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Abstract 

The present study investigates to what degree the common variance of the factor score predictor with the original factor, 

i.e., the determinacy coefficient or the validity of the factor score predictor, depends on the mean-difference between 

groups. When mean-differences between groups in the factor score predictor are eliminated by means of covariance 

analysis, regression, or group specific norms, this may reduce the covariance of the factor score predictor with the 

common factor. It is shown that in a one-factor model with the same group mean-difference on all observed variables, 

the common factor cannot be distinguished from a common factor representing the group mean-difference. It is also 

shown that for common factor loadings equal or larger than .60, the elimination of a d = .50 mean-difference between 

two groups in the factor score predictor leads to only small decreases of the determinacy coefficient. A 

compensation-factor k is proposed allowing for the estimation of the number of additional observed variables necessary 

to recover the size of the determinacy coefficient before elimination of a group mean-difference. It turns out that for 

factor loadings equal or larger than .60 only a few additional items are needed in order to recover the initial determinacy 

coefficient after the elimination of moderate or large group mean-differences. 

Keywords: factor score predictor, determinacy coefficient, effect size, group mean-difference 

1. Introduction 

1.1 Factor Score Predictors and Group Mean-Differences 

Factor score predictors are computed in order to provide individual scores for a factor resulting from factor analysis 

(DiStefano, Zhu, & Mindrila, 2009). These scores can be used in applied settings, e.g., job-selection. The validity of 

factor score predictors depends on their correlation with the corresponding factors, which is usually termed determinacy 

coefficient (Gorsuch, 1983; Grice, 2001). For orthogonal factors and block-diagonal patterns of factor loadings, the 

reliability of the regression factor score predictor also corresponds to the determinacy coefficient (Beauducel, Harms, & 

Hilger, 2016). However, under more general conditions, the correlation of the factor score predictor with the 

corresponding factor is an indicator of validity. 

Several group mean-differences may co-occur with the individual differences represented by a common factor. Some 

group mean-differences may be estimated a priori in the context of multiple-group factor analysis, which leads to the 

issue of measurement invariance of factors across groups. Measurement invariance refers to the similarity of model 

parameters across groups, an assumption required for the interpretation of group differences on the factors (Vandenberg, 

& Lance, 2000). New methods that may allow for the improvement of measurement invariance have meanwhile been 

proposed (Asparouhov, & Muthén, 2023). However, not all relevant group mean-differences may be considered right 

from the start when factor analysis is performed. A reason for this could be that sample size leads to a limitation of the 

number of groups that can be considered in multiple-group factor analysis. Another reason could be that a grouping of 

individuals is obtained afterwards (e.g., by means of latent class analysis). A third reason could be that group 

mean-differences that appear of irrelevant size in the observed variables, can be of relevant size in the factor score 

predictors. Group mean-differences that are not represented by a model parameter for the means, may affect the 

covariances of observed variables, and may be present in the factor score predictor. In these cases, an elimination of 

group mean-differences may be performed a posteriori by means of regression analysis, covariance analysis, or by 

means of group-specific test norms or test standardization (American Educational Research Association, American 

Psychological Association, & National Council on Measurement in Education, 2014). The elimination of the group 

mean-differences may affect the validity of the factor score predictor, i.e., the factor score determinacy. Therefore, the 
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present study investigates the effect of eliminating group mean-differences on the resulting determinacy coefficient.  

1.2 Specifications of the Study  

In principle, different types of factor score predictors, different numbers of groups, different factor models, and different 

score distributions might be of interest in this context. However, in order to provide initial results that could be the 

starting point for further investigations, the present study is based on only two groups and on the determinacy 

coefficient computed for the best-linear factor score predictor (Krijnen, Wansbeek, & Ten Berge, 1996), which is 

sometimes termed regression factor score predictor. Moreover, the study is based on one factor models with equal factor 

loadings. These simplifications allow for a direct investigation of effects of the size of group mean-differences in terms 

of different effect sizes d (Cohen, Cohen, West, & Aiken, 2003) and the number of variables on the determinacy 

coefficient.  

First, a population factor model for the description of the effect of group mean-differences on factors and model 

parameters is defined. On this basis, the effect of factor loadings and the number of variables on the determinacy 

coefficient is investigated. Benchmarks for factor loadings combined with a given number of observed variables 

resulting in reasonable determinacy coefficients are provided. Using these benchmarks, the effect of group 

mean-differences and determinacy coefficients is analyzed. It is proposed to calculate the number of additional items 

necessary to compensate for reduced determinacy resulting from eliminating group mean-differences. Finally, 

theoretical and practical implications of the results are discussed.  

2. Definitions 

In the population of individuals, the common factor model with an additional factor representing the means between 

two groups can be defined as 

                 gξ
x Λ ξ Λ g Ψε ,         (1) 

where x is a standardized random vector of p observed variables, ξ is a random vector of q common factors, with 
'( )E ξξ Φ  and ( ) q qdiag Φ I and ξΛ is the p  q matrix of common factor loadings. Moreover, g is a random vector 

representing the means of two groups, with '( ) 1E gg for q = 1 (for q > 1 we get a q  q identity matrix), '( )E gξ 0 , 

and gΛ is the p  1 matrix of loadings of the observed variables on the factor representing the standardized group 

mean-difference d (e.g., Cohen et al., 2003). For equal group size '( ) 1E gg  and ( ) 0E g  g corresponds to an 

unweighted effect-coded indicator variable. For two groups, unweighted effect-coding means that the resulting indicator 

variable takes the value +1 for one group and -1 for the other group (Cohen et al., 2003). The loadings gΛ represent the 

correlation of the observed variables with g. Therefore, the effect size d is converted into the correlation r according to 

Ruscio (2008, Table 1). For groups of equal size, the conversion of d into a correlation r is 2 1/2(4 )r d d   , so that the 

loadings are given by 2 1/2(4 )d d  gΛ 1 , where 1 is a p  1 unit-vector. For unequal group sizes gΛ can be computed 

by 1 1 2 1/2
1 2( )d p p d   gΛ 1 , where 1

p is the base rate (i.e., the number of individuals in a group, divided by the number 

of individuals in the total finite population) of group 1 and 2p is the base rate of group 2. For unequal group size, the 

group membership is coded into the effect-coded variable θ , so that 1/2'( )E g θ θθ with '( ) 1E gg . The random vector 

ε  represents p unique factors, with '( ) p pE εε I , '( )E εξ 0 , '( )E εg 0 , and Ψ  is a p  p diagonal, positive definite, 

unique factor loading matrix with p unique factor loadings. This implies that 

  
' ' ' 2( )E    g gξ ξ

xx Σ Λ Φ Λ Λ Λ Ψ          (2) 

is a correlation matrix. 

For q = 1 and when d is the same for all observed variables, it is impossible to disentangle ξ  and g, so that only a 

single common factor gξ combining ξ  and g can empirically be identified when the mean-difference between the 

groups occurs consistently across all observed variables. A model based on a single detectable common factor gξ

comprising equal group mean-differences on the observed variables and individual differences can be written as 

           2 2 1/2 2 2 2 1 1/2, ( ) ( (4 ) ) .with d d       g gξg ξg ξ ξ
x Λ ξ Ψε Λ Λ Λ Λ 1     (3) 

The determinacy coefficient is the correlation of a factor score predictor with the corresponding factor, i.e., 

      
1/2 1/2

' ' ' ' ' ' .diag E diag diag diag
     

                      

 g ξg
Ρ wxxw wxξ wΣw wΛ      (4) 

Inserting 
1

ξg
Σ Λ Φ , the weights for the best-linear factor score predictor (Grice, 2001), for w in Equation 4 yields 

 
1/2

diag ' -1
ξg ξg

Ρ ΦΛ Σ Λ Φ and  
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 
1/2

diag ' -1
ξg ξg

Ρ Λ Σ Λ          (5) 

for q = 1.  

3. Results 

3.1 Effect of Factor Loadings and p on the Determinacy Coefficient 

For q = 1 and all loadings ξgΛ being equal, it follows from 
1 ξgw Σ Λ Φ  that all weights w are equal so that one can 

write ww 1 , where w is a scalar with w ≠ 0 and 1 is a p  1 unit-vector, so that  

       
1/2 1/2

2 ' ' ' ' .diag w w diag
 

 
ξg ξg

Ρ 1Σ1 1Λ 1Σ1 1Λ       (6) 

When all weights are equal and greater zero and all loadings are equal and greater zero, and q = 1, it is possible to write


ξg ξg

Λ 1 , so that  

2 2 2

2 2

2 2

2 2 2

x

x

x

x

  

 

 

  

 
 
 
 
 
 
 
 
 



ξg ξg

ξg

ξg

ξg ξg

Σ          (7) 

and p p ξg ξgΨ I . As for q = 1 and equal factor loadings the weights cancel out, Equation 6 can be written as 

        
1/2

2 2 1/2( 1) ,x p p  


  
ξg ξg

Ρ        (8) 

and because 2 1x  , the common variance of the scores with the corresponding factor is 

             
1

2 2 1 .p p


  
ξg

Ρ          (9) 

3.2 Benchmarks of Factor Loadings for Reasonable Determinacy 

Factor score predictors should at least have 50% of common variance with the corresponding factor. Entering 
1/2( 1)p  

ξg  into Equation 9, yields  

                  
1 1

2 2 1 2 0.50.p p p p
 

    
ξg

Ρ             (10) 

However, 80% or 90% of common variance of the factor score predictor with the corresponding factor will be a more 

reasonable benchmark. Entering 2 14( 4)p  ξg  into the slightly transformed Equation 10 yields 

     
1

1
2 2 5

1 0.80,
4

p p p p



  

  
 

    
ξg

Ρ             (11) 

and entering 2 19( 9)p  ξg  yields 2 0.90.Ρ The intended loading size for a given p and 2Ρ can be computed by 

1

2
2

1 .
p

p


 
 
 
 

  
ξg Ρ

              (12) 

For 90% of common variance of the factor score predictor with the factor and p = 4 a loading size of .69 is required, 

which is attainable in several areas (see Figure 1).  
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Figure 1. Loading size and p for 50%, 80%, and 90% common variance of the factor score predictor with the factor 

3.3 Loading Benchmark, Group Differences and Determinacy 

In the following, the effect of eliminating group differences in the factor score predictor on the determinacy coefficient 

is considered for q = 1 and equal loading sizes. Eliminating group mean-differences implies that 2 1/2(4 )d d   gΛ 1 0 . 

It follows from Equation 3 that eliminating group mean-differences reduces to ξΛ . It follows from
2 2 2 2 1(4 )d d   ξg ξΛ Λ 1  and for all loadings being equal in ξgΛ that  

2
2 2

2
.

4
d

d
  

ξg ξ
                  (13) 

Entering 2ξg computed from Equation 13 and when the item variance is written as 2 2 2 2 1 21 (4 )x d d      
ξ ξg

 

Equation 9 yields  

 

 

                                          (14) 

 

 

Entering d = 0 into Equation 14 yields  

 

                     (15) 

 

 

This condition is a baseline for Figure 2 A-D, where the relationship of d and p with 2Ρ is presented for different levels 

of ξ . Whereas the effect of eliminating a mean-difference of d = 1.00 on 2Ρ is quite substantial forξ = .20 and ξ
= .40, it is rather small for ξ = .60 and beyond. 

However, according to Cohen et al. (2003) d = 0.80 is a large effect, whereas d = .50 represents a moderate effect, and d 

= .20 represents a small effect. Eliminating a moderate effect of d = .50 may also be considered. As an example, 

consider the condition p = 10 and ξ = .60. For this condition and d = 0.50 Equation 14 yields 
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Ρ             (16) 

For p = 10, ξ = .60, and d = 0.00 Equation 14 yields 
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1
2

2
2

2

.50
1

4 .50 10 1 10 .861.
.60


 
 
 
 
  
 


   Ρ              (17) 

Thus, in this condition, eliminating a moderate effect size in the factor score predictor will reduce the common variance 

of the factor score predictor with the original factor by only 2%. 

It might be possible to compensate a decrease of 2Ρ resulting from eliminating a group mean-difference by means of 

an increase of p. The increase of p necessary for compensating for the elimination of a group mean-difference can be 

calculated by means of the compensation-factor k as a multiplier of p. The compensation-factor k can be found by 

means of equating Equation 14 comprising the effects of d with Equation 14 for d = 0 and k as a multiplier of p. This 

yields 

  

                   (18) 

 

 

and after some transformation 

 

                          (19) 

 

The difference p kp p    might be rounded to the nearest integer, which indicates the number of observed variables 

that might be added in order to compensate for a decrease of 2Ρ resulting from eliminating d. If 1kp p  it might be 

reasonable to add observed variables in order to reach the same 2Ρ that occurred before elimination of the group 

mean-difference. 

As an example, consider a factor score predictor based on p = 5, .60 ξ , and d = .81, this results in 2 .83Ρ according 

to Equation 14. Now, d is eliminated by means of separate test-norms, or something similar, so that 2 .74Ρ . When p 

= 5 and .60 ξ  are entered into Equation 19, the resulting k is 

                      

                         (20) 

           

 

This implies that 1.38 5 5 1.9p     . When 2 items are added the resulting 2Ρ will be about .83. So, a compensation 

for eliminating a mean-difference of about .80 is feasible. The compensation of the elimination of a group 

mean-difference d  .20 by means of additional items p kp p    is plotted for different levels of 2Ρ  .70 and 

different levels of ξ  in Figure 3. For .40 ξ  a compensation needs more than one item (Figure 3 A), but for .60 ξ  

and .80 ξ  the effect of eliminating moderate or large mean-differences on 2Ρ can be compensated by a few additional 

items (Figure 3, B and C). 

When a group mean-difference is eliminated and when it is impossible to compute a multiple-group factor analysis for 

the respective groups, it might be of interest to compute the reduced factor loading. Equation 13 can be transformed in 

order to correct the initial factor loadings, when the eliminated group mean-difference d is known. This yields 
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Figure 2. Effect of 0  d  1 and 2  p  30 on P², for (A) 
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Figure 3. Number of additional items p+ that is necessary maintain a given P2  .70, when d  .20 is eliminated, (A) for

.40 ξ , (B) .60 ξ , and (C) .80 ξ  
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4. Empirical Example 

Data from 6892 German-speaking participants (2343 females, 4549 males; age in years: M = 25.93, SD = 9.79), who 

completed voluntarily the numerical tasks of the intelligence-structure-test 5 (IST 5; Beauducel, Brocke, & Liepmann, 

2024) were used as an example. The tasks were numerical calculation, number series, and signs. Participants worked 10 

minutes on each task. Each task comprised 20 items. The number of correct responses on each task (raw data) were 

entered into principal axis factor analysis (IBM SPSS Version 29.0.0.0). The resulting factor loadings are given in Table 

1 (left column). The z-standardized best linear factor score predictor was computed and the corresponding detminacy 

coefficient was P² = .874. When a (Welch) t-test for gender differences was performed, the mean-difference was 

significant (t4843.35 = 12.98, p < .001, two-tailed), with a larger mean for males (M = 0.11, SE = 0.02) than for females 

(M = -0.21, SE = 0.02), with d = 0.32. In the next step, the tasks were residualized for gender and entered into principal 

axis factor analysis (Table 1, right column), so that the mean difference between males and females was zero for the 

corresponding z-standardized best linear factor score predictor. The determinacy coefficient of the residualized best 

linear predictor was P² = .872.  

Table 1. Factor loadings based on raw data and on data residualized for gender (right column) 

Task loadings (raw data) loadings (residualized 

data) 

numerical calculation .83 .82 

number series .79 .79 

signs .87 .87 

Eigenvalues 2.37,  .35,  .27 2.36,  .36,  .28 

 

5. Discussion 

The determinacy coefficient describes the common variance of a factor score predictor with the respective factor and is 

therefore an indicator of the validity of factor score predictors. The present study investigates to what degree the 

validity of factor score predictor may depend on a given mean-difference between two groups. This question is relevant 

when mean-differences between groups are eliminated by means of covariance analysis, regression, or group specific 

norms.  

It is shown that in a one-factor model comprising the same group mean-difference on all observed variables, the 

common factor cannot be distinguished from a common factor representing the group mean-difference. This occurs 

even when the common factor and the group mean-difference have a zero covariance. Moreover, the effect of 

eliminating a group mean-difference d on the common variance of the factor score predictor with the factor 

(determinacy coefficient) is investigated under the condition of equal common factor loadings. It is shown that for 

common factor loadings equal or larger than .60 the elimination of group mean-difference of a moderate effect size (d 

= .50) leads to only small decreases of the determinacy coefficient. It is, nevertheless, important to estimate the reduced 

factor score determinacy when group mean-differences in the factor score predictors are eliminated. In this context, an 

estimation of the reduced factor loadings can also be of interest. 

A compensation-factor k is proposed allowing for the estimation of the number of additional observed variables that are 

needed to recover the size of the determinacy coefficient before elimination of the group mean-difference. It turns out 

that for factor loadings equal or larger than .60 only a few additional items are needed in order to recover the initial 

determinacy coefficient after the elimination of moderate or large group mean-differences.  

An empirical example based on numerical intelligence tasks demonstrates that a significant mean difference between 

males and females of about d = 0.30 can be partialled out without any relevant effect on the determinacy coefficient. 

This implies that group-specific norms that might eliminate relevant group-differences in the factor score predictor do 

not necessarily reduce the validity of the scores. The empirical study shows that the algebraic results found for equal 

factor loadings can also be found for unequal factor loadings. 

As a limitation of the study, it should be noted that no information on the educational level was available in the 

empirical data set. Therefore, the mean difference found in these data for numerical intelligence cannot be generalized 

to the population. Moreover, the investigation of the elimination of group differences on determinacy coefficients may 

also be performed for a larger number of factors. This would be of special interest because the elimination of group 

differences may affect the rotational position of the factors and the related pattern of factor inter-correlations. A further 

limitation of the study is that it is only based on the best-linear (regression) factor score predictor (Krijnen et al., 1996). 
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An investigation of the elimination of group mean-differences on the determinacy coefficients for other factor score 

predictors (Beauducel, & Hilger, 2022; Grice, 2001; Krijnen et al., 1996) may also be of interest. Other lines for further 

research are the investigation of the effect of unbalanced group-size, mean-differences between more than two groups, 

the effect of categorical observed variables, the effect of non-normal score distributions, and the effect of methods for 

the estimation of model parameters.  
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