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Abstract 

Four approximate F- tests derived by Fai and Cornelious in 1996 to make inference for fixed effects in mixed linear 

models of rank greater than one. Two of these approaches derived by introducing a Wald-type statistic distributed 

approximately as an F distribution, and the denominator degrees of freedom computed by matching the approximated 

one moment of the Wald-type statistic with the exact one moment of the F distribution. The other two approaches were 

derived by introducing a scaled Wald-type statistic to be distributed approximately as an F distribution, and the 

denominator degrees of freedom and the scale factor computed by matching the two moments of the statistic with the 

moments of the F distribution. This paper proposes two more approximate F-tests analogous to the four approaches 

where an adjusted estimator of the variance of the estimate of fixed effects used. In addition, the paper evaluates and 

compares the performance of the six approaches analytically, and some useful results are presented. Also, a simulation 

study for block designs was run to assess and compare the performance of the approaches based on their observed test 

levels. The simulation study shows that the approaches usually perform reasonably based on their test levels, and in 

some cases some approaches found to more adequately than other approaches.  

Keywords: mixed linear model, Satterthwaite test, restricted maximum likelihood estimator, linear hypothesis, Variance 

components  

1. Introduction  

Data analysts and practicing statisticians usually encounter problems in making inference for the fixed effects in normal 

linear mixed models where the fixed effects are of interest and the random effects are a source of errors. When some 

observations are lost or not available for some reasons, the data become not balanced and the analysis becomes more 

complicated, where the conventional Anova table does not provide an exact test, and approximation is needed. For a 

data vector y distributed as multivariate normal distribution with mean ,Xβ and β is the vector of the fixed effects 

parameters, suppose that we are interested in testing the linear hypothesis 0H :  L β 0  where L is fixed and has

independent columns. A Wald-type statistic of the form 

𝑄 = 𝛽′̂𝐿[𝐿′�̂�𝑎𝑟(�̂�)𝐿]−1𝐿′�̂�, 

where β̂ and ˆˆ ( )Var β  are estimators of β and ˆ( )Var β respectively, usually follows a chi square distribution with 

degrees of freedom for large samples. However, for small samples, this approximation might not be appropriate. 

Giesbrecht and Burns (1985) suggested a method to determine the degrees of freedom for an approximate t-test (GB 

test). Also, Jeske and Harville (1988) suggested a procedure to determine the degrees of freedom for an approximate 

t-test with adjusting the variance estimate of the fixed effects estimator ˆˆ ( )Var β (JH test). Both procedures are limited 

for hypotheses of rank 1, and the degrees of freedom is estimated in a way analogous to Satterthwaite’s approximation 

(Satterthwaite, 1946). Based on these two procedures, Fai and Cornelious (1996) proposed four approximate F tests for 

the hypotheses of rank greater than 1. In fact, they extended the GB and JH procedures by matching the first and second 

moments of the F distribution with the test statistic for each procedure. For procedures obtained by matching the first 

moment, a Wald-type F statistic used, and the denominator degrees of freedom is estimated based on the data. On the 

other hand, for procedures obtained by matching the second moment, a scaled F statistic used, and the denominator 

degrees of freedom and scale factor are estimated based on the data. The extended procedures of the GB test by 

matching the first and second moments will be called the GB1 and GB2 approaches respectively, and similarly, the 

extended procedures of the JH test will be called the JH1 and JH2 approaches. Fai and Cornelious compared the 

performance of the four proposed procedures through a simulation study for split plot designs. They concluded that the 

GB1 and JH1 approaches performed similarly and adequately more than other approaches which found to be more 

liberal. The popular procedure called the Satterthwaite procedure to approximate the denominator degrees of freedom, 
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and embedded in most statistical software packages is actually the GB1 procedure. This test might be executed in SAS 

by using the option DDFM=SATTERTHWAITE in the model statement of the PROC MIXED procedure (SAS Institute 

Inc, 2021).   

Many researchers evaluated the performance of the GB1 approach and compared it to other known approaches (e.g., 

Luke, 2017; Monar & Zucker, 2004; Kuznetsova et al., 2017; Spilke, 2005; Schaalje et al., 2002). However, the other 

forms of tests derived by Fai and Cornelious, except the GB1 procedure, have not received enough attention in the 

research literature neither analytically nor through simulation studies. In this paper, we investigated the inner working 

of these four procedures in order to compare the performance of these procedures analytically and through a simulation 

study for block designs different from the design studied by Fai and Cornelious (1996). In addition, we proposed two 

more procedures analogous to procedures JH1 and JH2 with using the adjusted variance-covariance of the estimate of 

fixed effects parameters derived by Harville and Jeske (1992).    

In Section 2, and in addition to the model and notation, we review the four approaches developed by Fai and Corenelius 

(1996). Also, we present two more approaches based on the adjustment of the variance-covariance matrix of the fixed 

effects proposed by Harville and Jeske (1992). These two approaches will be called HJ1 and HJ2 approaches. 

Comparisons of the six approaches (i.e., the GB1, GB2, JH1, JH2, HJ1, and HJ2 approaches) based on their test 

statistics, computed denominator degrees of freedom and scales is discussed analytically in Section 3. In Section 4, we 

present a simulation study for three block designs to evaluate and compare the performance of the six approaches based 

on the observed test levels. The computed denominator degrees of freedom and scales are presented and compared for 

each approach.  

2. The Satterthwaite Approaches to Test the Fixed Effects in Linear Mixed Models 

Consider n observations y  follow a multivariate normal distribution with mean Xβ , and variance covariance .Σ The 

matrix X is a known n p matrix, and β is a 1p  vector of the fixed effects parameters, and Σ is a positive definite 
n n  matrix, and linear of r unknown variance components ,θ that is 1 1 r r   Σ G G for 'i sG are known 
n n  symmetric matrices. Suppose that we are interested in testing the linear hypothesis 0H :  L β 0  where L is a 

fixed p  matrix.  

Fai and Cornelious (1996) proposed four approximate F-tests. The first two tests are extensions for the GB test 

(Giesbrecht & Burns, 1985) to accommodate the hypotheses of fixed effects for rank greater than 1. The first test, called 

GB1, derived by introducing a Wald-type statistic follows approximately an F distribution, and the denominator degrees 

of freedom of the F distribution is computed by matching the exact first moment of the F distribution and the 

approximated first moment of the Wald-type test statistic. For the second test, called GB2, a scaled Wald-type statistic 

follows approximately an F distribution, and the denominator degrees of freedom and scale factor computed by 

matching the exact two moments of the F distribution with the approximated two moments of the scaled Wald-type test 

statistic. Similarly, the third and fourth tests, called JH1 and JH2, are extensions of the JH test (Jeske & Harville, 1988), 

and the denominator degrees of freedom and scale factor computed by using the one moment and two moments 

approximations respectively.  

2.1 Review of the GB1 and GB2 Approaches 

Fai and Cornelious (1996) extended the GB method for testing hypotheses of rank greater than one. They started with 

the sum of squares for 0H as: 

        𝑇 = 𝛽′̂𝐿[𝐿′�̂�𝑎𝑟(�̂�)𝐿]−1𝐿′�̂�                                 (2.1) 

where β̂ is the estimated generalized least squares estimator of the fixed effects β , which is 

   �̂� = (𝑋′�̂�−1𝑋)−1𝑋′�̂�−1𝑦                                 (2.2) 

and �̂� = �̂�1𝐺1 + ⋯ + �̂�𝑟𝐺𝑟,where ˆ 'i s are the REML estimates of the variance components 'i s  (Corbiel & Searle, 

1976). In the GB method, the matrix �̂� = 𝑋′�̂�−1𝑋 is used as the estimator of ˆ( ).Var β  

That is �̂�𝑎𝑟(�̂�) = �̂� = 𝑋′�̂�−1𝑋, 

and   

  𝑇𝐺𝐵 = 𝛽′̂𝐿[𝐿′�̂�𝐿]−1𝐿′�̂�                                   (2.3) 

Under 0H , 1 1( , )GB GB GBF T F = approximately, and we can choose 1GB by using the one-moment 

approximation, where the approximate first moment of 1GBF  matched with the exact first moment of 1( , )GBF  to 
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The approximation of ( )GBE T is obtained by performing the spectral decomposition of ˆ'L ΦL , where 
ˆ' 'L ΦL P DP for P an orthogonal matrix, D is a diagonal matrix of eigenvalues 'md s and 0md  for 1, , .m   
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Supposing that 
2 '
mvt s are distributed approximately independently as t-distribution with degrees of freedom m for 

each, we obtain: 
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where mg is the gradient of ˆ
m m

a Φa with respect to ,θ
ma is the mth row of ,PL and [ ]ij r rw W = is the 

variance-covariance matrix of the REML estimators of the variance components θ̂  which can be approximated by the 

inverse of the expected information matrix .W  

For extending the GB method by using the two-moment approximation, two quantities need to be computed: the scale

2GB and the denominator degrees of freedom 2GB such that a scaled F statistic 2 2 2( , )GB GB GB GBF T F 
approximately under 0H . By matching the approximated two moments of 2GBF and the exact two moments of 

2( , )GBF  we obtain: 
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where ( )GBVar T  is obtained from expression (2.5): 
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( )GBE T is as in (2.6), and m is approximated as in (2.7). 

2.2 Review of the JH1 and JH2 Approaches 

Since the traditional estimator of ˆ( ),Var β matrix ˆ ,Φ tends to underestimate, Jeske and Harville (1988) adjusted the 

estimator using the adjustment suggested by Kackar and Harville (1984), which is                               
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                   �̂�𝑎𝑟(�̂�) = �̂�𝐽𝐻(�̂�) = �̂�𝐽𝐻 = �̂� + �̂�,                          (2.11) 

where        
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These quantities to be estimated by substituting the REML estimates of the variance components θ̂ for .θ Similar to 

the extension of the GB approach, Fai and Cornelious (1996) started the extension of JH approach with Wald-type 

statistic: 

                      𝑇𝐽𝐻 = 𝛽′̂𝐿[𝐿′�̂�𝐽𝐻𝐿]−1𝐿′�̂�                             (2.13)  

In the first extension, that is the JH1 approach, we have 1 1( , )JH JH JHF T F =  approximately under 0H , and we 

compute 1JH by using the one-moment approximation where the approximate first moment of 1JHF  matched with the 

exact moment of 1( , ).JHF   That is 
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Similar to the extension of the GB approach, ( )JHE T  is approximated by performing the spectral decomposition 
ˆ' 'JHL Φ L = P DP for P an orthogonal matrix, D is a diagonal matrix of eigenvalues 'sd s and 0sd  for 1, , .s   
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For the two-moment approximation, and analogous to the GB2 approach, the scale 2 2 and JH JH   are computed such 

that 2 2 2( , )JH JH JH JHF T F   approximately under 0H .  
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2.3 Two Proposed Approximation Approaches 

The estimator for ˆ( )Var β used in JH approximations, ˆ
JHΦ , is a better estimator than Φ̂ which tends to underestimate. 

However, ˆ
JHΦ still tends to underestimate. In these proposed approaches, we use a better estimator for ˆ( )Var β

suggested by Harville and Jeske (1992), and used by Kenward and Roger in their approach known as the KR estimation 

(Kenward & Roger, 1997) (See remark 1 below). That is:     

ˆ( ) 2 ,Var β = Φ+ Λ  

where Λ is approximated as in expression (2.9).  

Hence 

                                   �̂�𝑎𝑟(�̂�) = �̂�𝐻𝐽(�̂�) = �̂�𝐻𝐽 = �̂� + 2�̂�                          (2.18) 

where Λ̂ is as in expression (2.12).  

Analogous to the JH1, and JH2 approaches, consider: 

                             𝑇𝐻𝐽 = 𝛽′̂𝐿[𝐿′�̂�𝐻𝐽𝐿]−1𝐿′�̂�,                             (2.19) 

and two approaches developed by using the one-moment and two-moment approximations. The first approximation, 

which will be called JH1, is obtained by using the one-moment approximation, where we have 

1 1( , )HJ HJ HJF T F =  approximately under 0H , and 1HJ  is obtained by matching the approximate first moment of 

1HJF with the exact moment of 1( , ).HJF   
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Also, similar to the extensions of the GB and JH approaches, the approximation of ( )HJE T is obtained by using the 

spectral decomposition ˆ' 'HJL Φ L = P DP for P an orthogonal matrix, D is a diagonal matrix of eigenvalues 'kd s and 
0kd   for 1, , .k =  
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For the two-moment approximation, 2 2 2( , )HJ HJ HJ HJF T F =  approximately under 0H , and 2 2 and HJ HJ  are 

calculated as                                                           
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Remark 1 The variance matrix of the fixed effects estimates used in the proposed Wald-type statistic is the same as in 
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the Wald-type Kenward-Roger test. In fact, in some special cases, both tests might deliver same values for the 

denominator degrees of freedom and scale factor. However, in general, the tests are different regarding the obtained 

denominator degrees of freedom and scale. The Kenward-Roger test uses the Taylor series expansion method to obtain 

an approximate moment for the test statistic, whereas the spectral decomposition method is used in the Satterthwaite 

based approaches. 

3. Comparisons of the Satterthwaite Approaches 

All approaches presented in section 2 use similar Wald-type statistics, and the differences among them may be 

described based on two sources: first, the estimator of ˆ( )Var β used in the statistics, where it is �̂�, �̂�𝐽𝐻 , and �̂�𝐻𝐽for the 

extension of the GB, JH, and HJ approaches respectively. Second, the GB1, JH1, and HJ1 approaches were developed 

based on using the one-moment approximation where the denominator degrees of freedom are computed, whereas the 

GB2, JH2, and HJ2 approaches developed based on the two-moment approximation, where a scaled test statistic used, 

and both the denominator degrees of freedom and the scale factor are computed. The performance of these approaches 

typically depends on the test statistic (including the obtained scale) and the denominator degrees of freedom. 

Accordingly, besides evaluating and comparing the performance of the approaches through simulation studies, it is 

reasonable and useful to compare their test statistics, computed denominator degrees of freedom, and scale analytically. 

In this section, we present some useful results about the approaches’ statistics, computed denominator degrees of 

freedom and cale. 

3.1 General Formulas for the Satterthwaite Approaches 

It can be seen that the denominator degrees of freedom and scales produced by approaches presented in Section 2 

follow general formulas. For the test statistic T as in (2.1), and for the one-moment approximation, we have
( , )oneF T F = approximately under 0H .To find one , the approximate first moment of F statistic is matched with 

the exact first moment of ( , ),oneF  and we have:  
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( )E T is approximated by performing the spectral decomposition ˆ' ( ) 'VarL β L = P DP for P an orthogonal matrix, D is a 

diagonal matrix of eigenvalues 'qd s and 0qd  for 1, , ,q =  where      
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The quantity qg is the gradient of ˆ( )q qVar a β a with respect to ,θ and qa is the qth row of .PL  Note that 
, ,  and GB JH HJT T T T=  for the extension of the GB, JH, and HJ approaches respectively.  

For the two-moment approximation, the scale and the denominator degrees of freedom two are 
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3.2 Comparisons of the Test Statistics, Computed Denominator Degrees of Freedom, and Scales  

From expressions (3.1b) and (3.4b), we obtain: 
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                       ,
2 2

one two

one two

 


 

 
 

  
                               (3.5) 

where one is the denominator degrees of freedom obtained by using the one-moment approximation, two and   are 

the computed denominator degrees of freedom and scale obtained using the two-moment approximation. Since typically
1,   and the function ( ) / ( 2)f    =  for 2   is a decreasing function, it is reasonable to expect that typically 

one two  (see remark 2 below). On the other hand, and provided 1,   we have 1 2 1/ ,F T F F= = where 1F and 

2F are the test statistics used in the one-moment and two-moment approximations respectively for the extensions of the 

same approach (i.e., the GB, JH, HJ approaches). In addition, comparing the test statistics for different approaches using 

the one-moment approximation is analytically possible by adopting the definition of Loewner order of symmetric 

matrices (Pukelshiem, 2006). Since Λ is a non-negative matrix, we have: 

�̂�𝐻𝐽 = �̂� + 2�̂� ≥ �̂�𝐽𝐻 = �̂� + �̂� ≥ �̂�, 

and form Abadir and Magnus (2005), we obtain 

(𝐿′�̂�𝐴𝐿)−1 ≤ (𝐿′�̂�𝐽𝐻𝐿)−1 ≤ (𝐿′�̂�𝐿)−1 

Hence 

1 1 1.HJ JH GBF F F   

For the case 1,= it should be true that both extensions for each approach; using the one-moment and two-moment 

approximations, are identical and they are equivalent to the original approach (i.e., the GB and JH approaches). The 

following lemma is to verify this fact. 

Lemma 1 when 1,=  then 1,one two  = = and 1. =  

Remark 2 From the expression of the scale (3.4b) above, and provided that ( ) ,E T   the simulation studies show that 

typically 1.  However, the expression formula does not guarantee that the scale   doesn’t exceed 1. In fact, this 

occurs most likely when the computed denominator degrees of freedom using the second moment approximation, 2   

gets closer to the value of 4. This happens because of the data character. 

Consider the design matrix of the model X is partitioned as 1 2[ , ]X = X X where:  

1 1
1 1 1 1 2

1 1

2 1 2 2

 


 

  
    

X Σ X X Σ X
X Σ X =

X Σ X X Σ X
 

Suppose 
-1 1

1 2 2 2,  and ( ) ,f X Σ X = 0 X Σ X = θ A where f is a scalar function, and A is a fixed matrix (i.e., doesn’t 

depend on θ ). Also, suppose that 2X is the correspondent matrix to the fixed effects to be tested, so that 

1 1 2 2( )E y = X β X β , and 2 2 2[ ][ ] .   L β = 0 B β β = B β Some well-known designs follow this model partition 

(e.g., the balanced incomplete block designs), and this model partition has been noticed to have specific properties for 

several approximate tests that use a Wald-type statistic. Alnosaier and Birkes (2019) studied this partition model for the 

Kenward-Roger approximate test and other alternative tests.   

Lemma 2 For models that satisfy the partition as above, the approximations of q as in expression (3.3) are the same 

for all 1, , .q =  

Lemma 3 (a) For models that satisfy the partition above, the denominator degrees of freedom using the two-moment 

approximation, two  is a linear function of the denominator degrees of freedom using the one-moment approximation, 
.one  

(b) ,two one  and the scale 1  . 

If a model satisfies the condition that 
X X

P Σ ΣP  for all ,Σ where X
P is an orthogonal projection operator on the 

range of X, it is said that the model satisfies Zyskind’s condition (Zyskind, 1967). For models that satisfy Zyskind’s 

condition, we add an assumption that met by most models which is i iX X
P G = G P  for all i, where iG as in Section 2.  

Lemma 4 (a) For models that satisfy Zyskind’s condition and the assumption above, the GB1, JH1 and HJ1 approaches 

are identical, and the GB2, JH2 and HJ2 approaches are identical. 

(b) When 1,=  and the model satisfies Zyskind’s condition, the GB1, GB2, JH1, JH2, HJ1, and HJ2 approaches are 

identical.  

Detailed proofs of lemmas 1-4 are in the Appendix. 
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4. A Simulation Study 

To evaluate and compare the performance of the Satterthwaite approaches presented in this paper, we conducted a 

simulation study for 15 models with three different block designs (e.g., five models for each design).    

Design 1: A balanced incomplete block design with 52 observations, 13 treatments, 13 blocks, and the maximum block 

size is 4, obtained from (Cochran & Cox, 1992, p. 448). 

Design 2: A complete block design with 36 observations, 6 treatments, 6 blocks, and deleting two observations from 

different blocks and different treatments.  

Design 3: A partial incomplete block design with 21 observations, 9 treatments, 7 blocks, and the maximum block size 

is 3, (Kuehl, 2000, p. 329 with omitting the last two blocks). 

The model for the block designs can be written as  

ijk i j ijky b e   =  

where  is the mean, i  is the treatment effects, jb is the random block effects, ijke is the residual errors, 
1,..., , 1,..., ,i t j s= = 1,..., ijk n=  and all ijn  are 0 or 1. The jb and ijke  are all independent, 

2N(0, ),j bb   and 
2N(0, ).ijk ee   In order to have a full column rank matrix of the fixed effects, we reparametrize the model as : i i t   =

for 1,..., 1,i t =  and t   = . The reparametrized model can be expressed as ijk i j ijky b e    = , for 
1,..., 1,i t = and 1 1tjk t j tjky b e    

   =  for .i t=  The null hypothesis to test that there are no treatment 

effects is 
* *

0 1 1H : 0t  = = = .  

For each design, 10,000 data sets have been simulated under the null distribution with no treatment effects, and 

assuming 0
= , for five settings of the ratio b e  = : 0.25, 0.5, 1, 2, 4. The simulation was done by generating the 

random terms in the model (i.e., the blocks and residual errors) for each setting of   using Matlab 2020.  

To run the simulation study for the Satterthwaite approaches, the quantities that needed to be computed have their 

expressions presented in the previous sections. However, some expressions need to be derived to be in computable 

forms (See the Appendix).  

4.1 Computing the Denominator Degrees of Freedom and Scales 

The iteration algorithm in expression 4.1in the Appendix to compute the REML estimates of the variance components 

did not converge for some data sets. Table 1 presents the percentage of the generated data sets that converge for each 

model under the null hypothesis (rounded to two decimal places). The percentage increased as the ratio  increased, and 

almost all of data sets for models with designs 1 and 2 converged. For models with the smallest design (i.e., design 3), it 

was noted that there were significant number of data sets that did not converge for smaller values of .   

Table 1. The percentage of data sets for which the iteration algorithm converges to compute the REML estimates of the 

variance components under the null hypothesis  

   Design 1 Design 2 Design 3 

0.25 99.51 99.84 89.86 

0.50 99.94 99.98 93.34 

1.00 100.00 100.00 97.95 

2.00 100.00 100.00 99.80 

4.00 100.00 100.00 100.00 

 

In addition, and to compute the denominator degrees of freedom for each approach, we limited the simulation to data 

sets which met the conditions as expressed in the general formulas (3.1b) and (3.4a) in Section 3. That is, to compute 

,one we considered data sets satisfied ( ) ,E T   and to compute ,two we also applied the condition
2( ) 2[ ( )] 0.Var T E T   These conditions imply that 2,one  and 4.two   Table 2 presents the percentage of generated 

data sets satisfied these required conditions for each approach and each model under the null distribution. For models 

with larger designs (i.e., designs 1 and 2), it was noted that almost all data sets met the conditions for the GB1 and GB2 

approaches. However, significant number of data sets did not meet the conditions with smaller values of   for the 

other approaches. It was also noted that more data sets did not meet the conditions for models with the smallest design 

(i.e., design 3), and especially with small values of .  Only 14.02% of data sets met the conditions of the HJ2 

approach for the model with design 3, and 1 = . In fact, except the GB1 and GB2 approaches, most data sets did not 

meet the conditions for 1   to compute the denominator degrees of freedom. Unlike the PROC MIXED procedure 

of SAS where the denominator degrees of freedom one set as zero when the condition is not met, for the simulation 

purpose of evaluating the performance of the approaches, we considered only data sets met the conditions required to 
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compute the denominator degrees of freedom.  

Table 4 in the Appendix shows the average of the computed denominator degrees of freedom for the Satterthwaite 

approaches. It can be clearly seen from table 4 that the average of computed denominator degrees of freedom using the 

one-moment approximation is less than the average of computed denominator degrees of freedom using the 

two-moment approximation for all six approaches. This coincides with our expectation in Section 3.2. Table 5 in the 

Appendix shows the average of scales of all approaches using the two-moment approximation, and they found to be less 

than one. However, this does not mean necessarily that the scales were less than one for all data sets. In fact, it was 

found that the scale for the GB2, JH2, and HJ2 approaches exceeded one for few data sets. For the smallest design, the 

scale values computed by the approaches using the two-moment approximation, were not very stable, where more data 

sets produced scales exceeded one, and other data sets produced scales significantly smaller than usual (e.g. 0.2 and 0.3). 

This explains why the average scales for design 3 were smaller than for the other designs.  For the models with design 

1, it was found that all produced scales for the GB2, JH2, and HJ2 approaches with all values of   did not exceed one, 

and this coincides with Lemma 3 (part b) in Section 3 since the balanced incomplete block design satisfies the model 

partition of lemma 3.  

Table 2. The percentage of generated data sets that for which the iteration algorithm converged, and met the conditions 

to compute the denominator degrees of freedom under the null hypothesis 

  

 

 
  

Rate of data sets to compute degrees of freedom  

GB1 GB2 JH1 JH2 HJ1 HJ2 

Design 

1 

0.25 99.51 99.21 85.02 82.95 81.19 78.48 

0.50 99.94 99.90 89.12 87.48 86.39 84.51 

1.00 100.00 100.00 98.69 98.42 98.20 97.80 

2.00 100.00 100.00 99.99 99.99 99.99 99.99 

4.00 100.00 100.00 100.00 100.00 100.00 100.00 

Design 

2 

0.25 99.84 99.84 87.11 84.82 84.68 81.92 

0.50 99.98 99.98 90.68 87.82 88.94 85.86 

1.00 100.00 100.00 97.94 97.22 97.43 96.64 

2.00 100.00 100.00 99.87 99.83 99.83 99.80 

4.00 100.00 100.00 99.99 99.99 99.99 99.99 

Design 

3 

0.25 77.89 72.49 55.48 49.57 52.31 41.78 

0.50 85.08 81.15 52.21 35.04 44.57 24.29 

1.00 95.40 93.93 49.10 25.88 36.30 14.02 

2.00 99.53 99.44 92.24 83.02 86.80 71.48 

4.00 99.96 99.95 99.71 99.10 99.36 98.14 

 

4.2 Comparisons of the Observed Test Levels 

The performance of all six approaches was evaluated and compared based on the computed test levels of the approach. 

The observed test level was computed by the proportion of generated data sets under the null hypothesis, converged to 

compute the REML estimates of the variance components, and satisfied the required conditions to compute the 

denominator degrees of freedom of which 1 ( , )oneF F  for approaches using the one-moment approximation, and of 

which 2 ( , )twoF F   for approaches using the two-moment approximation, as these quantities described in Section 3. 

Typically, this proportion is desirable to be close to the nominal level which chosen to be 0.05. However, it is not 

expected that the observed test level to be exactly 0.05 due to the simulation error which is 22% / n where n is the 

number of generated data sets, converged to produce the REML estimates of the variance components, and met the 

conditions to produce the denominator degrees of freedom as explained in Section 4.1. Also, in comparing the observed 

test levels, the difference of 0.2% was considered unimportant.  

As presented in table 3, it is notable that the test level for approaches using the two-moment approximation were more 

liberal than for approaches using the one-moment approximation for all models. This was expected because the 

computed denominator degrees of freedom tended to be larger for approaches using the two-moment approximation as 

seen in Section 4.1. Apparently, the effect of the computed scale factors on the test level was minimal comparing to the 

computed denominator degrees of freedom. For models with the largest design(i.e., design 1), the JH1 approach 

performed well for all values of , whereas the GB1 and HJ1 approaches performed well only for larger values of .  

The GB1 approach found to be so liberal, and the HJ1 approach found to be excessively conservative for small values 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 13, No. 1; 2024 

31 

of ,  and this is due to their average of computed denominator degrees of freedom. For example, for 0.25, = the 

average computed denominator degrees of freedom for the GB1, JH1, and HJ1 approaches are 34.61, 27.94, and 24.41 

respectively. The approaches GB2, JH2, and HJ2 were found to be liberal for all values of ,  however, the HJ2 

approach performed more adequately and less liberal than others. For models with design 2, the GB1, JH1, and HJ1 

approaches performed almost the same, and they performed adequately. They found to be slightly conservative for 
1 =  and 2. The GB2, JH2, and HJ2 performed similarly and found to be liberal for all values of .  For models with 

the smallest design (i.e., design 3), and for small values of , the GB1 approach was so liberal, and the HJ1 approach 

seemed to perform slightly conservative. The JH1 approach was found to outperformed other approaches for small 

values of .  However, the majority of generated data did not meet the conditions to compute the denominator degrees 

of freedom for the JH1 and HJ1 approaches for small values of .  For larger values of ,  the GB1, JH1, and HJ1 

approaches performed adequately for models with design 3. The GB2, JH2, and HJ2 approaches did not perform 

adequately, however, the JH2 and HJ2 approaches were found to be more similar and more acceptable. In general, the 

approaches did not perform with the smallest design as well as with the other deigns, and this was expected from 

Section 4.1 where the approaches were not very stable in producing the typical denominator degrees of freedom and 

scales. 

Table 3. The observed test levels under the null hypothesis for generated data sets and met the conditions to compute the 

denominator degrees of freedom 

  

 

 
  

Observed test levels  

GB1 GB2 JH1 JH2 HJ1 HJ2 

Design 

1 

0.25 0.0741 0.1002 0.0480 0.0679 0.0387 0.0577 

0.50 0.0700 0.0965 0.0523 0.0760 0.0450 0.0676 

1.00 0.0549 0.0798 0.0487 0.0726 0.0431 0.0679 

2.00 0.0500 0.0740 0.0486 0.0724 0.0477 0.0707 

4.00 0.0523 0.0765 0.0519 0.0758 0.0513 0.0754 

Design 

2 

0.25 0.0527 0.0622 0.0525 0.0627 0.0527 0.0627 

0.50 0.0488 0.0562 0.0489 0.0574 0.0486 0.0571 

1.00 0.0475 0.0566 0.0463 0.0567 0.0461 0.0565 

2.00 0.0471 0.0551 0.0472 0.0551 0.0472 0.0549 

4.00 0.0497 0.0560 0.0497 0.0560 0.0497 0.0559 

Design 

3 

0.25 0.0901 0.1228 0.0530 0.0754 0.0436 0.0608 

0.50 0.0835 0.1113 0.0460 0.0759 0.0455 0.0762 

1.00 0.0687 0.0935 0.0501 0.0862 0.0601 0.1041 

2.00 0.0578 0.0760 0.0451 0.0623 0.0425 0.0621 

4.00 0.0438 0.0615 0.0421 0.0584 0.0413 0.0550 

 

5. Conclusions 

The six approximate F-tests considered in this paper are different based on the estimator for the variance of the estimate 

of fixed effects used in the Wald-type test statistic, and the type of moment method approximation used to compute the 

denominator degrees of freedom and scale. For a Wald-type statistic that distributed approximately as F distribution, the 

one-moment approximation was used to compute the denominator degrees of freedom. However, when a scaled 

Wald-type statistic distributed approximately as F distribution, the two-moment approximation was used to determine 

the denominator degrees of freedom and the scale factor. Analytically, and under specific conditions, we found that all 

the six approaches’ performances are the same, and under other conditions, some of these approaches are identical. In 

general, the denominator degrees of freedom computed by approaches which used the two-moment approximation 

found to be greater than those for approaches which used the one-moment approximation. This typically affected the 

approaches which used the two-moment approximation to be significantly liberal comparing to those used the 

one-moment approximation. This coincided with the results of the simulation study, which consisted of running 15 

models (3 block designs with 5 settings of the ratio of the variance components), where the approaches used the 

two-moment approximation (i.e., GB2, JH2, and HJ2) found produced larger denominator degrees of freedom, and 

hence these approaches performed liberally. The approaches used the one-moment approximation (i.e., GB1, JH1, and 

HJ1) performed similarly for some models which coincides with the findings of the simulations study of Fai and 

Cornelious (1996) for the similarity of the performance of the GB1 and JH1 approaches, however, these approaches 

performed differently for some other models. The JH1 approach which used the adjusted estimator of the variance of 
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the estimate of fixed effects suggested by Kackar and Harville (1984), and derived by using one-moment approximation, 

found usually to outperform all other approaches. The GB1 approach which uses the traditional estimator of the 

variance of the estimate of fixed effects found to be significantly liberal for some models, whereas the HJ1 approach 

which uses the adjustment of the estimator of the variance of the estimate of fixed effects that suggested by Harville and 

Jeske (1992) found to be excessively conservative test for some models. For models with the small design and small 

values of , the approaches usually did not perform adequately. The simulation findings are for block designs, and it is 

suggested to do more studies for the Satterthwaite based approaches for other models with different designs in order to 

evaluate their performance and ensure the adequacy of the JH1 approach, and to explore the potential of developing the 

approaches such that the performance becomes adequately even for models with small designs.  
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Appendix 

1. Proof of Lemma 1  

From the general expression (3.1a), and since 1,=  we obtain 

1 1( ) ( 2)E T   = , 

and substituting this quantity in the general expressions for the denominator degrees of freedom (3.1b), and (3.4a), and 

simplifying the expressions we have 

1,one = and 1.two =  

Also, from the general expression for the scale (3.4b), and since 1,=  we obtain 

,
( )( 2)

two

twoE T




 
=  

and substituting 1 1( ) ( 2),E T   = and since 1,two = we have 1. =   

2. Proof of Lemma 2  

Without loss of generality, it suffices to show that the approximates of s for the extensions of the JH approaches (e.g., 

the JH1 and JH2 approaches) are the same for 1, , .s =   

22( )s

s

s s

d
 

g Wg
 for 1, , ,s =  

and sg is the gradient of ˆ
s JH s

a Φ a with respect to ,θ  and ja is the sth row of .PL  The spectral decomposition 

for ˆ' 'JHL Φ L = P DP for P an orthogonal matrix, D is a diagonal matrix of eigenvalues 'sd s and 0sd  for 

1, , .s   

According to the partition of the model, we have: 

1 1
1 1 1 1

1

( )
( )

[ ( ) ]f

 
 



 


 
 

X Σ X 0
Φ = XΣ X =

0 θ A
, 

and from expression (2.11) for iΡ and ijQ  we have 

11 1

1 1( )( )( )
,

( ) ( )

i

i

i i i f



  

       
  
    

Χ Σ Χ 0Σ ΧΣ Χ
Ρ = Χ Χ = =

0 θ A
 

1 1

1 1

2 2

* *

,
*ij

i j

i j

 
 

 

 

 
   
    

   

Σ Σ
Q = Χ Σ Χ = Σ Σ

Χ Σ Χ
 

1

*

( ) ( )[ ( ) ]i j

i jf f f 

 
 
 

0
ΦΡΦΡ Φ =

0 θ θ θ A
, and  

1 1
1 1

2 2

* *

* [ ( ) ] [ ( ) ]ij

i j

f f
 

 
 

 
 

  
   

ΦQ Φ = Σ Σ
θ A Χ Σ Χ θ A

, 

where ( ) ( ) ( )i if f θ = θ , and (*) refers to quantities in the matrices that we don’t need to compute. Now, since 
[ ] L = 0 B from the model partition, we obtain 

11
,

( )f

 L ΦL = B A B
θ

 

and 

1 1
1 1

2 22

1

[ ( )]
ij

i jf  

 
  

  
 

Σ Σ
L ΦQ ΦL = B A Χ Σ Χ A B

θ
 

Since ,JH  Φ Φ Λ and 
1 1

( )
r r

ij ij i ij

i j

w
 

 
 

 
Λ =Φ Q Ρ ΦΡ Φ ,   

then                                   
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1 1
1 1 1

2 22
1 1

1
            

( ) [ ( )]

JH

r r
ij

i j i j

w

f f  

 
  

 

  

 
  

 


L Φ L = LΦL L ΛL

Σ Σ
= B A B B A Χ Σ Χ A B

θ θ

 

               
1

3
1 1

1
( ) ( )

[ ( )]

r r

ij i j

i j

w f f
f



 

  θ θ B A B
θ

                                (3.6) 

Note that according to the model partition,  

11

2 2
2 2

( )
( ) ,i

i i

f
 

  

 

Χ Σ ΧΣ
Χ Χ = = θ A  

and also, we have                    

1
1 1

2 2 2 2 .i

i


 

 


Σ
Χ Χ = Χ Σ G Σ Χ  

This implies that    

1 1

2 2 1 1 1 1 1 1

2 2 2 2

( )j

i j i j

i

 

     


  


Χ Σ G Σ Χ
= Χ Σ G Σ G Σ Χ Χ Σ G Σ G Σ Χ  

( ) ,  where ( ) ( ) ( ).ij ij i jf f f = θ A θ = θ  

Then, 

       

1 1

2 2
1 1 1 1

1
( ) .

2

r r r r

ij ij ij
i j i ji j

w w f
 

 

   

 

 

 
Σ Σ

Χ Σ Χ = θ A                 (3.7) 

Substituting expression (3.7) in (3.6), we obtain  

1( ) ,JH ijh  L Φ L = θ B A B  

where              2 3
1 1 1 1

1 1 1
( ) ( ) ( ) ( ).

( ) 2[ ( )] [ ( )]

r r r r

ij ij ij ij i j
i j i j

h w f w f f
f f f   

  θ = θ θ θ
θ θ θ

 

So, the approximate of s  for 1, ,s = will be      

2 2

1 1

1 1

2( ) 2( )

[( ) ( ) ] [( ) ( ) ]

s s

s s i ij s s r i ij s j r

d d

h h  

 
        

=
g Wg θ b B A Bb W θ b B A Bb

 

2

1 2

1 1

2

1 2

1 1

2( )

( ) [( ) ( )] [( ) ( )]

2( )
,

( ) ( ) ( ) ( ) ( )

s

s s i ij r i ij r

s

r r

s s ij i ij j ij
i j

d

h h

d

w h h

 

 



 



 

     

     

=
b B A Bb θ W θ

=

b B A Bb θ θ

 

where sb is the s row of the orthogonal matrix P.  

Note that 
1 ,s s sd  = b B A Bb and hence we have  

2

1 1

2( ) 2

( ) ( ) ( ) ( )

s

r r

s s
ij i ij j ij

i j

d

w h h 
 


   

=
g Wg θ θ

 

which doesn’t depend on the row s, and the approximation of s are the same for 1, , .s =   

For the extensions of the GB approach,      
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1
( ) ( ) ,

( )
ijh h

f
θ = θ =

θ
 

and for the HJ approaches,     

2 3
1 1 1 1

1 1 2
( ) ( ) ( ) ( ).

( ) [ ( )] [ ( )]

r r r r

ij ij ij ij i j
i j i j

h w f w f f
f f f   

  θ = θ θ θ
θ θ θ

 

3. Proof of Lemma 3   

(a) From expressions (3.2), (3.4c), and lemma 2, we have 

                    1 1( ) / ( 2)E T   = , provided 1 2                             (3.8) 

Also, from expression (3.4c), and lemma 2, we have 

            
2 2

1 1 1 1( ) [2 ( 1)] / [( 2) ( 4)],Var T      = provided 1 4                  (3.9) 

Substituting expressions (3.8) and (3.9) for E(T) and Var(T) in expression (3.4a), we obtain 

2

1

1

12
2

1 1 1

2

11 1

2 ( 2)
2 2 4

4 ( 1)
3 32 ( 1)

2
2( 2) ( 4)

two




 

  

 

 
 

  
   

 
  

   

=  

Note that from expressions (3.8) and (3.1b), we obtain 1,one = and hence we have              

                      
2 4

( 1)
3 3

two one 


 =                                (3.10) 

(b) Because of the model partition, as we have seen in part (a), 1q one  = = for all 1, , .q = So, for data sets 

produce 1 4,one  = the two-moment approximation is not applicable since we require 1 4.   Hence the proof 

will be for the data sets produce 1 4.one  =   

Since                                       4,one   

then                              
1 1

4 ,
3 3

one one one  
    

     
   

 

and                                 
2 1

4
3 3

one one 
    

    
   

 

Note that from part (a), the left side is two as in expression (3.10).                                    

For the scale, recall form expression (3.4b) that 

                                     ,
( )( 2)

two

twoE T




 
=    

and expressing E(T), and two  in terms of one using expressions (3.8), and (3.10), we obtain 

 

2

2

2 1
4

3 3

2 1
4 2

2 3 3

  

( 2) 4 2[ 4( 1)]
  

( 2) 4 2

one

one
one

one

one one one

one one one









  

  

      
    

    

      
     

     

    

  

=

=

 

To prove that 1,  it suffices to show that 4( 1)one one    , 

and since                                     4,one   
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then                                 ( 1) 4( 1) ,one one one        

and                                       4( 1)one one        

Note that the equality happens for the case of 1,= where we obtain 1 = as in lemma 1. 

4. Proof of Lemma 4   

(a) For models that satisfy Zyskind’s condition, and the assumption above, it can be proved that ij i ijQ = Ρ ΦΡ

(Alnosaier & Birkes, 2019, Lemma 6).  

Since                              
1 1

( ) ,
r r

ij ij i ij

i j

w
 

 
 

 
Λ =Φ Q Ρ ΦΡ Φ  

then                             Λ = 0 , and hence JH HJΦ =Φ =Φ  

This implies that ,JH HJ GBT T T= = and hence the test statistics using one-moment (i.e., 1 1 1)JH HJ GBF F F= = are equal, 

and the denominator degrees of freedom, as in expression (3.1b) are equal as well. Note that the test statistic using 

one-moment is different from the test statistic using two-moment because of the scale value. However, since 
,JH HJ GBT T T= = then the denominator degrees of freedom using two-moment, as in expression (3.4a) are equal. Also, 

the scales, as in expression (3.4b) are equal, and hence the test statistics are equal.     

(b) Direct. From part (a), and since the scale is one (Lemma 1), then all test statistics are equal.  

5. Preparing Formulas for the Simulation Study 

The REML estimates of the variance components 
2 2 and b e   were computed by the iteration algorithm on p.252 of 

Searl et al. (2006): 

   
, 1 1

( ) ) ,
r r

i j ii j i
tr y y

 
G M G M θ = MGM  

where 

                              
1 1 1 1 1( ) ,     M = Σ Σ X XΣ X XΣ                            (4.1) 

( ),M = M θ and θ is the solution of the equation. The variance-covariance matrix of the REML estimators of the 

variance components, [ ]ij r rw W = is approximated by the inverse of the expected information matrix ( )W = W θ

(Kenward and Roger, 1997). To approximate the quantity q in expression (3.3),  

22( )
,

'

q

q

q q

d
 

g Wg
 

we need to compute the estimate of the quantity qg which is the gradient of ˆ( )q qVar a β a with respect to ,θ and qa is 

the qth row of .PL  So, we need to find expressions for ( ) ,i  Φ and ( ) ,i  Λ for 1,  2.i =  

              

1 1 1
1 1 1 1( )

( ) ( ) i

i i i  

  
     

   
  

Φ XΣ X Σ
= = X Σ X X X X Σ X = ΦPΦ           (4.2) 

Let
2 2

1 2,  and ,e b   = = and by noting 1 ,nG = I  we obtain  

1 1

1 1( ) ,     Φ = ΦPΦ = ΦXΣ Σ XΦ                     (4.2a) 

 

and 

                      
1 1

2 2 2( )     Φ = ΦP Φ = ΦXΣ G Σ XΦ                   (4.2b) 

2 2

1 1

2 2 2 2

1 1 1 1

( )

     ( ) ( )

ij ij i j

i ji i

ij

ij ij i j ij i j

i j i ji i

w

w
w

 

 

 

   

     
  

     

   
     

    



 

Λ
= Φ Q Ρ ΦΡ Φ

Φ
  = Q Ρ ΦΡ Φ Φ Q Ρ ΦΡ Φ

 

2 2 2 2

1 1 1 1

( )
( ) ,

ij i j

ij ij ij i j

i j i ji i

w w
    

     
     

    
 

Q Ρ ΦΡ Φ
Φ Φ Φ Q Ρ ΦΡ                 (4.3) 

The above expression consists of four terms. The first term and fourth term are respectively:   



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 13, No. 1; 2024 

37 

                      
2 2 2 2

1 1 1 1

( ) ( ) ,ij ij i j i ij ij i j

i j i ji

w w
    

   
     

    
 

Φ
Q Ρ ΦΡ Φ = ΦPΦ Q Ρ ΦΡ Φ              (4.4) 

and 

         
2 2

1 1 1 1

( ) ( )
r r

ij ij i j ij ij i j i

i j i ji

w w
   

   
     

   
 

Φ
Φ Q Ρ ΦΡ = Φ Q Ρ ΦΡ ΦPΦ                  (4.5) 

Note that                       

1 1 1 1
1 1( )ij i j

i j i j   

   
    

    
   

Σ Σ Σ Σ
Q Ρ ΦΡ = X Σ X X X X Σ X X X  

1 1 1 1 1 1 1( )
i j 

       
     

Σ Σ
= X Σ Σ Σ X X Σ X X Σ Σ X  

1 1 ,
i j 

  


 

Σ Σ
= X Σ M Σ X  

where M is as in expression (4.1). 

So, the third term can be expressed as  

2 2

1 1

( )ij i j

ij

i j i

w
 

  
 

 


Q Ρ ΦΡ
Φ Φ  

1 1 1 11 1

2 2 2

11 12 22

( ) ( )( )
2

i i i

w w w
  

         
  

   

XΣ MG Σ X XΣ G MG Σ XXΣ MΣ X
= Φ Φ  

11 12 2 22 2 22 ,
i i i

w w w
  

   
   

   

H H H
= ΦX G G G XΦ                      (4.6) 

where 
1 1, 

H = Σ MΣ  
1 1 1 1 1 1 1 1

1( ) ,            H = Σ Σ MΣ Σ MMΣ Σ MΣ Σ  

and       

1 1 1 1 1 1 1 1

2 2 2 2( )            H = Σ G Σ MΣ Σ MG MΣ Σ MΣ G Σ  

Note that for the models considered in the simulation study, we have 
1 1

2 2 , 
G Σ = Σ G  and this implies 12 21,Q = Q

and 1 2 2 1.Ρ ΦΡ = Ρ ΦΡ  

To compute the second term, 
1 1

( ) ,
r r

ij

ij i j

i j i

w

 

 
 

 
Φ Q Ρ ΦΡ Φ  we need to find an expression for ( ) ,i ijw  where, as 

mentioned above, the inverse of the expected information matrix W is used to approximate W.  

The expected information matrix EI can be expressed as on p. 253 of Searl et al (2006):  

2

2 2 2

( ) ( )1

( ) ( )2
E

tr tr

tr tr

 
 
 

MM MMG
I =

MMG MG MG
, 

then                              
2 2 2

2

( ) ( )2
,

( ) ( )

tr tr

tr trc

 
 
 

MG MG MMG
W =

MMG MM
 

where                           
2

2 2 2( ) ( ) [ ( )] .c tr tr tr= MM MG MG MMG   

The quantity ( )i ijw  is approximated by ( ) ,i ijw   and a useful formula to compute this approximation can be 

found on p. 341 of Pace and Salvan (1997): 

2 2

1 1

( ) ( ) ,i ij ik lj i kl

k l

w w w i 
 

    = where 2 2[ ]E kli I = . 

That is, we obtain: 
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2

11 2 22

2 2 2 2

2

2 2 2

2
( ) [ ( )] ( ) ( )

                    2 ( ) ( ) ( ) ( )

                    [ ( )] ( ) ( ) ,

i i

i

i

w tr tr
a

tr tr tr

tr tr

 





    

  

  

= MG MG MM

MG MG MMG MMG

MMG MG MG

 

                       





12 2 2 22

2 2 2

2 2 2

2
( ) ( ) ( ) ( ) ( )

                    2 ( ) ( ) ( ) ( )

                    ( ) ( ) ( ) ( ) ,

i i

i

i

w tr tr tr
a

tr tr tr

tr tr tr

 





   

  

  

= MG MG MMG MM

MG MG MM MMG

MMG MM MG MG

 

                        





2

22 22

2 2

2

2 2

2
( ) [ ( ] ( ) ( )

                    2 ( ) ( ) ( ) ( )

                    [ ( )] ( ) ( ) ,

i i

i

i

w tr tr
a

tr tr tr

tr tr

 





    

  

  

= MMG MM

MMG MM MMG

MM MG MG

 

where 

1( ) ( ) 2 ( ),tr tr  MM = MM           1 2 2( ) ( ) 2 ( ),tr tr  MMG = MMMG  

1 2 2 2 2( ) ( ) 2 ( ),tr tr  MG MG = MG MMG  

2 2( ) ( ) 2 ( ),tr tr  MM = MMG M  

2 2 2 2( ) ( ) 2 ( ),tr tr  MMG = MMG MG  

and 

2 2 2 2 2 2( ) ( ) 2 ( ).tr tr  MG MG = MG MG MG  

All quantities used in the simulation study and are functions of the variance components θ  are to be estimated by 

substituting the REML estimates θ̂ for .θ   

6. Computed Denominator Degrees of Freedom and Scale 

The average of computed denominator degrees of freedom and scales for the approaches are presented in table 3 and 4 

below.   
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Table 4. The average of computed denominator degrees of freedom for generate data sets of which the iteration 

algorithm to compute the REML estimates converged, and met the conditions to compute the degrees of freedom under 

the null hypothesis 

  

 

 
  

The average of computed denominator degrees of freedom  

GB1 GB2 JH1 JH2 HJ1 HJ2 

Design 

1 

0.25 34.61 147.30 27.94 118.62 24.41 102.74 

0.50 33.59 142.14 27.17 114.24 24.48 101.81 

1.00 30.07 125.65 27.08 112.03 25.27 103.67 

2.00 27.91 115.56 27.50 113.68 27.12 111.89 

4.00 27.23 112.41 27.14 111.99 27.05 111.57 

Design 

2 

0.25 23.50 49.49 21.72 45.84 21.40 45.48 

0.50 23.32 49.08 22.14 46.99 22.20 46.29 

1.00 23.13 48.64 23.28 47.98 23.11 47.74 

2.00 23.04 48.43 23.00 48.34 22.98 48.28 

4.00 23.01 48.36 23.00 48.34 22.99 48.33 

Design 

3 

0.25 8.06 21.16 5.49 11.21 5.37 23.64 

0.50 7.94 18.15 6.57 39.69 13.51 25.57 

1.00 7.47 15.57 16.55 31.95 13.52 29.31 

2.00 6.60 12.53 5.79 12.43 6.02 17.03 

4.00 6.17 11.19 5.83 10.45 5.67 9.90 

 

Table 5. The average of computed scales for generate data sets of which the iteration algorithm to compute the REML 

estimates converged, and met the conditions to compute the denominator degrees of freedom under the null hypothesis 

  

 

 
  

The average of scales   

GB2 JH2 HJ2 

Design 

1 

0.25 0.9535 0.9399 0.9319 

0.50 0.9534 0.9399 0.9330 

1.00 0.9484 0.9498 0.9374 

2.00 0.9447 0.9439 0.9431 

4.00 0.9433 0.9432 0.9430 

Design 

2 

0.25 0.9534 0.9530 0.9507 

0.50 0.9531 0.9544 0.9570 

1.00 0.9527 0.9536 0.9532 

2.00 0.9525 0.9525 0.9524 

4.00 0.9525 0.9525 0.9524 

Design 

3 

0.25 0.8545 0.8044 0.7747 

0.50 0.8533 0.6765 0.7202 

1.00 0.8440 0.6130 0.6507 

2.00 0.8297 0.7583 0.7398 

4.00 0.8227 0.8171 0.8156 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

http://creativecommons.org/licenses/by/4.0/

