924,2.18908) (1.58929,2.19013 )

0.599841 0.600841

7 2.66639 2.66649 2.66650 2.65607 2.65179 (2.50679,3.08025) (2.5068,3.08077 )

0.573461 0.57397
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Table 3. Point and 95% interval predictors for the future upper record values Y∗b , b = 1 when (α1 = 2, α2 = 2, θ1 =
2.3008, θ2 = 2.4297, p = 0.4,Ω = 0.5)

point predictions interval predictions

r ML BS EL BLINEX ML Bayes

a = 0.001 a = 2 a = 3 (L,U) Length (CP) (L,U) Length (CP)

3 0.869292 0.87952 0.933136 0.827488 0.776678 (0.146129,1.90915 ) (0.00140531,1.97937 )

1.76302 (96.82) 1.97796 (97.88)

5 0.959412 0.919886 0.957384 0.843413 0.782067 (0.221228,1.96968 ) (0.0027575,1.9742)

1.74845 (97.50) 1.97144 (97.69)

7 0.945327 0.905571 0.951503 0.841096 0.781509 (0.208555,1.96031) (0.000573547,1.96927)

1.75176 (97.27) 1.9687 (97.43)

Table 4. Point and 95% interval predictors for the future upper record values Y∗b , b = 1 when (α1 = 1.87056, α2 =

1.45415, θ1 = 1.09192, θ2 = 2.09977, p = 0.4,Ω = 0.5)

point predictions interval predictions

r ML BS EL BLINEX ML Bayes

a = 0.001 a = 2 a = 3 (L,U) Length (CP) (L,U) Length (CP)

3 1.10673 1.14704 1.14694 1.01421 0.950383 ( 0.232142,2.30746 ) ( 0.249429,2.5401 )

2.07532 (94.81) 2.29067 (95.77)

5 1.02567 1.06597 1.06586 0.938197 0.882518 (0.224342,2.33226 ) ( 0.244942,2.53322 )

2.10791 (95.47) 2.28828 (95.83)

7 0.898788 0.97657 0.976504 0.871424 0.824372 ( 0.0982443,1.97087 ) ( 0.195128,2.18531 )

1.87263 (93.24) 1.99018 (95.04)
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