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Abstract

This article is concerned with the problem of estimating the parameters, reliability and hazard rate functions of

the mixture of two Rayleigh distributions (MTRD) based on generalized order statistics (GOS ). The maximum

likelihood and Bayes methods of estimation are used for this purpose. The Markov chain Monte Carlo (MCMC)

method is used for obtaining the Bayes estimates under the squared error loss and LINEX loss functions. Our

results are specialized to progressive Type-II censored order statistics and upper record values. Comparisons are

made between Bayesian and maximum likelihood estimators via a Monte Carlo simulation study.

Keywords: generalized order statistics, Bayes estimation, progressive censoring, Markov chain Monte Carlo,

Monte Carlo simulation

1. Introduction

The Rayleigh distribution (RD) was first derived by Lord Rayleigh in connection with a study of acoustical prob-

lems. Since then many investigators have used the RD or some related forms of it in a variety of engineering,

wave propagation, radiation and analysis of target data studies. The RD is also used to model wave heights in

oceanography, and in communication theory to describe hourly median and instantaneous peak power of received

radio signals. Several such situations have been discussed by Polovko (1968), Takeshi Yamane (1998), Zhi Ren et

al. (2011), and many others. The RD is a special case of two parameter Weibull distribution. A random variable T
is said to have a RD with parameter θ if its probability density function (PDF) is given by

f (t) = 2θ t e−θt
2

, t > 0, (θ > 0). (1)

The cumulative distribution function (CDF), reliability function (RF) and the hazard rate function (HRF) are

given, respectively, by

F(t) = 1 − e−θt
2

, t > 0, (θ > 0), (2)

R(t) = e−θt
2

, (3)

H(t) = 2θ t, (4)

where H(·) = f (·)
R(·) .

Mixtures of distributions arise frequently in life testing, reliability, biological and physical sciences. Some of the

most important references that discussed different types of mixtures of distributions are a monograph by Everitt

and Hand (1981), Titterington et al. (1985) and McLachlan and Basford (1988). Bayesian inferences based on

finite mixture distribution have been discussed by several authors. Papadapoulos and Padgett (1986) considered

Bayesian estimation of the mixing parameter, mean and reliability function of a mixture of two exponential lifetime

distributions based on right censored samples. Attia (1993) considered the MTRD and obtained estimates of model

parameters using maximum likelihood (ML) and Bayesian approach with censored sampling. Ahmad et al. (1997)

derive approximate Bayes estimation for mixture of two Weibull distributions under Type-II censoring. Jaheen

(2005b) considered estimation for the mixed exponential distribution based on record statistics. Soliman (2006)

obtained the estimates of the parameters and functions of these parameters of the MTRD based on progressively
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Type-II censored samples when the mixing proportion p is known. Saleem and Aslam (2008a & b) use ordinary

type I right censored data for Bayesian analysis of Rayleigh mixture. Saleem and Irfan (2010) studied some

properties of the Bayes estimates of the Rayleigh mixture parameters. The PDF, CDF, RF and HRF of the

MTRD are given, respectively, by

f (t) = p1 f1(t) + p2 f2(t), (1)

F(t) = p1F1(t) + p2F2(t), (2)

R(t) = p1R1(t) + p2R2(t), (3)

H(t) =
f (t)
R(t)
, (4)

where, for j = 1, 2, the mixing proportions p j are such that 0 ≤ p j ≤ 1, p1 + p2 = 1 and f j(t), F j(t), Rj(t) are given

from (1), (2), (3) after using θ j instead of θ.

The property of identifiability is an important consideration on estimating the parameters in a mixture of distribu-

tions. Also, testing hypothesis, classification of random variables, can be meaning fully discussed only if the class

of all finite mixtures is identifiable. Identifiability of mixtures has been discussed by several authors, including

Teicher (1963), AL-Hussaini and Ahmad (1981) and Ahmad (1988).

The concept of GOS was introduced by Kamps (1995) to unify several important ordering concepts that were sep-

arately treated in statistical literature, such as ordinary order statistics, ordinary record values, progressive Type-II

censored order statistics and sequential order statistics, among others. For various distributional properties of GOS ,

see Kamps (1995). The GOS have been considered extensively by many authors, among others, they are Ahsan-

ullah (1996; 2000), Kamps and Gather (1997), Cramer and Kamps (2000), Habibullah and Ahsanullah (2000),

Jaheen (2002; 2005a), AL-Hussaini and Ahmad (2003), AL-Hussaini (2004), Ahmad (2007; 2008), Aboeleneen

(2010), Jaheen and Al Harbi (2010), Abu El Fotouh (2011) and Ateya and Ahmad (2011).

The purpose of this paper is to estimate the parameters, RF and HRF of the MTRD based on GOS using ML
and Bayes methods. The non-informative prior and the conjugate prior are assumed to carry out the Bayesian

analysis. The results are specialized to progressive Type-II censored order statistics and record values. This paper

is organized as follows: In Section 2, the ML estimators of parameters, RF and HRF of the MTRD are derived. In

Section 3, the MCMC method is used for obtaining the Bayes estimators of parameters, RF and HRF of the MTRD
under the squared error loss and LINEX loss functions. Comparisons between Bayesian and ML estimators via

Monte Carlo simulation study are made in Section 4. Finally, Concluding remarks about comparisons between the

estimators are considered in Section 5.

2. Maximum Likelihood Estimation

Let T1;n,m̃,k,T2;n,m̃,k, ..., Tn;n,m̃,k, k > 0, m̃ = (m1, ...,mn−1) ∈ �n−1,m1, ...,mn−1 ∈ �, are n GOS drawn from the

MTRD. The likelihood function (LF) is given in (Kamps, 1995), for −∞ < t1 < ... < tn < ∞, by

L(θ|t) = k
n−1∏
i=1

γi{
n−1∏
i=1

[R(ti)]mi f (ti)}[R(tn)]k−1 f (tn), (5)

where t = (t1, ..., tn), θ ∈ Θ, Θ is the parameter space, and

γi = k + n − i + Mi > 0,Mi =

n−1∑
ν=i

mν.

Substituting (1), (1) in (5), the LF takes the form

L(θ|t) ∝
n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

n∏
i=1

[p1 f1(ti) + p2 f2(ti)][p1R1(tn) + p2R2(tn)]k−1. (6)

Take the logarithm of (6), we have

�(θ) ≡ ln L(θ|t) ∝
n−1∑
i=1

mi ln[p1R1(ti) + p2R2(ti)] +
n∑

i=1

ln[p1 f1(ti) + p2 f2(ti)]
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+(k − 1) ln[p1R1(tn) + p2R2(tn)], (7)

where p1 = p, p2 = 1 − p.

Differentiating (7) with respect to the parameters p and θ j and equating to zero gives the following likelihood

equations

∂�

∂p
=

n−1∑
i=1

miϑ
∗(ti) +

n∑
i=1

ϑ(ti) + (k − 1)ϑ∗(tn) = 0,

∂�

∂θ j
= p j{

n∑
i=1

ξ j(ti)ψ j(ti) −
n−1∑
i=1

miψ
∗
j(ti) − (k − 1)ψ∗j(tn)} = 0, j = 1, 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (8)

where, for j = 1, 2

ϑ(ti) =
f1(ti) − f2(ti)

f (ti)
, ϑ∗(ti) =

R1(ti) − R2(ti)
R(ti)

,

ψ j(ti) =
f j(ti)
f (ti)
, ψ∗j(ti) =

ti2Rj(ti)
R(ti)

,

ξ j(ti) = [
1

θ j
− ti2]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (9)

Equations (8) do not yield explicit solutions for p and θ j, j = 1, 2, and have to be solved numerically to obtain

the ML estimates of the three parameters, Newton-Raphson iteration is employed to solve (8). The corresponding

ML estimates of the reliability function R(t) and the Hazard rate function H(t) are given respectively by (3) and (4)

after replacing p, θ1 and θ2 by their ML estimates p̂, θ̂1 and θ̂2, (the solution of the above nonlinear equations).

3. Prior, Posterior and Bayes Estimators

Recently, there has been a considerable amount of interest in the Bayesian approach in estimation and reliability

studies. It has received frequent attention for analyzing failure data and other time-to-event data, and has been

often proposed as a valid alternative to traditional statistical perspectives. The Bayesian approach to estimation

of the parameters and reliability analysis allows prior subjective knowledge on lifetime parameters and technical

information on the failure mechanism, as well as experimental data, to be incorporated into the inferential proce-

dure. Bayesian methods usually require less sample data to achieve the same quality of inferences than methods

based on sampling theory. In this section, we present the Bayesian estimation for the parameters, RF and HRF for

MTRD based on GOS . In this section, Bayesian estimation for the parameters of the MTRD is considered under

squared error and LINEX (Linear-Exponential) loss functions.

3.1 Bayes Estimation Using Conjugate Prior

Let p, θ1 and θ2 are independent random variables such that p ∼ Beta(b1, b2) and for j = 1, 2, θ j to follow an

inverted gamma prior distribution with PDF

π(θ j) =
1

Γ(α j)
(
α j

β j
)α jθ

α j−1

j exp[−α j

β j
θ j], (θ j, α j, β j > 0). (10)

A joint prior density function of θ = (p, θ1, θ2) is then given by

π(θ) = π1(p)π2(θ1)π3(θ2),

π(θ) ∝ pb1−1
1

pb2−1
2

2∏
j=1

θ
α j−1

j exp[−Σ2
j=1

α j

β j
θ j], (11)

where 0 < p1 < 1, p2 = 1 − p1 and for j = 1, 2 θ j > 0, (b j, α j, β j) > 0.

It follows, from (6) and (11), that the joint posterior density function is given by

π∗(θ|t) = A1 pb1−1
1

pb2−1
2

2∏
j=1

θ
α j−1

j exp[−Σ2
j=1

α j

β j
θ j]

n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

×
n∏

i=1

[p1 f1(ti) + p2 f2(ti)][p1R1(tn) + p2R2(tn)]k−1, (12)
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where

A−1
1 =

∫
θ

π(θ)L(θ|t) dθ. (13)

Under the squared error loss and LINEX loss functions, the Bayes estimator of a function, say φ ≡ φ(p, θ1, θ2), are

given, respectively, by

φ̂BS = E(φ|t) =
∫
θ

φ π∗(θ|t) dθ, (14)

φ̂BL = −1

a
ln[E(e−a φ|t)] = −1

a
ln[

∫
θ

e−a φ π∗(θ|t) dθ], (15)

where the integral is taken over the three dimensional space and a � 0. To compute the integral we propose to

consider MCMC methods.

The conditional posterior distribution of the parameters p, θ1 and θ2 using conjugate prior can be computed and

written, respectively, by

π∗(p|θ1, θ2, t) ∝ pb1−1
1

pb2−1
2

n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

n∏
i=1

[p1 f1(ti) + p2 f2(ti)] × [p1R1(tn) + p2R2(tn)]k−1, (16)

π∗(θ1|p, θ2, t) ∝ θα1−1
1

e−α1θ1/β1

n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

n∏
i=1

[p1 f1(ti) + p2 f2(ti)] × [p1R1(tn) + p2R2(tn)]k−1, (17)

π∗(θ2|p, θ1, t) ∝ θα2−1
2

e−α2θ2/β2

n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

n∏
i=1

[p1 f1(ti) + p2 f2(ti)] × [p1R1(tn) + p2R2(tn)]k−1. (18)

3.2 Bayes Estimation Using Non-informative Prior

Assuming that all of the parameters consisting θ are positive and independent, and that we are indifferent about the

prior information about θ so that we set improper non-informative prior to θ j, j = 1, 2, and p as follows

π1(p) ∝ 1

p
, π2(θ1) ∝ 1

θ1
, π3(θ2) ∝ 1

θ2
.

so that

π(θ) ∝ π1(p)π2(θ1)π3(θ2),

π(θ) ∝ (pθ1θ2)−1, (0 < p < 1, θ1, θ2 > 0). (19)

The posterior density function can be obtained from (6) and (19), as

π∗(θ|t) = A1(pθ1θ2)−1
n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi ×
n∏

i=1

[p1 f1(ti) + p2 f2(ti)][p1R1(tn) + p2R2(tn)]k−1. (20)

Under the squared error loss and LINEX loss functions, the Bayes estimator of a function, say φ ≡ φ(p, θ1, θ2), are

given, respectively, by

φ̂BS = E(φ|t) =
∫
θ

φ π∗(θ|t) dθ, (21)

φ̂BL = −1

a
ln[E(e−a φ|t)] = −1

a
ln[

∫
θ

e−a φ π∗(θ|t) dθ], (22)

where the integral is taken over the three dimensional space and a � 0. To compute the integral we propose to

consider MCMC methods.

The conditional posterior distribution of the parameters p, θ1 and θ2 using non-informative prior can be computed

and written, respectively, by

π∗(p|θ1, θ2, t) ∝ p−1
n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

n∏
i=1

[p1 f1(ti) + p2 f2(ti)] × [p1R1(tn) + p2R2(tn)]k−1, (23)
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π∗(θ1|p, θ2, t) ∝ θ−1
1

n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

n∏
i=1

[p1 f1(ti) + p2 f2(ti)] × [p1R1(tn) + p2R2(tn)]k−1, (24)

π∗(θ2|p, θ1, t) ∝ θ−1
2

n−1∏
i=1

[p1R1(ti) + p2R2(ti)]mi

n∏
i=1

[p1 f1(ti) + p2 f2(ti)] × [p1R1(tn) + p2R2(tn)]k−1. (25)

3.3 MCMC Method

In this subsection, the MCMC method is considered to compute the Bayes estimators of the parameters p, θ1
and θ2. We consider the MCMC techniques, namely the Metropolis-Hasting algorithm, to generate samples from

the conditional posterior distributions and then compute the Bayes estimates. For more details about the MCMC
methods see, for example, Upadhyay et al. (2001), Press (2003) and Upadhyay and Gupta (2010). The Metropolis-

Hastings algorithm generate samples from an arbitrary proposal distribution (i.e. a Markov transition kernel). The

following MCMC procedure is proposed to compute Bayes estimators of φ ≡ φ(p, θ1, θ2) based on squared error

and LINEX loss functions.

1) Start with initial guess of p ,θ1 and θ2 say p0, θ0
1

and θ0
2
, respectively.

2) Set i = 1.

3) Generate p from π∗(p|θ1, θ2, t), θ1 from π∗(θ1|p, θ2, t). and θ2 from π∗(θ2|p, θ1, t).
4) Repeat steps 2-3 N times. Now calculate Bayes estimator of φ under squared and LINEX loss functions,

respectively, by

E(φ|t) = (1/(N − ν))ΣN
i=ν+1φ(pi, θi1, θ

i
2), (26)

E(exp(−aφ|t) = (1/(N − ν))ΣN
i=ν+1exp(−aφ(pi, θi1, θ

i
2)), (27)

where ν is the burn-in period.

4. Numerical Computations

A comparison between ML and Bayes estimators, under either a squared error or a LINEX loss functions, is made

using a Monte Carlo simulation study in the two following cases:

4.1 Progressive Type-II Censored Order Statistics

The progressive Type-II censored order statistics can be obtained from the GOS as a special case by taking mi = ri

for i = 1, 2, ...,m − 1 and k = rm + 1. Therefore, the estimation results obtained in the above sections can

be specialized to the progressive Type-II censored order statistics. Estimates of parameters, RF and HRF are

computed and compared based on Monte Carlo simulation study according to the following steps:

1) For given values of p, θ1 and θ2, we generate progressively Type-II censored samples from the MTRD by using

the algorithm described in Balakrishnan and Sandhu (1995), as follows:

• using p, θ1 and θ2, with different chooses of n, m and k. We take in our consideration that the progressive

censored order statistics T R
1:m:n:k,T

R
2:m:n:k, ..., T

R
m:m:n:k is a progressively Type-II censored sample from a

population with CDF (6).

• generate m independent Uniform (0, 1) observations w1,w2, ...,wm.

• determine the values of the censored scheme ri, for i = 1, 2, ...,m.

• set Ei = 1/(i + Σm
j=m−i+1

r j) for i = 1, 2, ...,m.

• set Vi = wEi
i for i = 1, 2, ...,m.

• set Ui,m,n ≡ Ui = 1 − Vm.Vm−1...Vm−i+1 for i = 1, 2, ...,m. Then U1,U2, ...,Um is the progressively Type-II

right censored sample from the Uniform (0,1) distribution.

• for given values of parameters θ1, θ2 and mixing proportion p, set:

Ui = p[1 − e−θ1t2
i ] + (1 − p)[1 − e−θ2t2

i ]. (28)

For i = 1, 2, ...,m, the values of ti for each Ui can be obtained numerically from (32). Then the resulting

set t1, t2, ..., tm is the required progressively Type-II right censored sample from the MTRD.

Using the algorithm described above, a progressively Type-II censored samples of size m with different censored

schemes are randomly generated from sample of size n simulated from the MTRD.
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2) The ML estimates of the parameters p, θ1 and θ2 are obtained by solving the nonlinear equations (8), with

mi = ri, k = rm + 1, i = 1, 2, ...,m − 1, numerically.
3) Based on squared error and LINEX loss functions the Bayes estimates of the parameters, reliability and Hazard

rate functions are computed, from (26) and (27), according to the above MCMC method.

The above steps are repeated 500 times. The estimated risks (ER) are computed by averaging the squared deviations

over the 500 repetitions.

4.2 Upper Record Values

The upper record values can be obtained from the GOS by taking mi = −1 for i = 1, 2, ..., n − 1 and k = 1. In this

case, ML and Bayes estimates of parameters, RF and HRF are computed and compared based on Monte Carlo

simulation study according to the following steps:

Figure 1. Estimated Risks (ER) of the estimates of θ = (p, θ1, θ2), R(t) and H(t) based on upper record values

1) For given values of p, θ1 and θ2, we generate n = 5, 8, 10 upper record values from the MTRD.

2) The ML estimates of the parameters p, θ1 and θ2 are obtained by solving the nonlinear equations (8), with

mi = −1, k = 1, numerically.

3) Based on squared error and LINEX loss functions the Bayes estimates of the parameters, reliability and Hazard

rate functions are computed, from (26) and (27), according to the above MCMC method. The above steps are

repeated 1000 times. The estimated risks (ER) are computed by averaging the squared deviations over the 1000
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repetitions.

The computational (our) results were computed by using Mathematica 6.0. Under conjugate prior the prior pa-

rameters chosen as b1 = 1.2, b2 = 2.3, α1 = 2, β1 = 0.3, α2 = 2, β2 = 3 which yield the generated values

of p = 0.391789, θ1 = 0.307317 and θ2 = 3.33166 (as the true values). The true values of R(t) and H(t) when

t = 0.5, are computed to be R(0.5) = 0.627253 and H(0.5) = 1.58232. While, under non-informative prior values

of (p, θ1, θ2) chosen as (0.4, 0.3, 3). The true values of (R(0.5),H(0.5)) are computed to be (0.654517, 1.46916).

The value of the shape parameter a of the LINEX loss function is a = (−2, 0.02, 2). The estimated risks (ER) are

displayed in Tables 1-2-3-4. Figures 1 and 2 represents the estimated risks of the estimates in the case of upper

record values.

Figure 2. Estimated Risks (ER) of the estimates of θ = (p, θ1, θ2), R(t) and H(t) based on upper record values

5. Concluding Remarks

Based on GOS model, this paper proposes Bayesian and non-Bayesian approach to estimate the unknown pa-

rameters for the mixture of two-component Rayleigh model. Samples from heterogeneous populations that can

be represented by a finite mixture of two-component Rayleigh model are subjected to Type II right progressively

censoring and upper record values cases. The ML and some Bayes methods are used to estimate the parameters,

reliability and hazard rate functions. From the results of the simulation study we observe that:
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Table 1. (Progressively censored samples) ER of the ML estimates and the Bayes (BS , BL) estimates assuming the

conjugate prior of p, θ1, θ2, R(0.5) and H(0.5) for different m, n and schemes

n m Scheme Parameters ML BS BL
a = −2 a = 0.002 a = 2

(25, 24∗0) P 0.003245 0.005342 0.003536 0.005365 0.008055

θ1 0.67785 0.54289 0.8398 0.54036 0.3354

θ2 0.43825 0.11166 0.12969 0.431641 0.65218

R(t = 0.5) 0.09767 0.05947 0.05757 0.05953 0.06114

H(t = 0.5) 0.839173 0.40463 0.524707 0.40454 0.50510

50 25 (24∗0, 25) P 0.003137 0.005140 0.003397 0.005161 0.007764

θ1 0.66734 0.54715 0.84843 0.54457 0.33613

θ2 0.44965 0.05612 0.13305 0.43447 0.6539

R(t = 0.5) 0.09160 0.05778 0.056155 0.05784 0.05889

H(t = 0.5) 0.888689 0.402153 0.52249 0.40206 0.50192

(12∗0, 25, 12∗0) P 0.003495 0.005146 0.003405 0.005167 0.007768

θ1 0.71011 0.55162 0.085252 0.54905 0.34024

θ2 0.443812 0.05585 0.12879 0.42776 0.64839

R(t = 0.5) 0.075615 0.04808 0.04649 0.048142 0.05914

H(t = 0.5) 0.86252 0.41210 0.533473 0.412899 0.502635

(15, 34∗0) P 0.000224 0.005202 0.003435 0.0052234 0.007861

θ1 0.40911 0.47685 0.3435 0.5223 0.7861

θ2 0.44669 0.041131 0.037051 0.043567 0.065858

R(t = 0.5) 0.04352 0.036785 0.03525 0.03685 0.04780

H(t = 0.5) 0.39355 0.106689 0.11706 0.106590 0.116211

50 35 (34∗0, 15) P 0.018655 0.005111 0.0033806 0.0051322 0.007716

θ1 0.7927 0.048203 0.077453 0.047956 0.382002

θ2 0.415377 0.031153 0.013247 0.043822 0.066359

R(t = 0.5) 0.064502 0.03607 0.03477 0.03613 0.05674

H(t = 0.5) 0.938207 0.105817 0.116416 0.105716 0.104960

(17∗0, 15, 17∗0) P 0.003343 0.0051459 0.0034011 0.0051673 0.00777

θ1 0.61314 0.04841 0.07767 0.048163 0.38382

θ2 0.43851 0.031173 0.011847 0.042113 0.06491

R(t = 0.5) 0.09116 0.036801 0.035594 0.036859 0.05752

H(t = 0.5) 0.46447 0.10739 0.11846 0.10729 0.10644

(50, 49∗0) P 0.000099 0.0048152 0.0029527 0.0049369 0.007266

θ1 0.31932 0.050734 0.081869 0.050475 0.030445

θ2 0.41668 0.010226 0.01062 0.038718 0.059884

R(t = 0.5) 0.007391 0.004301 0.004435 0.0047075 0.005429

H(t = 0.5) 0.302130 0.105334 0.10585 0.105236 0.105243

100 50 (49∗0, 50) P 0.000214 0.005003 0.0032048 0.005125 0.007610

θ1 0.385417 0.050729 0.082766 0.053472 0.032663

θ2 0.42668 0.010134 0.0115348 0.038483 0.058634

R(t = 0.5) 0.007874 0.004659 0.004571 0.004606 0.005314

H(t = 0.5) 0.355113 0.105033 0.105358 0.105139 0.102095

(20∗0, 50, 29∗0) P 0.000371 0.005176 0.003086 0.0055098 0.007265

θ1 0.320971 0.053405 0.081019 0.052142 0.034789

θ2 0.42669 0.010182 0.011466 0.040447 0.06167

R(t = 0.5) 0.006237 0.004372 0.004597 0.00468 0.005720

H(t = 0.5) 0.31214 0.10685 0.10756 0.10675 0.10678

(20, 79∗0) P 0.000014 0.004085 0.002361 0.0041057 0.006683

θ1 0.277822 0.045999 0.075848 0.045744 0.024999

θ2 0.346678 0.001115 0.003173 0.033384 0.055403

R(t = 0.5) 0.006750 0.003761 0.003604 0.003767 0.005002

H(t = 0.5) 0.26320 0.104754 0.115234 0.090465 0.094745

100 80 (79∗0, 20) P 0.000149 0.004237 0.002465 0.004259 0.006902

θ1 0.28209 0.04592 0.075811 0.045668 0.02492

θ2 0.346678 0.001565 0.002703 0.032736 0.054899

R(t = 0.5) 0.006451 0.003902 0.003727 0.003908 0.005041

H(t = 0.5) 0.241003 0.104896 0.125183 0.094801 0.095045

(40∗0, 20, 39∗0) P 0.000149 0.004085 0.002361 0.004106 0.006683

θ1 0.277822 0.045999 0.075847 0.045744 0.024999

θ2 0.346678 0.0011146 0.003172 0.033384 0.055403

R(t = 0.5) 0.006750 0.003761 0.003604 0.003767 0.004866

H(t = 0.5) 0.255123 0.112615 0.112844 0.092519 0.092512

BL ≡ Bayes (LINEX loss function); BS ≡ Bayes (squared error loss function).
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Table 2. (Progressively censored samples) ER of the ML estimates and the Bayes (BS , BL) estimates assuming the

noninformative prior of p, θ1, θ2, R(0.5) and H(0.5) for different m, n and schemes

n m Scheme Parameters ML BS BL
a = −2 a = 0.002 a = 2

(25, 24∗0) P 0.000275 0.004360 0.00633 0.009191 0.006308

θ1 0.91462 0.08854 0.05759 0.03607 0.05785

θ2 1 0.045487 0.014611 0.005531 0.011142

R(t = 0.5) 0.018702 0.009628 0.00990 0.011494 0.00989

H(t = 0.5) 0.867288 0.21134 0.184647 0.184727 0.184773

50 25 (24∗0, 25) P 0.000269 0.004403 0.006372 0.0092145 0.006348

θ1 0.975792 0.090199 0.05867 0.036548 0.058939

θ2 1 0.048138 0.015518 0.005860 0.00554

R(t = 0.5) 0.019622 0.009806 0.010031 0.011569 0.010023

H(t = 0.5) 0.925593 0.215921 0.18774 0.186478 0.187879

(12∗0, 25, 12∗0) P 0.000515 0.004465 0.006469 0.009359 0.006444

θ1 0.93515 0.08980 0.058226 0.036283 0.058495

θ2 1 0.047101 0.015102 0.005692 0.005514

R(t = 0.5) 0.018367 0.009844 0.010099 0.011683 0.010090

H(t = 0.5) 0.853737 0.216007 0.188208 0.187661 0.188343

(15, 34∗0) P 0.000276 0.004458 0.006457 0.009343 0.006433

θ1 0.922268 0.091183 0.059727 0.037789 0.059996

θ2 1 0.047677 0.015509 0.005901 0.005562

R(t = 0.5) 0.018958 0.009883 0.010152 0.011745 0.010143

H(t = 0.5) 0.882936 0.21764 0.190233 0.189985 0.19037

50 35 (34∗0, 15) P 0.000474 0.004481 0.006509 0.009444 0.006485

θ1 0.93531 0.090395 0.059027 0.037214 0.059295

θ2 1 0.046569 0.015072 0.005726 0.005638

R(t = 0.5) 0.01830 0.009859 0.0101645 0.011806 0.010155

H(t = 0.5) 0.84993 0.216491 0.189719 0.190196 0.189845

(17∗0, 15, 17∗0) P 0.000401 0.004443 0.006431 0.009301 0.006407

θ1 0.92685 0.090563 0.058979 0.036915 0.059251

θ2 1 0.048117 0.015634 0.005935 0.005563

R(t = 0.5) 0.018387 0.009863 0.01011 0.011674 0.010101

H(t = 0.5) 0.85276 0.217056 0.189157 0.188294 0.189295

(50, 49∗0) P 0.000227 0.004266 0.006066 0.008953 0.006142

θ1 0.90859 0.089084 0.057725 0.034868 0.057993

θ2 1 0.044692 0.013094 0.005427 0.00523

R(t = 0.5) 0.017199 0.0096387 0.009712 0.010704 0.010103

H(t = 0.5) 0.80632 0.210004 0.18875 0.181498 0.18888

100 50 (49∗0, 50) P 0.000155 0.004133 0.006185 0.009111 0.006061

θ1 0.91742 0.08977 0.057582 0.035839 0.057848

θ2 1 0.044688 0.013437 0.005256 0.005364

R(t = 0.5) 0.017731 0.009612 0.009754 0.011512 0.00995

H(t = 0.5) 0.80107 0.21064 0.18720 0.18678 0.18733

(20∗0, 50, 29∗0) P 0.000224 0.004239 0.006158 0.009153 0.006234

θ1 0.88808 0.089878 0.057612 0.035851 0.057879

θ2 1 0.044694 0.013433 0.00535 0.005299

R(t = 0.5) 0.016517 0.009669 0.010438 0.011751 0.010134

H(t = 0.5) 0.801348 0.210222 0.185989 0.187079 0.188118

(20, 79∗0) P 0.000187 0.0043384 0.006149 0.0091904 0.006126

θ1 0.90281 0.088638 0.059406 0.035764 0.054673

θ2 1 0.045035 0.013406 0.037764 0.005473

R(t = 0.5) 0.0176969 0.009685 0.010029 0.0115935 0.0100201

H(t = 0.5) 0.804349 0.210819 0.188241 0.1879 0.188375

100 80 (79∗0, 20) P 0.000273 0.004381 0.006298 0.009207 0.006270

θ1 0.912554 0.088357 0.059200 0.035603 0.005566

θ2 1 0.046335 0.013266 0.005369 0.011089

R(t = 0.5) 0.017935 0.009684 0.010169 0.011788 0.010159

H(t = 0.5) 0.80684 0.210059 0.190006 0.190344 0.190134

(40∗0, 20, 39∗0) P 0.000257 0.004345 0.006243 0.009233 0.006219

θ1 0.894361 0.088981 0.059850 0.036156 0.055114

θ2 1 0.045609 0.013513 0.005398 0.00138

R(t = 0.5) 0.017017 0.009658 0.010140 0.011747 0.010131

H(t = 0.5) 0.80785 0.210085 0.190130 0.190330 0.190262

BL ≡ Bayes (LINEX loss function); BS ≡ Bayes (squared error loss function).

1) All of the results obtained in this article in case of Type II right progressively censoring can be specialized to
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both the complete sample case by taking (m = n, ri = 0, i = 1, 2, 3, 4, ...m), and the Type-II right censored sample

for (ri = 0, i = 1, 2, 3, 4, ...m − 1, rm = n − m).

2) From Table 1, we see that the Bayes estimators relative to asymmetric loss functions (LINEX), are sensitive to

the value of the shape parameters a, for small a the Bayes estimates under the LINEX loss function (BL), are very

close to the Bayes estimates under the squared error loss function. The Bayes estimates of RF under the LINEX
loss function (BL), when a = −2 have the smallest ER′s as compared with their corresponding estimates. While,

the Bayes estimates of θ1, θ2 and HRF have the smallest ER′s as compared with their corresponding ML estimates.

In most of the considered cases, it is observed that the ML estimates of p have the smallest ER′s as compared with

their corresponding Bayes estimates.

3) Also from Table 1, as the proportion m/n increases, the ER′s reduce significantly. We observed that for large

sample size, the symmetric and asymmetric Bayes estimates are better than the ML estimates.

4) Table 2 shows that the Bayes estimates of θ1, θ2 and HRF under the LINEX loss function have the smallest

ER′s as compared with their corresponding estimates. While, the Bayes estimates of RF under the squared error

loss function have the smallest ER′s as compared with their corresponding estimates. In most of the considered

cases, Table 2 shows that the ML estimates of p have the smallest ER′s as compared with their corresponding

Bayes estimates.

Table 3. (Upper record values) ER of the ML estimates and the Bayes (BS , BL) estimates assuming the conjugate

prior of p, θ1, θ2, R(0.5) and H(0.5) for different sample size

n Parameters ML BS BL
a = −2 a = 0.002 a = 2

5 P 0.170122 0.0264868 0.0397904 0.0263757 0.0174207

θ1 0.0956744 0.00328384 0.00447608 0.00327487 0.00266551

θ2 1.109 1.2566 0.19321 1.27885 3.91814

R(t = 0.5) 0.0367232 0.0232053 0.0259773 0.023178 0.020526

H(t = 0.5) 0.810279 0.45288 0.262485 0.455084 0.669544

8 P 0.142407 0.0329758 0.0494921 0.0328373 0.0216422

θ1 0.0371982 0.00174507 0.00150609 0.00174812 0.00212429

θ2 1.13347 1.33192 0.234972 1.35535 4.37182

R(t = 0.5) 0.0298045 0.027248 0.0304673 0.0272163 0.0241562

H(t = 0.5) 0.734561 0.536832 0.313168 0.539407 0.790005

10 P 0.131772 0.0344254 0.0516252 0.0342812 0.0226098

θ1 0.0400329 0.00174828 0.00139018 0.00175243 0.00223124

θ2 1.01259 1.32074 0.261058 1.3437 4.46605

R(t = 0.5) 0.0264525 0.0279305 0.0312235 0.0278982 0.0247848

H(t = 0.5) 0.723828 0.551947 0.32409 0.554589 0.813456

BL ≡ Bayes (LINEX loss function); BS ≡ Bayes (squared error loss function).

Table 4. (Upper record values) ER of the ML estimates and the Bayes (BS , BL) estimates assuming the non-

informative prior of p, θ1, θ2, R(0.5) and H(0.5) for different sample size

n Parameters ML BS BL
a = −2 a = 0.002 a = 2

5 P 0.181571 0.0269282 0.0421724 0.0268018 0.0167192

θ1 0.0768179 0.00311924 0.00447972 0.0031081 0.0022672

θ2 1.30989 0.808531 0.0191031 0.830045 3.385

R(t = 0.5) 0.036651 0.0178594 0.0206431 0.0178319 0.0151835

H(t = 0.5) 0.844474 0.350973 0.166689 0.35319 0.567843

8 P 0.149364 0.0300759 0.0468695 0.0299361 0.0187382

θ1 0.0362808 0.000218835 0.000147729 0.000220181 0.00043849

θ2 1.15463 0.758679 0.0296448 0.778903 3.46421

R(t = 0.5) 0.0295189 0.0187535 0.021728 0.0187244 0.0159262

H(t = 0.5) 0.786627 0.373189 0.170778 0.375601 0.610974

10 P 0.143208 0.0306175 0.0477189 0.0304752 0.0190788

θ1 0.0399092 0.000177435 0.0000962643 0.000178922 0.00041641

θ2 1.15942 0.738898 0.0342423 0.758505 3.4634

R(t = 0.5) 0.0277292 0.0189317 0.0219134 0.0189025 0.0161039

H(t = 0.5) 0.84348 0.378136 0.174893 0.380563 0.618301

BL ≡ Bayes (LINEX loss function); BS ≡ Bayes (squared error loss function).
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5) From Tables 3 and 4, we see that in most of the considered cases, the Bayes estimates of p, θ1, RF and HRF
have the smallest ER′s as compared with their corresponding ML estimates. While, the Bayes estimates of θ2
under the LINEX loss function (BL) when a = −2 have the smallest ER′s as compared with their corresponding

estimates. Also, it is observed that the Bayes estimates of p and RF under the LINEX loss function perform best

when the value of the shape parameters a is large. While, the Bayes estimates of θ1, θ2 and HRF under the LINEX
loss function perform best when the value of the shape parameters a is small.
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