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Abstract

Markov chain Monte Carlo (MCMC) methods are a powerful and versatile tool with applications spanning a wide spec-
trum of fields, including Bayesian inference, computational biology, and physics. One of the key challenges in applying
MCMC algorithms is to deal with estimation error. The main result in this article is a closed form, non-asymptotic so-
lution for the sample error variance of a single MCMC estimate. Importantly, this result assumes that the state-space is
finite and discrete. We demonstrate with examples how this result can help estimate and calibrate MCMC estimation error
variance in the more general case, when the state-space is continuous and/or unbounded.

1. Introduction

Markov chain Monte Carlo (MCMC) is a very powerful tool for estimating and sampling from complicated high-dimensional
distributions. MCMC algorithms are used in a wide spectrum of fields, including Bayesian inference (Gamerman & Lopes,
2006), computational biology (Gelman & Rubin, 1996), and physics (Binder & Heermann, 2010).

Consider an irreducible Markov chain X :X→ S with stationary distribution π(·). Let g :X→R be a measurable function.
In the MCMC context, the objective is generally to estimate a finite measure of interest π(g) =:

∫
x∈X π(x)g(x)dx based

on a sample estimate π̂(g) =: 1
n ∑

n
t=1 g(Xt), where the sample path (Xt)

n
t=0 is obtained using simulation.

One of the biggest challenges with MCMC algorithms is to evaluate the error of the estimates. This paper seeks to
provide novel tools to address this challenge by proposing approaches to estimating and calibrating Var

(
π̂(g)−π(g)

)
=

Var
(
π̂(g)

)
that should be applicable to a broad range of MCMC contexts.

2. Related Literature

A plethora of empirical diagnostic tools have been proposed in the statistical literature to analyze MCMC convergence
and estimation error. Roy, 2020 provides a recent critical overview of some of the more popular approaches. In particular,
they highlight that empirical diagnostics can be prone to overly conservative convergence assessments or falsely detect
convergence.

The majority of the more theoretically founded diagnostics for quantifying MCMC accuracy rely on the Markov chain
Central Limit Theorem (MCCLT). The MCCLT states that

√
n
(

π̂(g)−π(g)
)

D−→ N
(

0,σ2
)
,

where σ2 = limn→∞ nVar
(
π̂(g)

)
. The conditions under which the MCCLT applies is a well studied problem (see Jones,

2004 among others). However, these conditions can be difficult to verify, in particular for non-reversible Markov chains
(see Hang Jian et al., 2022 for references on this point). In any case, there are at least two key practical challenges in
invoking the MCCLT, as discussed in Robert & Casella, 2011.

First, σ2 is generally unknown and needs to be ascertained somehow. While closed form results exist for Markov chains
over finite and discrete state-spaces (Spitzner & Boucher, 2007; Trevezas & Limnios, 2009), the dominant approach in the
MCMC literature is to estimate σ2 based on simulation output using techniques such as replication and batch means (see
Hang Jian et al., 2022 for more details). For example, in Hang Jian et al., 2022 the authors used simulation for various
values of n to estimate supn→∞ nVar

(
π̂(g)

)
. Such approaches beg the question as to what value of n is high enough to

infer asymptotic variance from sample variance. This is a hard question to answer if the convergence properties (such as
the mixing time - see Levin, Peres, & Wilmer, 2009 for more details) of the Markov chain are unknown.

Second, the MCCLT only provides asymptotic guarantees, yet in practise n is always finite. This is another reason why
the convergence behaviour of Var

(
π̂(g)

)
needs to be understood.
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While non-asymptotic bounds have been proposed in the literature (see Łatuszyski, Miasojedow, & Niemiro, 2013), we
were not able to find any non-asymptotic closed form solutions for Var

(
π̂(g)

)
. Much of the difficulty in estimating

Var
(
π̂(g)

)
stems from the fact that in MCMC applications, X is often continuous, multidimensional, and/or unbounded.

On the other hand, when X is discrete and finite, as we will show, Var
(
π̂(g)

)
can be derived non-asymptotically by

conditioning on the number of visits to each state in X.

This article adds to the existing literature in that it i) proposes a closed form solution for Var
(
π̂(g)

)
for any ergodic

Markov chain with a finite and discrete state-space, ii) outlines approaches to extending this result to cases where the
state-space is continuous or unbounded, and iii) demonstrates with examples how our results enable us to target a desired
level of Var

(
π̂(g)

)
in the context of MCMC estimation.

3. Main Results and Proofs

3.1 Main Results

Theorem 3.1. Let X : X→ S be an irreducible Markov chain with finite and discrete state-space X := {xk : k ∈ [d]},
transition matrix P, and unique stationary distribution vector Π.

Let π̂(g) be based on a sample path (Xt)
n
t=0 of this Markov chain, and let P̂ be the maximum likelihood estimate of P

based on this sample path. Furthermore, assume that P̂ admits the unique stationary distribution vector Π̂. In this context

Var
(

π̂(g) | {Nk}k∈[d]

)
=

d

∑
k=1

γkΠ̂2
k

Nk
,

where Nk = |{t ∈ [n−1] : Xt = xk}| and {γk}k∈[d] is a set of scalars that depend on g, P, and a ”one condition g-inverse”
of P .

The definition of a one condition g-inverse is given in section 3.2. The proof of theorem 3.1 (lemmas 3.4 and 3.5) as well
as the computation of {γk}k∈[d] (lemma 3.6) are given in section 3.3.

The following two corollaries follow straightforwardly from theorem 3.1.

Corollary 3.2. By making the approximation that ∀ k∈ [d], Π̂k ≈Nk/n, the above equality yields the simplified expression

Var
(

π̂(g) | {Nk}k∈[d]

)
≈ 1

n2

d

∑
k=1

Nkγk.

Corollary 3.3.

lim
n→∞

nVar
(
π̂(g)

)
=

d

∑
k=1

γkΠk.

Corollary 3.3 follows from the fact that limn→∞ Π̂k = limn→∞
Nk
n = Πk. We reiterate that results similar to corollary 3.3

already exist in the literature (see Spitzner & Boucher, 2007; Trevezas & Limnios, 2009).

3.2 Core Concepts Underlying Theorem 3.1

3.2.1 One condition g-inverse and Matrix Perturbation

The following definition and equation (1) are drawn from Hunter, 2005.

Definition (One condition g-inverse). A one condition g-inverse of a matrix A is any matrix A− such that AA−A = A.

Let P = [pi j] ∈ Rd×d be the transition matrix of a finite irreducible Markov chain which is assumed to have a unique
steady-state distribution vector Π. Let P̃ = [p̃i j] = P + E be the transition matrix of the perturbed Markov chain where
E = [εi j] is the matrix of perturbations. Notice that ∀(i, j) ∈ [d]2, |εi j| ≤ 1 and ∀i ∈ [d], ∑

d
j=1 εi j = 0. P̃ is assumed to

admit the unique steady-state distribution vector Π̃. Then according to theorem 2.1 in Hunter, 2005,

Π̃
T −Π

T = Π̃
T EH, (1)

where H = G(I− eΠT ), eT = (1, ...,1), I is the identity matrix, and G is a one condition g-inverse of I−P.
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3.2.2 Computing Matrix H

An exhaustive review of the different ways to compute matrix G (and therefore matrix H) is beyond the scope of this
work. For the purposes of the examples in section 4, we computed G as the so-called group inverse of I−P. This choice
is mainly motivated by ease of computation for the transition matrix of an ergodic Markov chain (see theorem 5.2 in
Meyer, 1975). Indeed, the most computationally intensive step is the calculation of the inverse of a (d− 1)2 principal
submatrix of I−P.

It bears mentioning that H can also be derived based on the matrix of mean first passage times and the steady-state
distribution vector (see Hunter, 2005), which can enhance interpretability.

3.2.3 The Sequence Matrix

For a sample path of length n characterised by the sequence of observed states (Xi)
n
i=0 of a discrete ergodic Markov chain

with transition matrix P, recall how we defined Ni in section 3.1. For any pair of states (i, j)∈X2, let Ni j be the number of
transitions from state i to state j in the sample path, or more formally Ni j := |{t ∈ [n−1] : (Xt ,Xt+1) = (i, j)}|, (i, j)∈ [d]2.
We will refer to M = [Ni j]∈Nd×d as the sequence matrix. Also, throughout this work, we will assume that ∀i∈ [d], Ni≥ 1.

Remark. Conditional on {Ni | i ∈ [d]}, the rows of M are mutually independent and respectively follow multinomial
distributions with Ni trials and unknown event probabilities pi1, ..., pid .

Proof. Conditional on Ni, the joint outcome of Ni1, ...,Nid can be equated to Ni independent trials (independence follows
from the Markov property) where the outcome of each trial has a categorical distribution with fixed success probabilities
pi1, ..., pid . In other words, conditional on Ni, Ni1, ...,Nid jointly follow a multinomial distribution with Ni trials and event
probabilities pi1, ..., pid .

Also, ∀i ∈ [d] let Ni· be a vector corresponding to row i of the sequence matrix M and let Pi· be a vector corresponding to
row i of the unknown transition matrix P. Given known {Ni | i ∈ [d]} and unknown {Pi· | i ∈ [d]}, for j , k:

P
(

N j· = X
⋂

Nk· = Y | {Ni | i ∈ [d]},{Pi· | i ∈ [d]}
)

= P
(

N j· = X | Nk· = Y,{Ni | i ∈ [d]},{Pi· | i ∈ [d]}
)

P
(

Nk· = Y | {Ni | i ∈ [d]},{Pi· | i ∈ [d]}
)

= P
(

N j· = X | N j,Pj·
)

P
(

Nk· = Y | Nk,Pk·

)
= P

(
N j· = X | {Ni | i ∈ [d]},{Pi· | i ∈ [d]}

)
P
(

Nk· = Y | {Ni | i ∈ [d]},{Pi· | i ∈ [d]}
)
.

�

Importantly, independence between the rows only holds conditional on the knowledge of {Ni | i ∈ [d]}. Otherwise the
rows of M are of course not independent since crucially ∀i ∈ [d], Ni depends on ∑ j∈[d] N ji.

3.3 Proof of Theorem 3.1

Notice that for a sample path (Xt)
n
t=0 of an irreducible Markov chain with discrete and finite state-space X, transition

matrix P, and unique steady-state distribution vector Π, we can build the approximation P̂ = [p̂i j] = [Ni j/Ni] of P based
on the sequence matrix. Moreover, P̂ can be viewed as a perturbation of P (and vice versa).

Hence the difference between π̂(g) and π(g) can be expressed in terms of this perturbation of the transition matrix (lemma
3.4). This is useful because it allows us to explicitly derive Var

(
π̂(g)−π(g)

)
conditional on the number of visits to each

state in X (lemma 3.5).

Lemma 3.4. Assume that P̂ admits the unique steady-state distribution vector Π̂. Let E = [εi j] = P̂−P and H = G(I−
eΠT ), where eT = (1, ...,1), I is the identity matrix, and G is a one condition g-inverse of I−P. Then

π̂(g)−π(g) =
d

∑
k=1

Π̂k

d

∑
i=1

g(xi)
d

∑
l=1

hliεkl .
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Proof. Lemma 3.4 is essentially a corollary of equation (1).

π̂(g)−π(g) =
d

∑
k=1

(
Π̂k−Πk

)
g(xk)

=
(

Π̂
T −Π

T
)g(x1)

...
g(xd)


= Π̂

T EH

g(x1)
...

g(xd)


=

d

∑
k=1

Π̂k

d

∑
i=1

g(xi)
d

∑
l=1

hliεkl

�

Lemma 3.5. Using the same notation as for lemma 3.4,

Var
(

π̂(g)−π(g) | {Nk}k∈[d]

)
=

d

∑
k=1

Π̂
2
k

d

∑
i=1

d

∑
j=1

g(xi)g(x j)Cov
( d

∑
l=1

hliεkl ,
d

∑
m=1

hm jεkm

)
.

Proof. Conditional on {Nk}k∈[d],

Var
(

π̂(g)−π(g)
)

= Var

(
d

∑
k=1

Π̂k

d

∑
i=1

g(xi)
d

∑
l=1

hliεkl

)

=
d

∑
k=1

d

∑
k′=1

Π̂kΠ̂k′Cov

(
d

∑
i=1

g(xi)
d

∑
l=1

hliεkl ,
d

∑
i=1

g(xi)
d

∑
l=1

hliεk′ l

)

=
d

∑
k=1

Π̂
2
kVar

(
d

∑
i=1

g(xi)
d

∑
l=1

hliεkl

)

=
d

∑
k=1

Π̂
2
kVar

(
d

∑
i=1

g(xi)
d

∑
l=1

hliεkl

)

=
d

∑
k=1

Π̂
2
k

d

∑
i=1

d

∑
j=1

g(xi)g(x j)Cov
( d

∑
l=1

hliεkl ,
d

∑
m=1

hm jεkm

)
The first equality follows from lemma 3.4. The third equality follows from conditional independence between the rows
of the sequence matrix. �

Lemma 3.6. Without loss of generality, assume that the row vector Pk· has only nonzero elements. ∀(i, j,k) ∈ N3, condi-
tional on Nk,

Cov
( d

∑
l=1

hliεkl ,
d

∑
m=1

hm jεkm

)
=

1
Nk

ĥT
i Σkĥ j,

where

ĥi =

h1i
...

hdi

−hdi

1
...
1

 ,

ĥ j =

h1 j
...

hd j

−hd j

1
...
1

 ,
13
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and

Σk =


pk1(1− pk1) −pk1 pk2 · · · −pk1 pkd
−pk1 pk2 pk2(1− pk2) · · · −pk2 pkd

...
...

. . .
...

−pk1 pkd −pk2 pkd · · · pkd(1− pkd)

 .

Proof.

Cov
( d

∑
l=1

hliεkl ,
d

∑
m=1

hm jεkm

)
= Cov

(d−1

∑
l=1

(hli−hdi)εkl ,
d−1

∑
m=1

(hm j−hd j)εkm

)
=

d−1

∑
l=1

d−1

∑
m=1

(hli−hdi)(hm j−hd j)Cov
(

εkl ,εkm

)
=

1
N2

k

d−1

∑
l=1

d−1

∑
m=1

(hli−hdi)(hm j−hd j)Cov
(

Nkl ,Nkm

)
=

1
Nk

d−1

∑
l=1

(hli−hdi)
2 pkl(1− pkl)−

1
Nk

d−1

∑
l=1

∑
m,l

(hli−hdi)(hm j−hd j)pkl pkm

=
1

Nk
ĥT

i Σkĥ j

The first equality follows from the fact that ∀ k∈ [d], ∑
d
l=1 εkl = 0. The fourth equality follows from well known properties

of the multinomial distribution (e.g., see chapter 2 of Rudas, 2018 for more details) �

These three lemmas collectively prove Theorem 3.1 and show how to compute {γk}k∈[d].

4. Applications and Examples

Provided P is known or can be approximated, theorem 3.1 lends itself to the computation of confidence intervals for π(g)
based on a single sample path of a Markov chain. However, when P is unknown and needs to be estimated, which is
generally the case in MCMC applications, this confidence interval is not guaranteed to contain π(g) with the prescribed
level of confidence, as the variance may be underestimated.

Another application of theorem 3.1 could be to generate a sample of MCMC estimates with a target level of variance. If
{γk}k∈[d] can be computed (or estimated), then corollary 3.2 lends itself to a stopping rule whereby the sample generation
process is interrupted as soon as 1

n2 ∑
d
k=1 Nkγk is less than or equal to the variance target. We will illustrate this application

with two examples in sections 4.2 and 4.4.

To make matters more complicated, in MCMC applications X can often be continuous and/or unbounded. This suggests
our main result is of limited use unless it is possible to extend it to cases where X is continuous and/or unbounded. In the
next several subsections, we propose approximations to this effect which we illustrate with the examples in sections 4.2
and 4.4.

4.1 Approximation for Unbounded X

As was previously mentioned, in MCMC applications X may be unbounded. However, theorem 3.1 only applies for
discrete and finite X. Hence in order to invoke theorem 3.1 when X is unbounded we need to find a bounded set X̂
such that

∫
X̂ π(x)dx ≈ 1. In practise this can be done by identifying boundary values of X beyond which π(x) becomes

disproportionately small, as will be exemplified in the next subsection.

4.2 Example 1: Diffusive Non-reversible Chain

Consider the numerical example in section 6.2 in Hang Jian et al., 2022. Specifically, consider a Markov chain with state-
space N and transition probability given by p0,0 = 0.99, p0,1 = 0.01, and ∀ x≥ 1, px,x+1 =

( x
x+1

)2 and px,0 = 1−
( x

x+1

)2.
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This Markov chain can be shown to have have stationary distribution

π(0) =
1

1+ 0.01π2

6

, and π(x) =
0.01
x2 π(0) for x≥ 1.

Moreover, let

g(x) =

{
0 if x = 0,
x−1 if x≥ 1.

Hang Jian et al., 2022 discuss this example specifically because the Markov chain is non-reversible and it is therefore
non-trivial to establish a CLT and obtain a confidence interval for π(g). They proceed to apply a theorem from their paper
which provides a theoretical basis to establish a confidence interval for π(g). Crucially, this theorem requires knowledge
of a number B > 0 such that supn→∞ nVar

(
π̂(g)

)
≤ B2.

In order to determine B, the authors generated samples of 1,000 values of π̂(g) for n ranging from 100 to 100,000. They
obtained sample values for nVar

(
π̂(g)

)
ranging from 0.0141 to 0.0181. Furthermore, their data suggests that nVar

(
π̂(g)

)
probably converges to a point in the neighbourhood of 0.015. However, in the absence of any theoretical guarantees
that supn→∞ nVar

(
π̂(g)

)
is contained between 0.0141 and 0.0181, the authors understandably settled for the conservative

B =
√

0.02.

We will now show how corollary 3.2 can be used to provide theoretically grounded evidence that limn→∞ nVar
(
π̂(g)

)
is

in the vicinity of 0.015 (which would imply that supn→∞ nVar
(
π̂(g)

)
is also in the vicinity of 0.015).

Consider a Markov chain over state-space [0,d] with transition matrix

Ad :=


0.99 0.01 0 · · · 0
0.75 0 0.25 · · · 0
...

...
...

1−
( d

d+1

)2 0 0 · · ·
( d

d+1

)2

 .

Such a finite state-space Markov chain essentially approximates the previously described Markov chain of interest by
cutting off the state space. This approximation becomes increasingly precise as d increases towards ∞. One way to see
this is by observing that the first element of matrix Ad’s steady-state distribution vector Π converges towards π(0) =

1
1+ 0.01π2

6

≈ 0.983817 as d increases, as shown in the below table.

d Π0
5 0.984693
10 0.984277
25 0.984007
50 0.983913
75 0.983881
100 0.983865
150 0.983849

Since corollary 3.3 can not be directly applied to the Markov chain of interest (as its state-space is unbounded), our pro-
posed strategy is to compute {Πk}k∈[0,d] and {γk}k∈[0,d] based on matrix Ad . This allows us to approximate limn→∞ nVar

(
π̂(g)

)
for the chain of interest using corollary 3.3. The below table shows values of ∑

d
k=1 γkΠk (which according to corollary 3.3

equals limn→∞ nVar
(
π̂(g)

)
for the Markov chain over finite state-space [0,d]) for various values of d.

d ∑
d
k=1 γkΠk

5 0.015392
10 0.015258
25 0.015213
50 0.015201
75 0.015197
100 0.015195
150 0.015194

15



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 13, No. 1; 2024

Thus the data suggests that limn→∞ nVar
(
π̂(g)

)
is approximately 0.0152 for the Markov chain of interest.

Next, our aim is to show how corollary 3.2 can be used to generate a sample of estimates for π(g) with approximately
a certain level of target variance. We achieve this by applying corollary 3.2 to a finite state-pace Markov chain with
transition matrix Ad , whereby d = 3.

Furthermore, for a sample path (Xt)
n
t=0 of the Markov chain of interest, ∀ k ∈ [0,3] we define

N
′
k :=

{
|{t ∈ [n−1] : Xt ≥ 3}| if k = 3,
|{t ∈ [n−1] : Xt = k}| otherwise.

Now consider the following numerical experiment. For a given variance target θ , we generated 1000 random sample paths
for the Markov chain of interest. Importantly, we did not fix the sample path length n but instead stopped and moved on
to the next sample path as soon as the following two stopping conditions were both met:

• ∀ k ∈ [0,3], N
′
k ≥ 1,

• 1
n2 ∑

3
k=0 N

′
kγk ≤ θ ,

whereby {γk}k∈[0,3] was computed based on transition matrix Ad with d = 3. This yields a sample of 1000 values of π̂(g)
with sample variance of roughly θ . We repeated this process for various values of θ . The respective realized sample
mean, sample variance, and median sample path length are reported in the below table.

θ Mean π̂(g) Sample Var
(
π̂(g)

)
Median n

5×10−6 0.01223 4.912×10−6 3174
4×10−6 0.01211 3.849×10−6 3961
3×10−6 0.01200 2.839×10−6 5279
2×10−6 0.01198 1.903×10−6 7918
1×10−6 0.01188 1.003×10−6 15860
9×10−7 0.01188 9.275×10−7 17616
8×10−7 0.01189 7.827×10−7 19835
7×10−7 0.01189 6.810×10−7 22672
6×10−7 0.01189 6.341×10−7 26460

In all cases, the realized variance is very close to θ . This suggests that the stopping rule is effective despite the approxi-
mations that were made to implement it.

4.3 Approximation for Continuous X

The idea of ”discretizing” a continuous state-space for the purposes of MCMC convergence assessment is not new. An
approach to this effect was proposed in Guihenneuc-Jouyaux & Robert, 1998. The authors’ approach to discretization
involves the identification of ”small sets” and renewal times (see Guihenneuc-Jouyaux & Robert, 1998 for more details).
While the authors mention that there are theoretical assurances that their approach works in most MCMC setups, they
admit that the need to determine ”small sets” is a difficulty. Based on the examples they give, their approach indeed seems
hard to generalize to a broad range of MCMC setups. For our purposes, we suggest a simpler approach.

Let X
′
:= {x ∈ X : f (x)> 0} and assume that X

′
is bounded. Now consider a partition of X

′
into d mutually disjoint and

collectively exhaustive subsets {Xi : i ∈ [d]}. More formally, {Xi : i ∈ [d]} satisfies:

•
⋃

i∈[d]Xi = X
′

• Xi
⋂
X j = /0 for i , j.

∀ t ∈ [n], let Wt := ∑
d
j=1 j1(Xt ∈ X j). First, it is important to notice that such a partition may not be unique. Second, the

sequence (Wt)t∈[n] does not necessarily possess the Markov property.

However, such a partition allows us to construct a finite and discrete state-space Markov chain such that conditional on
{Nk := |{t ∈ [n− 1] : Xt ∈ Xk}|}, the sample estimate of the discrete state-space Markov chain is close to π̂(g). More
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specifically, consider a discrete and finite Markov chain which takes values over {x̂k : k ∈ [d]}, where ∀ k ∈ [d] x̂k is a
fixed element of Xk. Let {Wt}n

t=0 be a sample path of this Markov chain, and let π̂d(g) := 1
n ∑

n
t=1 g(Wt) and N̂k := |{t ∈

[n−1] : Wt = x̂k}|, k ∈ [d]. The following lemma will allow us to demonstrate why this partition of X is useful.

Lemma 4.1. If N̂k = Nk ∀ k ∈ [d], then

| π̂d(g)− π̂(g) | ≤max
k∈[d]

max
Xt∈Xk

| g(Xt)−g(x̂k) | .

Proof.

| π̂d(g)− π̂(g) |

=
∣∣∣ 1

n

n

∑
t=1

g(Wt)−
1
n

n

∑
t=1

g(Xt)
∣∣∣

=
∣∣∣ 1

n

d

∑
k=1

∑
Wt=x̂k

g(Wt)−
1
n

d

∑
k=1

∑
Xt∈Xk

g(Xt)
∣∣∣

=
∣∣∣ 1

n

d

∑
k=1

(
Nkg
(
x̂k
)
− ∑

Xt∈Xk

g(Xt)

) ∣∣∣
=
∣∣∣ d

∑
k=1

Nk

n

(
g
(
x̂k
)
− 1

Nk
∑

Xt∈Xk

g(Xt)

) ∣∣∣
≤

d

∑
k=1

Nk

n
max

Xt∈Xk
| g(Xt)−g(x̂k) |

≤max
k∈[d]

max
Xt∈Xk

| g(Xt)−g(x̂k) |

�

It follows from this lemma that as long as {g(x) : x ∈ X
′} is bounded, | π̂d(g)− π̂(g) | is also bounded. Moreover,

since all else equal the subsets X1, ...,Xd should get smaller as d increases, this lemma tells us that | π̂d(g)− π̂(g) |
should converge towards 0 as d increases (not necessarily monotonically though). In order to more formally establish
convergence towards 0, we need to impose additional restrictions on X1, ...,Xd , since there may be more than one way to
construct such subsets.

Based on the intuition that if N̂k =Nk ∀ k∈ [d], π̂d(g) is close to π̂(g), a possible approach is to make the key approximation

Var
(

π̂(g) | {Nk}k∈[d]

)
≈ Var

(
π̂d(g) | N̂k = Nk, ∀k ∈ [d]

)
, (2)

whereby Var
(

π̂d(g) | {N̂k}k∈[d]

)
is computed using corollary 3.2 based on a well chosen discrete Markov chain. We

illustrate this strategy with an example in the next subsection.

A key question is how to chose the discrete Markov chain and compute its transition matrix. To this effect, let q : X2→R
be the transition function for the continuous state-space Markov chain. Notice that when this Markov chain is stationary,
∀ (i, j) ∈ [d]2 : i , j,

P
(

Xt+1 ∈ X j | Xt ∈ Xi

)
=
∫
Xi

P
(

Xt = x
)

P
(

Xt+1 ∈ X j | Xt = x
)

dx

=
∫
Xi

π(x)
∫
X j

q(x,y)dydx.

For the purposes of the example in the next section, we hence considered a finite, discrete state-space Markov chain with
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transition matrix P = [pi j] where ∀ (i, j) ∈ [d]2

pi j =

{∫
Xi

π(x)
∫
X j

q(x,y)dydx if j , i,

1−∑ j,i pi j if j = i.
(3)

In the MCMC context, π(·) is proportional to a known function f : X→ R and q(x,y) depends on the ratio f (y)
f (x) and a

carefully chosen proposal density function. We therefore argue that it should generally be possible to numerically estimate
this double integral in the MCMC context.

4.4 Example 2: Sixmodal Target Distribution

Consider the sixmodal target distribution example discussed in Leman, Chen, & Lavine 2009 and Roy, 2020, where the
distribution we seek to sample from is as follows:

π(x,y) ∝ exp

(
−x2

2

)
exp

(
−
(
(cscy)5− x

)2

2

)
,

where x ∈ (−3,3) and y∈ (−10,10). The contour plot of this distribution (known up to the normalizing constant) is given
in figure 1 (which was generated using the R library ggplot2).

Figure 1. Contour plot of the target distribution

Roy, 2020 specifically discusses this example as a case where some common MCMC convergence diagnostic tools may
mistakenly detect convergence as the Markov chain gets stuck in one of the modes.

For the purposes of demonstrating how corollaries 3.2 and 3.3 can help calibrate Var
(
π̂(g)

)
and estimate limn→∞ nVar

(
π̂(g)

)
,

assume that we are interested in estimating π(g) whereby g(x,y) =
√

x2 + y2. Furthermore, assume that we seek to esti-
mate π(g) via a Metropolis-Hastings sampler with a uniform proposal density function over X= (−3,3)× (−10,10).

To this effect, we started by partitioning the state-space X into subsets, as was suggested in section 4.3. Specifically,

18
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we partitioned X into 24 equally sized subsets as illustrated below in Figure 2 (which was generated using the R library
ggplot2).

Figure 2. partition of the state-space into 24 equally sized subsets

As was explained in section 4.3, this partition allows us to introduce a discrete state-space Markov chain which approxi-
mates the dynamics of the Markov chain of interest, with the intention of using approximation (2).

To this effect, we computed the transition matrix of this discrete, finite state-space Markov chain as described in section
4.3. Specifically, we estimated the transition probabilities in equation (3) using double Riemann sums over a grid of points
spanning X in steps of 0.1.

Taking a similar approach to section 4.2 (i.e., example 1), we then computed {γk}k∈[24] and {Πk}k∈[24] based on this dis-
crete, finite state-space Markov chain. As a first step, this yields an estimate of limn→∞ nVar

(
π̂(g)

)
which is ∑

24
k=1 γkΠk =

90.32782.

As in section 4.2, we also used the set {γk}k∈[24] to generate samples of estimates with a given level of target variance θ .
To this end, for any of the subsets Xk, k ∈ [24], we define {Nk := |{t ∈ [n−1] : Xt ∈ Xk}|}, whereby (Xt)

n
t=0 is a sample

path of the Markov chain of interest. This yields the stopping rule with the following two conditions:

• ∀ k ∈ [24], Nk ≥ 1,

• 1
n2 ∑

24
k=1 Nkγk ≤ θ .

For various values of θ , we generated samples of 1000 values of π̂(g). The respective realized sample mean, sample
variance, and median sample path length are reported in the below table.
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θ Mean π̂(g) Sample Var
(
π̂(g)

)
Median n

10×10−4 4.85649 10.48028×10−4 90280
9×10−4 4.85862 9.35073×10−4 100341.5
8×10−4 4.85851 9.07333×10−4 112891
7×10−4 4.85961 7.46519×10−4 128986
6×10−4 4.85700 6.15114×10−4 150476.5
5×10−4 4.85838 5.20330×10−4 180559.5

Once again, we observe that the realized variance is generally quite close to θ .

5. Conclusion

Dealing with estimation error remains one of the key challenges associated with MCMC algorithms. This paper proposes
new tools to address this challenge. At the cost of some initial exploration of the state-space, our approach should allow
practitioners to both estimate and calibrate estimation error in a broad range of MCMC contexts.

An essential aspect requiring further refinement is with regards to how our main result can be extended to state-spaces
that are continuous and/or unbounded. While our suggested approaches in section 4 should work in a broad variety of
contexts, there is substantial room to formalize these approaches. Increased formality may become necessary if our results
are to be applied to more complex state-spaces than those exemplified in section 4.
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