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Abstract 
This paper proposes a model to describe the blood types distribution of new Coronavirus (COVID-19) cases using the 
Bayesian Poisson - Hidden Markov Model (BP-HMM). With the help of the Gibbs sampler algorithm, using OpenBugs, 
the study first identifies the number of hidden states fitting European (EU) and African (AF) data sets of COVID-19 
cases by blood type frequency. The study then compares the state-dependent mean of infection within and across the 
two geographical areas. The study findings show that the number of hidden states and infection rate within and across 
the two geographical areas differ according to blood type.  
Keywords: Bayesian Poisson Hidden Markov Model (BP-HMM), COVID-19, Blood Types, Gibbs sampler 
1. Introduction 
The whole world is experiencing the new infectious coronavirus infection, which began spreading in the year 2019 
hence the name COVID-19 since then. The outbreak seems to have spread to every country, making the infection a 
global pandemic. There are ongoing studies to understand the dynamics of infection transmission, and this is very 
important in discovering the diffusion potential that may be sustainable going forward. In this vein, models and 
simulations might be a key and powerful tool that can be used to monitor the infection’s dynamics in question. In doing 
so, there is a need to build an adequate statistical model that would be able to describe the actual situation.  
Several studies associate blood groups A, B, and O (ABO blood group) and their Rhesus factors with the COVID-19 
infection. For instance, the study by such as El-Shitany et al. (2021); Zhao et al.(2020); Fan et al. (2020); Zietz et 
al.(2020a); Muniz-Diaz et al. (2020); Wu et al. (2020); Ad’hiah et al. (2020); Obayes  AL-Khikani (2020) and Göker et 
al. (2020)  concluded that there is an association between ABO blood types and COVID-19 infection. Meanwhile, 
other studies also indicate that certain factors generate the spread of infections. Moon (2014) examined the relationship 
between ABO blood group and lifespan in a Hospitalized population in the Southeastern United States and said the 
individual ABO blood group remains the same irrespective of the environment. However, because the environment 
keeps changing, it is possible that a gene that impeded survival and reproduction in the past might be factor in survival 
and reproduction today. Moon (2014). The study continues that natural selection and adaptation work to adjust the 
prevalence of traits suited for a particular environment. In other words, changes brought by humans, creating an 
environment never known, could influence these tendencies. Therefore, it is always prudent to examine the distribution 
of ABO blood groups and causes for any prevalence of blood groups considering the population, environment, and other 
factors, Moon (2014). In the study of Tewara et al., (2018) the findings show that factors such as urban-rural location 
and rainfall do generate the spread of malaria. The study concluded that malaria cases were associated with population 
density and environmental covariates such as rainfall. 
Although, as some studies suggest, ABO blood groups might contribute to the susceptibility of COVID-19 infection 
incidence, there might be other factors that might also be a cause for the spread of the infection, environmental 
conditions (Humidity), one’s location- urban or rural, weather condition, governmental policies, and others. In their 
study, Hedell et al., (2018) explained that a potentially sensitive way to detect infection outbreaks is syndromic 
surveillance, monitoring the number of syndromes reported in the population of interest and comparing it to the baseline 
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rate, then finally concluding the outbreak using statistical methods. They further asserted that in assessing the 
probability of an outbreak, information such as the total count of syndromes, clustering of syndromes in space and time, 
seasonality of the infection, and others needed to be considered. In a recent study by Miotto et al.,(2021) on “does, 
blood type affect the COVID-19 infection pattern? The study concluded that overall, the hypothesis of blood type 
affects COVID-19 and further stated that even though blood types are associated with COVID-19, there are possibilities 
that other population-dependent antigen distribution may contribute to the spreading of infection because of the 
geographical heterogeneity. These are a clear indication that before concluding on the susceptibility of the ABO blood 
group to COVID-19 infection, then there might be other latent variables that might contribute to the spread of the 
infection; hence the need to consider the spread of the COVID-19 infection when considering its susceptibility to blood 
types. 
Watkins et al., (2009) explained that Hidden Markov Model (HMM) is noted in disease surveillance applications, 
especially where data is scarce. In their study, they proposed Bayesian temporal HMM for infection surveillance, and as 
part of their recommendation, further research is required to evaluate the generalized HMMs for infection surveillance. 
Since the study of Watkins et al., (2009) there have been several studies on hidden Markov modeling (HMM), for 
instance, Marfak et al., (2020) on Hidden Markov chain modeling of COVID-19 spreading using a Moroccan dataset. 
The study used a generalized logistic growth model, exponential model, segmented Poisson model Susceptible-Infected 
-Recovered derivative models, and ARIMA to predict the evolution of COVID-19. Prabhu & Subramanyam, (2020) on 
Surveillance of COVID-19 Pandemic using Hidden Markov Model aimed at applying Hidden Markov model to assess 
the extent of the spread of COVID-19 pandemic; Hedell et al., (2018) used Bayesian temporal HMM to determine the 
probability of occurrence of neurological syndromes in horses in France. Again, Ozonoff et al.,(2018) also compared the 
performance of HMM to a cyclic regression model using pneumonia and influenza mortality data, while Williams et 
al.,(2018) studied on Bayesian Approach to Multi-State Hidden Markov models on Dementia Progression. 
Moreover, Yen and Chen, (2018) again used the Bayesian measurement – error-driven hidden Markov regression model 
for androgenetic alopecia. Liu and Song, (2018) used Bayesian Analysis of Mixture Structural Equation Models on risk 
factors of osteoporotic fractures in older people. Zhang et al., (2016) also used the hidden Markov model to identify 
infection states associated with coagulopathy in trauma. Finally, Morimoto, (2016) studied Hidden Markov models to 
estimate the lagged effect of weather on stroke and ischemic heart infection. 
The Hidden Markov model describes the relationship between an experimental process and an underlying and 
unobserved or latent process. The hidden process is assumed to follow a Markov chain whose realization governs the 
distribution of the number of disease cases when considering blood type frequencies. In the study of Prabhu & 
Subramanyam, (2020) on the surveillance of the COVID-19 pandemic using the Hidden Markov Model, the study 
defined some significant situations they assumed as the hidden states governing the number of observed counts of 
infection (COVID-19) at the hospitals, are:” Healthy,” “Infected,” “Symptomatic,” “Detected,” “Catastrophe-1” and 
“Castastrphpe-2” the study assumed the first four as the hidden central states. Again, the study listed some of the 
variables that hospitals use to define the number of reported cases of COVID-19, which include: “Active,” “Recovered,” 
Dead,” and “Inactive” most countries use the cumulative count of these cases as confirmed cases of COVID-19. In this 
study, we analyze the COVID-19 incidence data for European (EU) and African (AF) countries regarding their blood 
type frequencies by adopting the Bayesian Poisson – Hidden Markov Model (BP-HMM). The study aims to ascertain 
the number of hidden states that best fit COVID-19 incidence data with its blood distribution and compare the 
state-dependent mean s of infection that occur within the two geographical areas. This study is a follow-up of Miotto et 
al., (2021) who recommended further studies as to whether other population-dependent antigen distribution may play a 
role in the geographically heterogeneous infection spreading of COVID-19 infection with blood frequency. This study is 
categorized into four sections, following this section is Methodology, Data analysis, and finally, Discussion and 
Conclusion. 
2. Methodology 
Suppose 𝑁 = (n , n , .  .  . , n   ),   𝑁 = (n , n ,.  .  . , n   ), .    .   ., 𝑁 = (, n ,.  .  . , n  ) are 
counts of number of cases of COVID-19 for blood types, O , A , .   .    .  , AB  while c = 1,  2, … ,  m  specify a 
particular country with COVID-19 infection cases. This can be simplified in contingency table form as 
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Table 1. Description of COVID -19 cases per blood type are distributed    
Country 

(c) 
O  A  B  AB  O  A  B  AB  Total 1 n  n  . . . . . n  N  2 n  n  . . . . . n  N  

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . m n  n  . . . . . n  N  
Total N  N  . . . . . N  N 

Assuming the number of cases for each blood type 𝑁 , 𝑁 ,.  .  . , 𝑁  is governed by an unobserved (latent) 
process , 𝑌 = {y , y ,.  .  . , y   }, 𝑌 = {y , y ,.  .  . , y   }, .  .  . , 𝑌  = {y , y ,.  .  . , y   } respectively. If we 
further assume the number of cases is independent. Then the model for each of the number of cases {𝑁 , 𝑁 ,.  .  . , 𝑁  } is assumed Poisson distribution with mean θ = { θ , θ ,.  .  ., θ }, θ = { θ , θ ,.  .  ., θ } , .  .   . , θ  = { θ , θ ,.  .  ., θ }   on a finite state space E = (1, .  .  . , K)}   i.e., ω(𝑁 |𝑌 ) = E~Poisson(θ ),                                 (1) ω(𝑁 |𝑌 ) = E~Poisson(θ ),                                 (2) ω(𝑁 |𝑌 ) = E~Poisson(θ )                                  (3) ω 𝑃 ∝ ∏ P( )

                                                (4) 

ω P ∝ ∏ P( )
                                              (5) 

ω(P ) ∝ ∏ P( )
                                               (6) 

Where μ  is the parameter vector and i, j = 1,  .  .  .  ,  K. This implies P s are here independent of each other. Where μ  ≥ 0 and P ≥ 0 and ∑ P = 1 

Assuming Gamma prior for each of the state – dependent means {θ , θ ,. . ., θ } for a given state i =1,  .   .   .  ,  K.  i.e., θ ~γ  α , β                                                      (7) θ ~γ  α , β                                                      (8) θ ~γ (α , β )                                         (9) 
Here, θ , θ ,. . ., θ  are independent of each other. The independence of prior distribution is a result of no 
association of information between states. 
Therefore, given  number of COVID-19  cases by each country according to their blood type distributions as: 𝑁 = {n , n , .  .  . , n   },   𝑁 = {n , n ,.  .  . , n   }, .    .   ., 𝑁 = {n , n ,.  .  . , n   }, we are 
interested in the joint posterior distribution of  unknown parameters of each blood type  𝜋 = (θ , 𝑃 ), . .  .   , 𝜋 = (θ , 𝑃 )  With the help of Gibbs sampler, we can draw samples from the joint posterior distribution since 
evaluating the joint posterior distribution of 𝜋  computationally is not possible in close form.  
Given the Markov chain, (𝑌 , 𝑌 ,.  .  . , 𝑌 ) where , j = 1,  .  .  .  ,  K , we estimate the full conditional distribution 
of the elements of   (𝑃 , 𝑃  , .  .  . , 𝑃 )which is proportional to the prior probability distribution in equations (4-6) 
and its likelihood functions which is the multinomial distribution function as: 

𝜔( 𝑃 , 𝑃  , .  .  . , 𝑃 |𝑌 , 𝑌 , , .  .  . , 𝑌 , ) 

 ∝  𝜔 𝑃 , 𝑃  , .  .  . , 𝑃 𝜔 𝑌 , 𝑌 ,.  .  . , 𝑌 𝑃 , 𝑃  , .  .  . , 𝑃                       (10) 
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𝜔 𝑃 𝜔 𝑌 𝑃  = 𝜔(𝑃 |μ , , . . . , μ , ) ∏ 𝜔(𝑌 |𝑃 ) 

= ∏ Γ𝜇Γ ∑ 𝜇  (𝑃 )    m!𝑦 !  .   .   . 𝑦 !  (𝑃 ) , .    .   . , (𝑃 )    

∝   (𝑃 )    (𝑃 )𝟏{  }   
       𝜔(𝑃 |𝑌 )  ∝ ∏  𝑃  ∑ 𝟏{  }                                                         (11) 

Therefore, with the GIBSS sampler while given (𝑌 , 𝑌 ,.  .  . , 𝑌 )  the full conditional distribution of each 

of  𝑃 , 𝑃  , .  .  . , 𝑃  is derived as  

ω(P |𝑌 ) ~Dirichlet μ , + ∑ 𝟏 Y = j                           (12) ω(P |Y ) ~Dirichlet μ , + ∑ 𝟏 Y = j                             (13) ω(P |Y ) ~Dirichlet μ , + ∑ 𝟏{Y = j}; i, j = (1,2, . . . , K)                     (14) 
Where each of ∑ 𝟏{Y = j}  is an indicator function that represents the counts of instances Y = j in the simulated 
sample path of the Markov chain. Here, the P s are also obtained as independent Dirichlet vectors.  
Next is the derivation of the posterior distribution (θ , θ ,. . ., θ )which has Gamma prior with Poisson 
distribution function as its likelihood. Given the State- dependent means(θ , θ ,. . ., θ ) and the Transition 
Probability (𝑃 , 𝑃  , .  .  . , 𝑃 ) the joint likelihood function for the observations and the Markov – Chain is given as:  

ω 𝑁 , 𝑌  θ , 𝑃 = ω(n | y θ ,),.  .  .,  ω(n |  y , θ )× ω y 𝑃 ,  .   .  . , y 𝑃   (15) 

       𝜔(𝑁 |𝑌 , θ , 𝑃 )     =   𝑃 , θ𝑛 ! e  

= 1𝑛 ! 𝑃 , . θ ∑ 𝟏( 𝒊) e .∑ 𝟏(𝒀𝒄 𝒊 )  

  𝜔(𝑁 |𝑌 , θ , 𝑃 ) ∝ ∏ θ ∑ 𝟏( 𝒊) e .∑ 𝟏(𝒀𝒄 𝒊 )                    (16) 

Next, we derive the posterior distribution θ which has Gamma prior from equation (7) with its likelihood function in 
equation (16) as 

𝜔  𝜃 𝑁 , 𝑌 , θ  =   θ ~γ  α , β  × 𝜔(𝑁 |𝑌 , θ , 𝑃 )                   (17) 

𝜔  𝜃 𝑁 , 𝑌 , θ ∝ ∏ [θ ] 𝑒 × ∏ θ ∑ 𝟏( 𝒋) e .∑ 𝟏(𝒀𝒄 𝒋 )               (18) 
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𝜔  𝜃 𝑁 , 𝑌 , θ ∝ ∏ θ (∑ 𝟏( 𝒋) )e ( .∑ 𝟏(𝒀𝒄 𝒋 ))      (19) 

𝜔  𝜃 𝑁 , 𝑌 , θ ∝ ∏ θ ∑ 𝟏( 𝒋) e ( ∑ 𝟏(𝒀𝒄 𝒋 ))        (20) 

The full conditional posterior distribution of the mean of each blood type,  θ , θ ,. . ., θ  is obtained as 

θ  |N , Y  ~ γ α + ∑ 𝟏(𝐘𝐜𝐎 = j)N , β + 𝟏 ∑ (𝐘𝐜𝐎 = j)𝐦𝐜 𝟏             (21) 

θ  |N , Y ~ γ α + ∑ 𝟏(𝐘𝐜𝐀 = j)N , β + 𝟏 ∑ (𝐘𝐜𝐀 = j)𝐦𝐭 𝟏                    (22) 

θ  |N , Y ~ 

γ α + 𝟏(𝐘𝐜𝐀𝐁 = j)N , β + 𝟏 (𝐘𝐭𝐀𝐁 = j);  j = (1,2, . . . , K)𝐦
𝐜 𝟏                               (23) 

Where, {α , α ,. . . ., α  } and {β , β ,  .   .   .  , β  } are  the prior shape and rate parameters for each blood type 
respectively {𝟏(𝐘𝐜 = j) is an indicator function representing each counts of instances  {𝐘𝐜 = j}in the simulated sample path of the 
Markov chain.  
{∑ 𝟏(𝐘𝐜 = j)N }  the contribution of regime j to each of the observed values of N , N ,  .   .  . ,  N . 
In Gibbs Sampler, the model will generate first sample path of the Markov chain (MC).  The model then uses this 
sample path to decompose the observed counts into (simulated) regime contributions. Finally, with the availability of 
the Markov chain sample path, and the regime contributions, the developed model can now update P ,  P ,  .  .  . ,  P  and  θ , θ ,.   .   ., θ  . 
If the steps above are repeated several times, the resulting samples of values of  P , P ,.  . . , P  and θ , θ ,.  .  . , θ  provide the required estimates of their posterior distributions. In the posterior, the hidden states are 
ranked according to the state – dependent mean of infection occurrence respecting each blood type. i.e.   θ =θ , θ , .  .  . θ  , θ = θ , θ , .  .  . θ  , .   .  . , θ = {θ , θ ,.  .  . θ  } for a given state j = 1,  .   .   .  ,  K. 
Given this, a smaller rate of infection occurring in a state is an indication of a lesser probability of getting that infection 
of that blood type. 
The deviance information criterion (DIC) is used as a measure of model comparison and adequacy. Mathematically, it is 
given as DIC (𝐾) = 𝐷  θ , 𝐾 + 2𝜏, where 𝐷  θ , 𝐾  is the deviance measure equal to minus twice the log-likelihood, ,  θ is the posterior mean of the model 𝐾 for blood type, and 𝜏 are the numbers of effective parameters for model 𝐾. 
Smaller DIC values indicates a better fitting model. 
In this study, the Monte Carlo (MC) error, trace plot, and autocorrelations were monitored to check the convergence of 
the analyses. Monte Carlo errors measure the variation of the mean of the parameter of interest due to simulation. 
Therefore, a lower MC error compared with the corresponding estimated posterior standard deviation indicates that the 
posterior mean was estimated with high precision. The trace plot shows the generated values versus each iteration 
number. When there is an indication of no patterns or irregularities, we assumed convergence of the algorithm. The 
autocorrelation plots the chain of each parameter of interest. In this study, the plot was done using lag from 1 to 50 to 
monitor the autocorrelations. When a lower autocorrelation is observed for all parameters at a certain lag, then that 
would imply that an independent sample can be obtained by re-running the algorithm with a thin-set equal to that lag as 
an update.  
In selecting starting values for this study, quantiles of observation were used, which implies that when considering two 
states' independent mean, i.e., 𝐾 = 2, the lower and upper quantiles of the sample mean were used. However, when 
considering 𝐾 = 3, the lower quantile, the median, and the upper quantile were used as starting values. Again, for 
transition probabilities, a common starting value of 0.05 was assigned to all off-diagonal transition probabilities 
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Zucchini et al., (2018). 
3. Result and Discussion 
This section first considers the analysis of the data and then follows the discussion of the findings. 
3.1 Result 
The Bayesian Poisson – Hidden Markov Model (BP-HMM) developed above is applied to a series of COVID-19 
incidence counts of blood types distributions for European (EU) and African (AF) countries. In the study of Miotto et al., 
[8] the percentage distribution of COVID-19 incidences per blood type for Seventy-Eight (78) countries were provided. 
With this information, the current study extracted the data for European (EU) and African (AF) countries using the 
World Health Organization dashboard on COVID-19 as of 1st September 2021. These data sets were used for this study 
for two reasons, first, to assess whether the model will select the same hidden states for each blood type distribution 
across these two continents, and second, to compare the state-dependent mean of infection occurrence within and across 
each continent regarding blood type distribution. This comparison is feasible because the study uses the Markov Chain 
Monte Carlo (MCMC) sampling procedure by employing Gibbs sampling with 98,000 iterations with 2000 burn-in.   
Table 2 is the prior probability estimation for EU and AF based on data from WHO as of 1st September 2021 for 
COVID-19 cases per blood type. The result in table 2 shows that the probability rate within and across each 
geographical area per blood type differs as individuals with blood type A+ in the EU have a higher infection rate while 
individuals with blood type O+ have a higher infection rate in AF. In addition, the summary statistic shows that the 
sample variance in each blood type is greater than the sample mean, which is a clear indication of overdispersion (See 
Appendix). 
Table 2. Probability of COVID-19 cases per blood type for European (EU) and Africa (AF) countries 

 Europe (EU) Africa (AF) EU and AF 
Blood Type Probability of Blood Type Probability of Blood Type The proportion of COVID-19 cases 

per Blood Type (EU and AF) 𝑂  0.334 0.418 0.376 𝐴  0.346 0.298 0.322 𝐵  0.116 0.141 0.129 𝐴𝐵  0.045 0.034 0.039 𝑂  0.062 0.049 0.055 𝐴  0.068 0.037 0.053 𝐵  0.020 0.016 0.018 𝐴𝐵  0.009 0.007 0.008 
Figure1 to figure6 are the plots of the Deviance Information Criterion (DIC) against the number of states of the 
BP-HMM. The figures show that the lower DIC with the corresponding states selected for each blood type distribution 
within the number of states. Table 3 presents the relevant model comparison for model selection. The table 𝜏  
represents the number of parameters while 𝐾 the model number of hidden states. For BP-HMM = 𝐾  . Here the 
model considered the lower DIC selects the most suitable one. The Figures and Table 3 show that blood types 𝑂 ,  𝐴 , 𝐴𝐵 ,  𝑂 , 𝐴 , 𝐵 ,  𝐴𝐵 for both EU and AF select five [5] states to fit the COVID-19 data. Meanwhile, blood type 𝐵   
selects Six [6] states for EU countries and four [4] states for AF countries. 
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Figure 1. Deviance Information Criterion model selection for blood types O+ and A+ 

 
Figure 2. Deviance Information Criterion model selection for blood types B+ and AB+ 

 
Figure 3. Deviance Information Criterion model selection for blood types O- and A- 
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Figure 4. Deviance Information Criterion model selection for blood types B- and AB- 

Table 3. Summary results of model selection for COVID-19 cases of blood type 
Blood 
Type 

(BP-HMM) 
Selected State (𝐾) 

𝜏 Deviance 
 (EU) 

Deviance 
(AF) 

DIC  
(EU) 

DIC 
(AF) 

       𝑂  5 25 665099.30 67315.38    665149.30 67365.80 𝐴  5 25 507933.30 50848.14 507983.30 5134.14 𝐵  6(4) 36(16) 190439.30 35537.60 190511.30 35569.60 𝐴𝐵  5 25  86162.27 7104.46      86212.27 7154.46 𝑂  5 25  117735.00 12938.36 117785.00 12970.36 𝐴  5 25 96798.14 5515.95 96848.14 5565.95 𝐵  5 25 40621.00 1320.46      40671.00 1370.46 𝐴𝐵  5 25 17771.03 535.10       17821.03 585.10 
The posterior summary statistics for each mean parameter are presented in Table 4 to Table 11. Each table provides the 
estimated posterior mean for each blood type, standard deviation (SD), Monte Carlo (MC) error, the percentage 
distribution of MC error compared with the SD, quantiles including median, and the total number of iterations 
(generated sample size) and the number of iterations that the generated sample started which is the burin period. In all, 
the estimated posterior mean was estimated with high precision as the MC error in comparison with each corresponding 
estimated posterior standard deviation (MC error %) is low in all cases. Therefore, for a sample of 98000 iterations after 
discarding 2000 iterations as a burin, each MC error is lower than the corresponding standard deviation given a lower 
MC error% of 0.4239% on the average for all posterior mean estimates for each blood type distribution of COVID-19 
cases. The Monte Carlo variability of the transition probabilities of the posterior summaries is all low in comparison 
with their corresponding standard deviations (see Appendix), making the estimated transition probability with high 
precision.  
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Table 4. Posterior summary of the estimated mean for blood type O+ θ  Mean SD MC 
error 

MC 
error% 

Val2.5% Median Val97.5% start sample 

EU O+ 
[1] 87750.0 104.4 0.4567 0.4374 87550.0 87750.0 87960.0 2001 98000 
[2] 322700.0 171.1 0.6086 0.3556 322400.0 322700 323100.0 2001 98000 
[3] 830600.0 644.9 3.755 0.5822 8294400 830600.0 831900.0 2001 98000 
[4] 1615000 731.1 3.278 0.4483 1614000 1615000 1616000 2001 98000 
[5] 2066000 992.9 3.214 0.3236 2064000 2066000 2068000 2001 98000 

AF O+ 
[1] 20260.0 63.80 0.2503 0.3923 20140.0 20260.0 20380.0 2001 98000 
[2] 107800.0 147.6 0.4878 0.3304 107500 107800.0 108100.0 2001 98000 
[3] 362100.0 600.4 2.4900 0.4147 360900.0 362100.0 363300.0 2001 98000 
[4] 737600.0 6187.0 26.059 0.4212 577500.0 736400.0 949300.0 2001 98000 
[5] 1000000.0 964.1 2.9560 0.3066 993600.0 1000000.0 1002000.0 2001 98000 
 
Table 5. Posterior summary of the estimated mean for blood type A+ θ  Mean SD MC 

error 
MC 
error% 

Val2.5% Median Val97.5% start sample

EU A+ 
[1] 92070.0 107.6 0.462 0.4293 91860.0 92070.0 92290.0 2001 98000 
[2] 321800.0 189.9 0.7642 0.4024 321400.0 321800.0 322100.0 2001 98000 
[3] 746200.0 431.9 1.9880 0.4602 745300.0 746200.0 747000.0 2001 98000 
[4] 1612000.0 730.8 3.0850 0.4221 1611000.0 1612000.0 1614000.0 2001 98000 
[5] 2164000.0 1020.0 2.9790 0.2920 2162000.0 2164000.0 2166000.0 2001 98000 

AF A+ 
[1] 10410.0 35.7.0 0.2125 0.5956 8012.0 10580.0 10670.0 2001 98000 
[2] 56220.0 362.1 2.2482 0.6209 32020.0 57930.0 58150.0 2001 98000 
[3] 223300.0 2910.2 18.770 0.6450 71410.0 254600.0 256000.0 2001 98000 
[4] 302500.0 3037.4 15.879 0.5228 254300.0 282700.0 433000.0 2001 98000 
[5] 820900.0 874.7 2.8700 0.3281 819200.0 820900.0 822600.0 2001 98000 
Table 6. Posterior summary of the estimated mean for blood type B+ θ  Mean SD MC error MC 

error% 
Val2.5% Median Val97.5% start sample

EU B+ 
[1] 17,600.0 44.7 0.2866 0.6412 17450.0 17650.0 17700.0 2001 98000 
[2] 82,500.0 332.0 2.1354 0.6432 82300.0 82500.0 825500.0 2001 98000 
[3] 110,820.0 472.0 3.0387 0.6438 109620.0 110820.0 120000.0 2001 98000 
[4] 339,400.0 79.0 0.5008 0.6340 332300.0 347300.0 354000.0 2001 98000 
[5] 729,400.0 897.0 5.7712 0.6434 721400.0 738400.0 740000.0 2001 98000 
[6] 1,211,000.0 2265.0 14.5821 0.6438 1209600.0 1221000.0 131,100.0 2001 98000 

AF B+ 
[1] 9762.0 40.24 0.1392 0.3459 9683.0 9762.0 9841.0 2001 98000 
[2] 47480.0 109.4 0.3800 0.3473 47270.0 47480.0 47700.0 2001 98000 
[3] 122400.0 352.4 1.5890 0.4509 121700.0 122400.0 123100.0 2001 98000 
[4] 307800.0 534.3 1.8090 0.3385 306800.0 307800.0 308900.0 2001 98000 
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Table 7. Posterior summary of the estimated mean for blood type AB+ 965384 θ  Mean SD MC 
error 

MC 
error% 

Val2.5% Median Val97.5% start sample 

EU AB+ 
[1] 11400.0 37.69 0.1617 0.4290 11330.0 11400.0 11480.0 2001 98000 
[2] 45160.0 67.15 0.2773 0.4129 45030.0 45160.0 45290.0 2001 98000 
[3] 116600.0 171.0 0.7765 0.4540 116300.0 116600.0 116600.0 2001 98000 
[4] 185500.0 247.6 0.9321 0.3764 185100.0 185500.0 186000.0 2001 98000 
[5] 448500.0 642.4 2.093 0.3258 447200.0 448500.0 449700.0 2001 98000 

AF AB+ 
[1] 1858.0 17.52 0.0627 0.3578 1823.0 1857.0 1892.0 2001 98000 
[2] 8607.0 53.3 0.2090 0.3921 8502.0 8607.0 8712.0 2001 98000 
[3] 15340.0 123.5 0.5501 0.4454 15100.0 15340.0 15580.0 2001 98000 
[4] 35100.0 187.0 0.8670 0.4636 34730.0 35100.0 35470.0 2001 98000 
[5] 76960.0 265.6 0.8774 0.3303 76440.0 76960.0 77480.0 2001 98000 
 
Table 8. Posterior summary of the estimated mean for blood type O- θ  Mean SD MC 

error 
MC 
error% 

Val2.5% Median Val97.5% start sample 

EU O- 
[1] 15230.0 43.8 0.1938 0.4424 15140.0 15230.0 15310 2001 98000 
[2] 56730.0 75.6 0.2893 0.3826 56590.0 56740.0 56880.0 2001 98000 
[3] 144300.0 219.3 1.0670 0.4865 143900.0 144300.0 144800.0 2001 98000 
[4] 277000.0 371.0 2.101 0.5663 276300.0 277000.0 277700.0 2001 98000 
[5] 379500.0 352.7 1.094 0.3101 378800.0 379500.0 380100.0 2001 98000 

AF O- 
[1] 2118.0 16.3 0.0537 0.3294 2086.0 2118.0 2150.0 2001 98000 
[2] 11810.0 77.2 0.2906 0.3764 11660 11810.0 11960.0 2001 98000 
[3] 38520.0 196.4 0.7197 0.3664 38140.0 38520.0 38910.0 2001 98000 
[4] 102000.0 1287.0 3.9961 0.3105 59040.0 100100.0 151500.0 2001 98000 
[5] 153900.0 376.8 1.1470 0.3044 153200.0 153900.0 154700.0 2001 98000 
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Table 9. Posterior summary of the estimated mean for blood type A- θ  Mean SD MC 
error 

MC 
error% 

Val2.5% Median Val97.5% start sample 

EU A- 
[1] 17470.0 46.9 0.1948 0.4153 17380.0 17470.0 17560.0 2001 98000 
[2] 62670.0 88.85 0.3603 0.4055 62490.0 62670.0 62840.0 2001 98000 
[3] 136700.0 184.8 0.8754 0.4737 136400.0 136700.0 137100.0 2001 98000 
[4] 250000.0 289.0 1.494 0.5169 249400.0 250000.0 250600.0 2001 98000 
[5] 389500.0 355.8 1.173 0.3296 388800.0 389500.0 390200.0 2001 98000 

AF A- 
[1] 985.1 11.1 0.0356 0.3207 963.3 985.1 1007.0 2001 98000 
[2] 5950.0 54.7 0.1973 0.3606 5843.0 5950.0 6057.0 2001 98000 
[3] 25600.0 165.8 0.9346 0.5637 14340.0 26510.0 26850.0 2001 98000 
[4] 53590.0 1326.0 6.8129 0.5138 26400.0 46510.0 103500.0 2001 98000 
[5] 128300.0 344.8 1.0970 0.3181 127600.0 128300.0 128900.0 2001 98000 
 
Table 10. Posterior summary of the estimated mean for blood type B- θ  Mean SD MC 

error 
MC 
error% 

Val2.5% Median Val97.5% start sample 

EU B- 
[1] 6840.0 24.9 0.1008 0.4048 6792.0 6840.0 6889.0 2001 98000 
[2] 21150.0 54.8 0.2330 0.4251 21040.0 21150.0 21260.0 2001 98000 
[3] 57490.0 106.8 0.4332 0.4056 57280.0 57490.0 57700.0 2001 98000 
[4] 87900.0 209.6 0.8567 0.4087 87490.0 87490.0 88310.0 2001 98000 
[5] 205000.0 434.7 1.398 0.3216 204200.0 205000.0 205900.0 2001 98000 

AF B- 
[1] 301.8 7.809 0.0292 0.3739 286.7 301.7 317.2 2001 98000 
[2] 1659.0 15.40 0.0508 0.3301 1595.0 1636.0 1932.0 2001 98000 
[3] 3882.0 150.80 0.5446 0.3612 2964.0 3075.0 12890.0 2001 98000 
[4] 14240.0 312.90 1.1011 0.3519 1262.0 12850.0 34720.0 2001 98000 
[5] 51310.0 218.1 0.6934 0.3179 50880.0 51310.0 51740.0 2001 98000 
            
Table 11. Posterior summary of the estimated mean for blood type AB- θ  Mean SD MC 

error 
MC 
error% 

Val2.5% Median Val97.5% start sample 

EU AB- 
[1] 2544.0 17.83 0.0813 0.4559 17380.0 17470.0 17560.0 2001 98000 
[2] 8336.0 28.88 0.1048 0.3628 62490.0 62670.0 62840.0 2001 98000 
[3] 23090.0 68.00 0.2627 0.3863 136400.0 136700.0 137100.0 2001 98000 
[4] 38430.0 195.90 1.062 0.5421 249400.0 250000.0 250600.0 2001 98000 
[5] 68120.0 181.0 0.5455 0.3013 388800.0 389500.0 390200.0 2001 98000 

AF AB- 
[1] 83.0 3.463 0.0123 0.3551 76.35 82.96 89.89 2001 98000 
[2] 466.1 15.32 0.0539 0.3518 436.6 495.9 496.8 2001 98000 
[3] 3089.0 78.05 0.189 0.2421 2964.0 3078.0 3278.0 2001 98000 
[4] 4967.0 4581.0 25.50 0.5566 3314.0 3434.0 21420.0 2001 98000 
[5] 25660.0 155.2 0.4638 0.2988 25350.0 25660.0 25960.0 2001 98000 
 
The algorithm is assumed convergence as there is no indication of patterns or irregularities in samples of the trace plot. 
Moreover, the autocorrelation observed is very low (at lag below 50) for both the estimated posterior mean and the 
transition probabilities. 
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Figure 5. Trace plots for estimated posterior mean for the state [1] to state [5] 
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Figure 6. Autocorrelation for estimated posterior mean for the state [1] to state [5] 

Table 12 and Table 13 give the parameters for the estimated posterior mean and infection rate within the selected states 
for both EU and AF. Both tables indicate a higher value for all EU data sets compared to AF. The Table results clearly 
distinguish between the two continents regarding blood type distribution for COVID-19 cases. The total rate of 
COVID-19 infection occurrence is higher in the EU compared to AF. 
Table 12. Summary statistics of blood types by states for European (EU) countries 
Blood Type State (1) State (2) State (3) State (4) State (5) State (6) Total θ  87,750.00 322,700.00 830,600.0 1,615,000.00 2,066,000.00 - 4,922,050.00 θ  15,230.00 56,730.00 144,300.00 277,000.00 379,500.00 - 872,760.00 
Total 102,980.00 379,430.00 974,900.00 1,892,000.00 2,445,500.00  5,794,810.00 θ  92,070.00 321,800.00 746,200.00 1,612,000.00 2,164,000.00 - 4,936,070.00 θ  17,470.00 62,670.00 136,700.00 250,000 389,500.00 - 856,340.00 
Total 109,540.00 384,470.00 882,900.00 1,862,000.00 2,553,500.00  5,792,410.00 θ  17,600.00 82,500.00 110,820.00 339,400.00 729,400.00 1,211,000.00 2,490,720.00 θ  6,840.00 21,150.00 57,490.00 87,900.00 205,000.00 - 378,380.00 
Total 24,440.00 103,650.00 168,310.00 427,300.00 934,400.00 1,211,000.00 2,869,100.00 θ  11,400.00 45,160.00 116,600.00 185,500.00 448,500.00 - 807,160.00 θ  2,544.0 8,336.00 23,009.00 38,430.00 68,120.00 - 140,439.00 
Total 13,944.00 53,496.00 139,609.00 223,930.00 516,620.00 - 947,599.00 
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Table 13. Summary statistics of blood types by state of African (AF) countries 
Blood Type State (1) State (2) State (3) State (4) State (5) Total θ  20,260.00 107,780.00 362,100.00 737,000.00 1,000,000.00 2,227,140.00 θ  2118.00 11810.00 38520.00 102000.00 153900.00 308,348.00 
Total 22,378.00 119,590.00 400,620.00 839,000.00 1,153,900.00 2,535,488.00 θ  10,410.00 56,220.00 223300.00 302,500.00 820,900.00 1,413,330.00 θ  985.10 5,950.00 25600.00 53590.00 128,300.00 214,425.10 
Total 11,395.10 62,170.00 248,900.00 356,090.00 949,200.00 1,627,755.10 θ  9,762.00 47,480.00 122,400.00 307,800.00 - 487,442.00 θ  301.80 1,639.00 3,882.00 14240.00 51,310.00 71,372.80 
Total 10,063.80 49,119.00 126,282.00 322,040.00 51,310.00 558,814.80 θ  1,858.00 8,607.00 15,340.00 35,100.00 76,960.00 137,865.00 θ  83.00 466.10 3089.00 4967.00 25660.00 34,265.10 
Total 1,941.00 9,073.10 18,429.00 40,067.00 102,620.00 172,130.10 

 

Table 14 shows the percentage distribution of infection rates within each state. The Table shows that, on average, the 
blood types from the EU exhibit a higher percentage from state (1) to state (4) as compared to AF, with a significant 
difference in the state (5). In addition, the estimated posterior transition probabilities show that the most significant 
transition occurs in states (1) for both EU and AF blood type distribution of COVID -19; this implies that the 
probability of a patient remaining in state (1) when in the state (1) is high otherwise, most patients are transited to state 
(2) or state (3), and comparing the transition probabilities across blood types there is no significant difference between 
the two geographical areas (See Appendix). 
Table 14. Estimated percentage rate of infection per state of blood types and Rhesus for EU and AF countries for 
COVID-19  

Blood Type State (1) State (2) State (3) State (4) State (5) State (6) 

O+ 1.78(0.91) 6.55(4.84) 16.83(16.26) 32.64(33.09) 42.20(44.90)  

O- 1.74(0.69) 6.51(3.83) 16.53(12.49) 31.74(33.08) 43.48(49.91)  

A+ 1.87(0.74) 6.52(3.98) 15.11(15.80) 32.66(21.40) 43.84(58.08)  

A- 2.04(0.46) 7.33(2.77) 15.96(11.94) 29.19(24.99) 45.48(59.84)  

B+ 0.71(2.00) 3.31(9.74) 4.45(25.11) 13.63(63.14) 29.28(0.00) 48.62(0.00) 

B- 1.81(0.42) 5.59(2.29) 15.19(5.45) 23.23(19.95) 54.18(71.89)  

AB+ 1.41(1.35) 5.59(6.24) 14.45(11.13) 22.98(25.46) 55.56(55.82)  

AB- 1.81(0.24) 5.94(1.36) 16.38(9.01) 27.36(14.50) 48.51(74.89)  

Table 15 is the estimated percentage rate of infection per state of ABO blood type and their rhesus factors for EU and 
AF. The order is EU(AF), meaning the first number is the percentage rate of infection for Europe, and the second is that 
of Africa. Assessing each blood type distribution across states shows an increasing order as the states increase for all 
blood types within EU and AF. However, assessing each state across blood type distribution shows there is not much 
difference across blood types for both EU and AF. Meanwhile, the percentage distribution of blood type for COVID-19 
is higher in the EU than in AF. Again, the table shows that at the lowest state [1], blood types A- and A+ are the first and 
second highest estimated percentage rate of infection, respectively, in the EU, while blood types B+ and O+ are the first 
and the second highest estimated percentage rate of infection respectively in AF. However, at the highest state [5] 
(excluding blood type B+), the blood type with the first and second highest percentage rate of infections is AB+ and B- 
respectively for EU, while AB- and B- is the estimated percentage rate of infection in the first and second order for AF. 
In state [5], the blood type with the first and second lowest infection rate is O+ and O- respectively for both EU and AF 
(exclude blood type B+ because there is nothing to compare). 
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Table 15. Estimated percentage rate of infection per state of blood types and Rhesus for EU and AF countries for 
COVID-19  

Blood 
Type 

State [1] State [2] State [3] State [4] State [5] State [6] 

O+ 1.78(0.91) 6.55(4.84) 16.83(16.26) 32.64(33.09) 42.20(44.90)  
O- 1.74(0.69) 6.51(3.83) 16.53(12.49) 31.74(33.08) 43.48(49.91)  
A+ 1.87(0.74) 6.52(3.98) 15.11(15.80) 32.66(21.40) 43.84(58.08)  
A- 2.04(0.46) 7.33(2.77) 15.96(11.94) 29.19(24.99) 45.48(59.84)  
B+ 0.71(2.00) 3.31(9.74) 4.45(25.11) 13.63(63.14) 29.28(0.00) 48.62(0.00) 
B- 1.81(0.42) 5.59(2.29) 15.19(5.45) 23.23(19.95) 54.18(71.89)  
AB+ 1.41(1.35) 5.59(6.24) 14.45(11.13) 22.98(25.46) 55.56(55.82)  
AB- 1.81(0.24) 5.94(1.36) 16.38(9.01) 27.36(14.50) 48.51(74.89)  

 
Table 16 is the estimated percentage rate of infection per state of ABO blood type (merging both rhesus factors). The 
table indicates that blood type A has the highest infection rate at the lowest state [1] when considering EU data sets, 
while blood type B has the highest infection rate for AF. Conversely, in the highest state [5], blood type AB has the 
highest infection rate for both EU and AF, and the lowest infection rate is blood type O (excluding blood type B).  
The estimated posterior transition probabilities show that the most significant transition occurs in states [1] for both EU 
and AF blood type distribution of COVID -19. This finding implies that the probability of a patient remaining in the 
state [1] when in the state [1] is high; otherwise, most patients are transited to state [2] or state [3] and comparing the 
transition probabilities across blood types there is no significant difference between the two geographical areas (See 
Appendix). 
Table 16. Estimated percentage rate of infection per state of blood types for EU and AF countries for COVID-19  

Blood Type State (1) State (2) State (3) State (4) State (5) State (6) 
O 1.76(0.80) 6.53(4.34) 16.68(14.38) 32.19(33.08) 42.84(47.41)  
A 1.96(0.60) 6.93(3.38) 15.54(13.87) 30.93(23.20) 44.66(58.96)  
B 1.26(1.21) 4.45(6.02) 9.82(15.28) 18.43(41.55) 41.73(35.95) 24.31(0.00) 
AB 1.61(0.80) 5.77(3.80) 15.42(10.07) 25.17(19.98) 52.04(65.36)  

 
3.2 Discussion   
The BP-HMM was applied to the blood type distribution of COVID-19 infection data sets of European (EU) and 
African (AF) countries, which is this study's third objective. The main reasons for applying BP-HMM to these data sets 
were to identify the number of hidden states in these geographical areas and assess the rate of infection based on the 
states selected by the models.  
The estimated posterior mean was highly precise as the MC error compared with each corresponding estimated 
posterior standard deviation (MC error %) was low in all cases. Therefore, for a sample of 98000 iterations after 
discarding 2000 iterations as a burin, each MC error was lower than the corresponding standard deviation given a lower 
MC error% of an interval 0.2971% - 1.5236%. Furthermore, the algorithm assumed convergence as there was no 
indication of patterns or irregularities in samples of the trace plot. Therefore, the developed model performs better in 
estimating parameters of Poisson hidden Markov models. 
The findings indicate that the EU data sets of blood type distribution for COVID-19 fitted into a minimum of five (5) 
and a maximum of six (6) hidden states. However, The AF data sets of COVID-19 fitted into a minimum of four (4) and 
a maximum of five (5) hidden states. Therefore, if we assume the defined hidden states by Prabhu & Subramanyam 
( 2020), then we can infer that per the available data by WHO as of 1st Sept 2021, this study assumes that for individuals 
with blood type B+, having six(6)  hidden states from EU the data set is being governed by "Castastrphpe-2"(state[1]), 
"Catastrophe-1"(state[2]), "Detected"(state[3]),  "Symptomatic"(state [4]), "Infected" (state[5]), "Healthy"(state[6]). 
However, for individuals with blood types 𝑂 ,  𝑂 , 𝐴 , 𝐴 , 𝐴𝐵 ,  𝐴𝐵 , 𝐵  and having five (5) hidden states[5], the data 
sets is governed by “Catastrophe-1”(state[1]), “Detected”(state[2]), “Symptomatic”(state[3]), "Infected"(state[4]) and 
"Healthy"(state[5]) for both EU and AF. Again, the estimated posterior mean for each blood type indicates an increasing 
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order from "Catastrophe- 2" (state [1]) to" Healthy" (state [6]) and "Catastrophe-1(state [1]) to "Healthy" (state [5]) for 
EU and AF respectively. However, comparing the estimated posterior mean for each blood type across the two 
geographical areas show a higher rate for EU at "Catastrophe-2" (state [1]) to "Infected" (state [4]) while AF has a 
higher rate at "Healthy" (state [5]). The transition probabilities indicate that the probability of a patient in 
"Catastrophe-2" (state [1]) state and to remain that state is high; otherwise, most patients are transited to either 
"Catastrophe-1" (state 2) state or "Detected" (state 3) state for both EU and AF for most blood types (see appendix).  
The study also estimated the percentage rate of infection of each blood type across states and discovered an increasing 
order as the state increased for all blood types within EU and AF. Meanwhile, assessing each state across blood type 
distribution shows there is not much difference across blood types for both EU and AF. In all, the percentage 
distribution of blood type for COVID-19 is higher in the EU than in AF. Further, the findings show that individuals with 
blood type 𝐴 are at a higher risk of “Catastrophe-1” (state [1]) of COVID-19 in European countries, and individuals 
with blood type 𝐵 are at a higher risk “Catastrophe-1” (state [1]) in African countries. However, individuals with blood 
type 𝑂 are at the lowest risk of attracting COVID-19 and would be "Healthy" (state [5]) in both European and African 
counties. The current study support studies such as: El-Shitany et al. (2021); Zhao et al.(2020); Fan et al. (2020);  
Muniz-Diaz et al. (2020);  Ad’hiah et al. (2020) and  Obayes  AL-Khikani (2020). Most of these studies were 
conducted in European countries and associated the relationship between ABO blood types and COVID-19 infections. 
Again, these studies concluded that individuals with blood type 𝐴 were at higher risk of COVID-19 and individuals 
with blood type O were at a lower risk of COVID-19, as this current study has suggested for persons living in Europe or 
countries with similar environmental conditions like Europe.  
As Miotto et al., (2021) suggested, population-dependent antigen distribution might play a role in the geographically 
heterogeneous spreading of COVID-19 infection with blood frequency. In addition, other latent variables might 
contribute to the spread of the infection since the findings across the two geographical areas give a different infection 
rate per blood type distribution. Therefore, as Hedell et al.,(2018) suggested, a potentially sensitive way to detect 
disease outbreaks is syndromic surveillance, which is monitoring the number of syndromes reported in the population of 
interest and comparing it to the baseline rate. Finally, concluding the outbreak using statistical methods Hedell et al., 
(2018). 
4. Conclusion 
In conclusion, as a follow-up from Miotto et al.,(2021) other population-dependent antigen distribution might play a 
role in the geographically heterogeneous infection spreading of COVID-19 infection with blood frequency. This study 
has indicated that geographical area might contribute to the spread and infection rate of the COVID-19 pandemic, 
therefore as we associate the spread of the infection with blood frequency, we need to consider other factors such as 
weather conditions, environmental conditions, lifestyle, population density, infection rate, etc. This current study is in 
line with the study of Hedell et al.,(2018)who concluded in their study that before assessing the probability of an 
outbreak, pieces of information such as the total count of syndromes, clustering of syndromes in space and time, 
seasonality of the infection and others needed to be considered. Therefore, the study findings suggest that using four 
variable names such as "Active," "Recovered," Dead," and "Inactive" to define several counted cases by policymakers 
of COVID-19 infection might not be adequate to classify the distinction of number cases in these two geographical 
areas. In addition, there might be other hidden states within EU and AF countries, and the number of hidden states 
might differ from one geographical area. Therefore, the study recommends further studies using additional geographical 
areas to affirm this current study. 
This study is a follow-up of Miotto et al., (2021), who recommended further studies as to whether other 
population-dependent antigen distribution may play a role in the geographically heterogeneous infection spreading of 
COVID-19 infection with blood frequency. 
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Appendix 
Table A.1: Summary Statistics of COVID-19 per blood type for European (EU) Countries 

Blood 
Type 

Summary Statistics  

 Minimum 1st 
Quartile 

Median Mean 3rd 
Quartile 

Maximum Variance 

O+ 26,485 146,017 307,654 584,742 748,710 2,360,555 432,692,066,623
A+ 27,998 142,946 347,506 613,670 752646 2,426,126 464,045,500,322
B+ 6810 56820 98738 204542 318035 1383793 82,133,136,454 
AB+ 3026 19424 41300 78855 114077 484327 10233284013 
O- 4540 24259 50677 109419 137633 436257 16274586663 
A- 4540 29827 70709 120678 164285 458997 16372282945 
B- 1513 8070 17991 34922 49214 221406 2149888111 
AB- 756 3939 7930 15356 21202 76108 359935368 
 
Table A. 2: Summary Statistics of COVID-19 per blood type for African (AF) Countries  

Blood 
Type 

Summary Statistics  

 Minimum 1st Quartile Median Mean  3rd Quartile Maximum Variance 
O+ 8085 23744 81012 173563 127203 1080524 91063173725
A+ 2894 11910 37667 123691 73346 886583 62439079264
B+ 2065 9188 28688 58616 53661 332469 8600666050 
AB+ 326 2109 4149 14210 12048 83117 565650025 
O- 136 1152 3652 20442 10505 166234 2223241465 
A- 41 647 1500 15404 5856 138529 1557269924 
B- 27 326 1344 6614 2355 55412 248332655 
AB- 14 71 151 2976 1199 27706 62092995 
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Table A.3: Posterior summary of the estimated transition probability for blood type𝑂 , EU 

 
 
Table A.4: Posterior summary of the estimated transition probability for blood type 𝐴 , EU 
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Table A.5: Posterior summary of the estimated transition probability for blood type 𝐵 , EU 

 
Table A.6: Posterior summary of the estimated transition probability for blood type 𝐴𝐵 , EU 
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Table A.7: Posterior summary of the estimated transition probability for blood type𝑂 , EU 

 
Table A.8. Posterior summary of the estimated transition probability for blood type𝐵 , EU 
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Table A.9: Posterior summary of the estimated transition probability for blood type 𝐵 , EU 

, 
Table A.10: Posterior summary of the estimated transition probability for blood type𝑂 , -AF 
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Table A.11: Posterior summary of the estimated transition probability for blood type 𝐴 , AF 

 
 
Table A.12: Posterior summary of the estimated transition probability for blood type 𝐵 , EU 
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Table A.13: Posterior summary of the estimated transition probability for blood type 𝐴𝐵 , EU 

 
Table A.14: Posterior summary of the estimated transition probability for blood type𝑂  , AF 
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Table A.15. Posterior summary of the estimated transition probability for blood type 𝐴 , AF 

 
 
Table A.16. Posterior summary of the estimated transition probability for blood type 𝐵  AF 

 

 
 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 12, No. 6; 2023 

59 

Table A.17. Posterior summary of the estimated transition probability for blood type 𝐴𝐵  ,AF 
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