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Abstract 

This paper is about the theoretical investigation of integer-valued first order autoregressive (INAR(1)) model with 

negative binomial (NB) innovation for the forecasting of time series count data. The study makes use of the Conditional 

Least squares (CLS) estimator to estimate the parameter of INAR(1) model, and Maximum Likelihood Estimator (MLE) 

to estimate the mean (𝜇) and the dispersion parameter (K) of the NB distribution. A simulation experiment based on 

theoretical generated data were addressed under different parameter values 𝛼=0.2, 0.6, 0.8, different sample sizes n=30, 

90, 120, 600 for the class of INAR(1) model, and 𝜇 =0.85, 1.5, 2,  K=1,2, 4 for the NB distribution. The Monte Carlo 

simulations were conducted with codes written in R, all results were based on 1000 runs. The estimation of parameter 

for the class of INAR(1) model gives a better result when the number of observations is small and the parameter value 

is high. The NB estimation gives a better result when the number of observations is small and with large K values. The 

forecasting accuracy of the model at different lead time period 𝑙=1, 3, 5, 7, 9, 15 were investigated with codes written 

in R. The results showed that the minimum mean square error (MMSE) produced when the number of lead times 

forecasts is between one and five were less than that produced when the numbers of lead times forecast were greater 

than five. The MMSE increased when the number of lead time periods increases. This result indicates that forecasting 

with this class of model is better with short time frame of predictions. The study was applied to the number of deaths 

arising from COVID-19 in Nigeria which consist of count time series data of 48 observations (weekly data), from 

January 2021 to December 2021.  

Keywords: INAR(1) model, NB distribution, count data, CLS estimation, MLE estimation, Covid-19, Forecasting  

1. Introduction  

Integer Autoregressive Moving Average (INARMA) models has recently received wider attention in the literature. The 

necessity for such investigations arises from the fact that, INARMA models are capable of modelling and forecasting 

Time Series Count data that appears in several diverse scientific especially for low frequency count with overdispersed 

data. 

A time series is a set of observations 𝑦𝑡, observed sequentially with time t. For continuous time series, the observations 

are measured continuously over some time interval, for example, T=[0,1], for a discrete-time series, the observations 

are measured at a sequential integer values over a fixed time intervals. 

Discrete variate time series for counts occur in many contexts either as counts of events, for example, the number of 

road accidents in a given period of time, the number of births at a hospital in a given period of time, the number of 

deaths arising from a particular disease, or, of individuals for example, the number of people in a queue waiting to 

receive a service at a particular time. The INARMA model was originally introduced in the 1980s Mc Kenzie (1985), 

Al-Osh and Alzaid (1987). The INARMA models have been proposed for forecasting time series of counts, and have 

received wider attentions in the last three decades. This model has been shown to be analogous to well-known 

conventional time series model namely Autoregressive Moving Average (ARMA) models by Box et al. (1994) for 

modelling continuous data.  

The study and analysis of count time series poses several problems and questions. For instance, a common distribution 

that is used in practice to model the response time series, is the Poisson distribution. Such an assumption is sensible 

because the Poisson distribution is the simplest discrete distribution, yet its properties are satisfactory to cover a large 

class of problems (as cited in Christou, 2013).  
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Researchers have investigated the classes of INARMA models with the assumption that the innovation distribution are 

Poisson distribution. But the Poisson distribution has a feature of equal mean-variance relationship which makes it 

inadequate for modeling time series count data because most of the count data have properties of overdispersion. In this 

research, we investigate INAR(1) model with the assumption that the innovation distributions are Negative Binomial 

distribution. The Negative Binomial distribution is capable of taking into account the overdispersion found in time 

series count data. This research will fill a major gap in the literature. 

Modeling discrete -valued time series is the most challenging and, yet, least well-developed of all areas of research in 

time series. The fact that variate values are integer, renders most traditional representations of dependence either 

impossible or impractical. In the past there have been a number of imaginative attempts to develop a suitable class of 

models (as cited in McKenzie, 2000). In recent times, Fokianos (2012), Davis and Liu (2015) have made an effort to the 

development of models appropriate for discrete valued time series. Such data usually occur in the form of counts 

rendering the traditional ARMA-type models impractical. Steutel and Harn (1979) proposed the most popular count 

time series models that are based on the notion of binomial thinning. These models namely the integer-valued 

autoregressive (INAR) processes, were introduced by McKenzie (1985), Al-Osh and Alzaid (1987) as a convenient way 

to transform the usual autoregressive structure to discrete valued-time series. Several attempts have been made to extent 

and generalize the simplest INAR(1) process. One of the most interesting but less developed generalization that have 

appeared in the literature is the extension of INAR-type models to the multi-dimensional space. Most attempts to this 

direction considered the bivariate case (n=2) since the complexity of the model increases rapidly for n>2. Xanthi and 

Dimitris (2014) considered a simplified version of the multivariate INAR(1) process proposed by Pedeli and Karlis 

(2013) where the innovation distribution are assumed to be independent random variables. Therefore, cross-correlation 

between the series of the multivariate process is only due to the non-diagonal autocorrelation matrix A. It is shown that 

such a specification is extremely advantageous in terms of practical implementation without significant precision losses. 

They used some multivariate time series earthquakes to illustrate the model. Its appropriateness for syndromic 

surveillance and outbreak detection purposes is also discussed.  

For the Innovation distribution 𝜀𝑡, of INARMA models, many models have been proposed in the literature for the 

integer-valued time series count data. The Poisson distribution is often assumed as the distribution of 𝜀𝑡 in the 

INARMA models. The Poisson distribution has a characteristic of equidispersion. In practice, however, count data are 

overdispersed in nature relative to the Poisson distribution. For this reason, the INARMA models with Poisson 

innovations is not always suitable for modeling integer-valued time series, therefore, several models which describe the 

over-dispersion phenomena have been discussed in the statistical literature.  

One common approach is to change the thinning operation in the INAR(1) model. Weiß (2018) summarized several 

alternative thinning operators, such as random coefficient thinning, iterated thinning and quasi-binomial thinning 

operator to the extended binomial case.  

Changing the distribution of innovations is also used to modify the INAR(1) model. Jung et al. (2005) indicated that the 

INAR(1) model with negative binomial innovation (NB- INAR(1)) is appropriate for generating overdispersion. Jazi et 

al.(2012) defined a zero-inflated Poisson ZIP(p, 𝜆)for innovation (ZIP- INAR(1)), because a frequent occurrence in 

overdispersion is that the incidence of zero counts is generated than expected from the Poisson distribution. Jazi et al. 

(2012) proposed a modification of INAR(1) model with Geometric innovation (G-INAR(1)) for modeling overdispersed 

count data. Schwer and Weiß (2014) investigated the compound Poisson INAR(1) (CP- INAR(1)) model, which is 

suitable for fitting data sets with overdispersion. According to Schwer and Weiß (2014) the negative binomial 

distribution and the geometric distribution both belonging to the compound Poisson distribution. Livio et al. (2018) 

presented the INAR(1) model with the Poisson-Lindely innovations, that is, PL-INAR(1) model. Bourgnignon et al. 

(2019) introduced the INAR(1) model with double Poisson (DP- INAR(1)) and generalized Poisson innovations (GP- 

INAR(1)) model. Qi et al. (2019) considered zero-order one-inflated INAR(1)-type models, and Cunha et al. (2021) 

introduced an INAR(1) model with Borel innovation to model zero truncated count time series.  Huang and Zim (2021) 

introduced a new INAR(1) model with Bell innovations (BL- INAR(1)). Huang and Zim (2021) used a relative simple 

distribution introduced by Castellares et al. (2018) for innovation. Mahmoudi and  Rostami (2020) introduced a 

first-order nonnegative integer-valued moving average process with power series innovations based on a Poison 

thinning operator (PINMAPS(1)) for modeling overdispersed and underdispersed count time series. Bouguinon and 

Vasconcellos (2015) introduced INAR(1) processes with power series innovations. Yu and Wang (2021) introduced a 

new overdispersed integer-valued moving average model with dependent counting series. In this paper we investigate 

the theoretical properties of INAR(1) model with NB innovation, and assess the practical validity and applicability of 

the main results of the study on real life data.     
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2. Methodology 

2.1 The Binomial Thinning Operator  

Before introducing the INAR(1) model, we first introduced the meaning of Binomial thinning operation and it 

properties.  

The binomial thinning operation was defined by Steutel and Harn (1979). Suppose Y is a non-negative integer-valued 

random variable. Then, for any 𝛼 ∈ [0,1], the thinning operation “∘” is defined by: 

𝛼∘Y   = ∑ 𝑥𝑖
𝑦
𝑖=1                                (2.1) 

Where {𝑋𝑖} is a sequence of i.i.d. Bernoulli random variables, independent of 𝑌, and with a constant probability that the 

variable will take the value of unity: 

𝑃 𝑋𝑖 = 1 − 𝑃 𝑋𝑖 = 0 = 𝛼                              (2.2) 

Some of the properties of the thinning operation can be obtained as follows: 

(1) 0 ∘Y = 0 

(2) 1 ∘Y = 𝑌 

(3) 𝛼 ∘ (𝛽 ∘ 𝑌) =
d  (𝛼𝛽) ∘ 𝑌 

(4) ( ∘ 𝑌) = 𝛼 𝐸(𝑌) 

(5) 𝐸 (𝛼 ∘ 𝑌) 2 = 𝛼2( 𝑌2  + 𝛼 1 − 𝛼 (𝑌) 

(6) var 𝛼 ∘ 𝑌 = 𝛼2var 𝑌 + 𝛼 1 − 𝛼 𝐸(𝑌)  

2.2 Integer-Valued First Order Autoregressive (INAR(1)) Model 

The Integer-valued first order Autoregressive INAR(1) model is defined by  

𝑦𝑡= 𝛼∘𝑦𝑡−1 + 𝑧𝑡                                   (2.3) 

Where 𝛼 ∈ (0,1),  and 𝑧𝑡  is a sequence of i.i.d non-negative integer-valued random variables, independent 

of 𝑦𝑡~(𝜇𝑧, 𝜎
2

𝑧,), 𝑧𝑡 and 𝑦𝑡−1 are assumed to be stochastically independent for all points in time, and the thinning 

operator “∘” is defined via:  

 𝛼∘y = ∑ 𝑥𝑖
𝑦
𝑖=1                                    (2.4) 

Where 𝑥𝑖 is a sequence of independently and identically distributed (i.i.d.), Bernoulli random variables, independent of 

y, and with a constant probability that the variable will take value of unity.  

P(𝑥𝑡=1) = 1-p(𝑥𝑡=0) = 𝛼                            (2.5) 

The process obtained by equation (2.3) is stationary and it resembles the Gaussian AR(1) process except that it is 

nonlinear due to the thinning operation  “∘” replacing the scalar multiplication in continuous models. 

Equation (2.3) shows that, based on the definition of the thinning operation, the memory of an INAR(1) model decays 

exponentially as has been shown (Al-Osh and Alzaid, 1987). 

2.3 Method of Estimation 

The Conditional Least Square (CLS) estimation method was employed in this research. Lawrence and Paul (1978) 

developed the Conditional Least Square (CLS) estimation procedure for stochastic processes based on the minimization 

of a sum of squared deviations about conditional expectation.  

It can be easily seen that in the INAR(1) model, 𝑌𝑡 given 𝑌𝑡−1 is still a random variable due to the definition of the 

thinning operation. The conditional mean of 𝑌𝑡 given 𝑌𝑡−1, which is the best one-step-ahead predictor as has been shown 

(Brännäs and Hall, 2001) is:  

𝐸 (𝑌𝑡/ 𝑌𝑡−1 =𝛼𝑌𝑡−1+𝜆=(𝛉,𝑌𝑡−1)                          (2.6) 

where 𝛉=(𝛼,𝜆)′ is the vector of parameters to be estimated. Al-Osh and Alzaid (1987) employed a procedure developed 

by Klimko and Nelson (1978) and derived the estimators for 𝛼 given by: 

𝛼̂ =
∑  n

t=1 𝑌𝑡𝑌𝑡−1−(∑  n
t=1 𝑌𝑡  ∑  n

t=1 𝑌𝑡−1)/𝑛

∑ 𝑌𝑡−1
2𝑛

𝑡=1 −(∑ 𝑌𝑡−1
𝑛
𝑡=1 )

2
/𝑛

        (2.7)  
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2.4 Forecasting Method  

One of the objectives of a time series models is to forecast the future values of a time series observations.   

2.4.1 Minimum Mean Square Error (MMSE) Forecasts 

The conditional expectation has been the most commonly used forecasting procedure discussed in the time series 

literature (Freeland and McCabe, 2004b). The main advantage of this method, apart from being simple, is that it 

produces forecasts with minimum mean square error (MMSE).  

Minimum mean square error (MMSE) forecasts are used to find 𝑌̂𝑇+ℎ,ℎ = 1,2, … , 𝐻 of the processes 𝑌𝑡 based on the 

observed series of {𝑌1, … , 𝑌𝑇}. The MMSE forecast of the process is given by: 

𝑌̂𝑇+ℎ, = 𝐸(𝑌𝑇+ℎ|𝑌𝑇, … , 𝑌1)                          (2.8) 

This method yields forecasts with minimum MSE. For an INAR(𝑝) model, we have: 

𝑌̂𝑇+ℎ = 𝛼1𝑌𝑇+ℎ−1 + 𝛼2𝑌𝑇+ℎ−2 + ⋯ + 𝛼𝑝𝑌𝑇+ℎ−𝑝 + 𝜇                   (2.9) 

Where the Y values on the RHS of equation (2.9) may be either actual or forecast values as has been shown (Du and Li, 

1991; Jung and Tremayne, 2006b).  

2.4.2 Lead Time Forecasting for an INAR(1) Model 

For the INAR(1) process of 𝑌𝑡 = 𝛼 ° 𝑌𝑡−1 + 𝑍𝑡 , the cumulative Y over lead time 𝑙 is given by: 

∑ 𝑌𝑡+𝑗

𝑙+1

𝑗=1

= 𝑌𝑡+1 + 𝑌𝑡+2 + ⋯ + 𝑌𝑡+𝑙+1 

= (𝛼 ° 𝑌𝑡−1 + 𝑍𝑡+1) + (𝛼2 ° 𝑌𝑡 + 𝛼 °𝑍𝑡+1 + 𝑍𝑡+2) 

+ ⋯ + (𝛼𝑙+1 ° 𝑌𝑡 + 𝛼𝑙  °𝑍𝑡+1 + 𝛼𝑙−1 °𝑍𝑡+2 + ⋯ + 𝑍𝑡+𝑙+1)                      (2.10) 

Because 𝛼 ° 𝑋 + 𝛽 ° 𝑋 ≠ (𝛼 + 𝛽) ° 𝑋, the above equation can be written as: 

∑ 𝑌𝑡+𝑗
𝑙+1
𝑗=1 = ∑ ∑ 𝜓𝑖𝑗

1𝑛𝑗
1

𝑖=1
𝑙+1
𝑗=1  ° 𝑌𝑡 + ∑ ∑ 𝜓𝑖𝑗

2𝑛𝑗
2

𝑖=1
𝑙+1
𝑗=1  ° 𝑍𝑡+𝑘𝑖𝑗

                   (2.11) 

Where 𝑛𝑗
1is the number of 𝑌𝑡 terms in each of {𝑌𝑡+𝑗}

𝑗=1

𝑙+1
 in equation (2.11), 𝜓𝑖𝑗

1  is the corresponding coefficient for 

each 𝑌𝑡, 𝑛𝑗
2  is the number of 𝑍𝑡+𝑘𝑖𝑗

 terms in each of {𝑌𝑡+𝑗}
𝑗=1

𝑙+1
 in equation (2.10), 𝜓𝑖𝑗

2  is the corresponding 

coefficient for each 𝑍𝑡+𝑘𝑖𝑗
. All of these terms are explained below. 

It can be seen that because the process is an integer autoregressive of order one, each of {𝑌𝑡+𝑗}
𝑗=1

𝑙+1
 yields only one  𝑌𝑡, 

in equation (2.11); therefore, 𝑛𝑗
1=1. The corresponding coefficient for 𝑌𝑡 in each of {𝑌𝑡+𝑗}

𝑗=1

𝑙+1
 (say𝑌𝑡+2) is obtained 

from 𝛼 thinned the coefficient of 𝑌𝑡 in the previous term (in this case 𝑌𝑡+1). As a result, 𝜓𝑖𝑗
1 = 𝛼𝑗.  

It can be seen from equation (2.10) that due to the repeated substitution of 𝑌𝑡+𝑗, the number of 𝑍𝑡+𝑘𝑖𝑗
 increases in each 

of {𝑌𝑡+𝑗}
𝑗=1

𝑙+1
. This number, shown by 𝑛𝑗

2, can be obtained from 𝑛𝑗−1
2 +1. This means that each of  {𝑌𝑡+𝑗}

𝑗=1

𝑙+1
 (say𝑌𝑡+2) 

has one of more Z compared to the previous one (which is 𝑌𝑡+1in this case). The corresponding coefficient for each 

𝑍𝑡+𝑘𝑖𝑗
 shown by Ψ𝑖𝑗

2 , is 𝛼 thinned the corresponding coefficient in the previous term α ° Ψ1(𝑗+1)
2 . ) 𝑡 + 𝑘𝑖𝑗   is the 

subscript of innovation terms in each of  {𝑌𝑡+𝑗}
𝑗=1

𝑙+𝑗
 and from equation (2.11)  it can be easily seen that 𝑘𝑖𝑗 is given 

by 
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𝑘𝑖𝑗 =  {
𝑗

𝑘𝑖(𝑗−1)
  

𝑓𝑜𝑟 𝑛𝑗−1
2 <𝑖 ≤ 𝑛𝑗

2

𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛𝑗−1
2

 𝑓𝑜𝑟 𝑗 = 1, … . , 𝑙 + 1                  (2.12) 

Based on equation (2.11), the conditional expected value of the aggregated process: 

𝐸 (∑ 𝑌𝑡+𝑗

𝑙+1

𝑗=1

 | 𝑌𝑡) =  ( ∑ ∑ Ψ𝑖𝑗
1

𝑛𝑗
1

𝑖=1

𝑙+1

𝑗=1

) 𝑌𝑡 +  ( ∑ ∑ Ψ𝑖𝑗
2

𝑛𝑗
2

𝑖=1

𝑙+1

𝑗=1

) 𝜇 =  
𝛼(1 − 𝛼𝑙+1)

1 − 𝛼
 𝑌𝑡 

+ ( ∑ ∑ 𝛼𝑖−1𝑗
𝑖=1

𝑙+1
𝑗=1 )𝜇 =

𝛼(1−𝛼𝑙+1)

1−𝛼
 𝑌𝑡 +

𝜇

1−𝑎
 [(𝑙 + 1) − ∑ 𝛼𝑗𝑙+1

𝑗=1 ]                  (2.13) 

Therefore, at time 𝑇, when 𝑌𝑇 is observed, the lead time forecast can be obtained from: 

𝐸(∑ 𝑌𝑇+𝑗
𝑙+1
𝑗=1  | 𝑌𝑇)  =

𝛼(1−𝛼𝑙+1)

1−𝛼
 𝑌𝑇 +

𝜇

1−𝑎
 [(𝑙 + 1) − ∑ 𝛼𝑗𝑙+1

𝑗=1 ]                    (2.14) 

2.5 The Negative Binomial (NB) Distribution  

The innovation distribution assumed in this research is the negative binomial distribution. The negative binomial 

distribution has two parameters: the mean  𝜇 and the shape parameter or the dispersion parameter k, which is 

commonly considered to be fixed to measure overdispersion. For a sample of counts X that fits a negative binomial 

distribution ( X ~ NB(𝜇, k ) ), the variance of the distribution is  

𝜇 + 𝜇 
2 

/ k . The probability that the variable X takes the value x is: 

Prb[X=x]= 
Г(𝑥+𝑘)

𝑥!Г(𝑘)
(

𝜇

𝜇+𝑘
)

𝑥

(1 +
𝜇

𝑘
)

−𝑘

= 
(𝑥+𝑘−1)(𝑥+𝑘−2) … (𝑘+1)𝑘

𝑥!
(

𝜇

𝜇+𝑘
)

𝑥

(1 +
𝜇

𝑘
)

−𝑘

, 𝜇, 𝑘>0, x=0,1,2,…    (2.15) 

Where Г(. ) denotes the gamma function defined by: 

 Г(𝑧) = ∫ е−𝑡𝑡𝑧−1𝑑𝑡
∞

0
.            (2.16) 

From the probability density function of the negative binomial distribution, it can be seen that k is an essential part of 

the model. Estimation of k is thus important given a sample of counts.  

In this research, the method of maximum likelihood estimator (MLE) is adopted to estimate the mean and the dispersion 

parameter of the NB. According to Fisher, the log-likelihood function from a sample of independent identically 

distributed (i.i.d.) variate (𝑥𝑖
′, 𝑠) is proportional to: 

Ɩ(k, 𝜇) = 
1

𝑛
∑ 𝑙𝑜𝑔 ( 

Г(𝑥𝑖+𝑘)

Г(𝑘)
)𝑛

𝑖=1 +𝑥̅log(u)-( 𝑥̅ + 𝑘)log (1 +
𝜇

k
)          (2.17) 

Where 𝜇 is again the mean of the negative binomial distribution. The sample variate are integers in practice, which 

yields: 

Г(𝑥+𝑘)

Г(𝑘)
= (x+k-1)(x+k-2)…(k+1)k. the term 𝑙𝑜𝑔 ( 

Г(𝑥𝑖+𝑘)

Г(𝑘)
)                 (2.18) 

then can be written as: 

𝑙𝑜𝑔 ( 
Г(𝑥𝑖+𝑘)

Г(𝑘)
)=∑ 𝑘𝑙𝑜𝑔 (1 + 

𝑣

𝑘
)

𝑥𝑖−1
𝑣=0                    (2.19) 

Without call to the gamma function. 

Thus, the log-likelihood function can finally be expressed by: 

Ɩ(k, 𝜇)= 
1

𝑛
∑ ∑ 𝑘𝑙𝑜𝑔 (1 + 

𝜇

𝑘
)

𝑥𝑖−1
𝑣=0

𝑛
𝑖=1 +𝑥̅log(𝜇)-( 𝑥̅ + 𝑘)log (1 +

𝜇

k
)              (2.20) 

With gradient elements  

∇𝜇Ɩ=
𝑥̅

𝜇 
-

1+𝑥̅/𝑘

 1+𝜇/𝑘
 and 

∇𝑘Ɩ=
1

𝑛
∑ ∑ ( 

𝑣

1+𝑣/𝑘
)

𝑥𝑖−1
𝑣=0

𝑛
𝑖=1 + 𝑘2log (1 +

u

k
) - 

𝜇(𝑥̅+𝑘)

1+𝜇/𝑘
.                   (2.21) 
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From the gradient element, setting ∇𝜇Ɩ=0 yields 𝜇̂=𝑥̅. Then the MLE of k can be obtained via a nonlinear root-finder 

by setting ∇𝑘Ɩ=0 and given 𝜇 = 𝜇̂.  

3. Results and Interpretations    

This section focuses on the result which is based on the simulation study of theoretical investigation of the class of 

INAR(1) model with NB innovation. The study makes use of the Conditional Least squares (CLS) estimate to estimate 

the parameter of INAR(1) model, and Maximum Likelihood Estimate (MLE) to estimate the mean and the dispersion 

parameter of the NB distribution.  

3.1 Estimation of Parameter For INAR(1) Model and NB Distribution   

A simulation experiment based on theoretical generated data were addressed under different parameter values and 

different sample sizes. The Monte Carlo simulations were conducted with a code written in R, all results were based on 

1000 runs.  

In estimating the parameter of INAR(1) model, we make use of equation (2.7), with the following parameter setting: 

𝛼=0.2, 0.6, and 0.8. n=30, 90, 120, and 600, with number of replication r= 1000 times.  

In estimating the mean and dispersion parameter of the NB distribution, equation (2.20) were used with the following 

parameter setting: 𝜇 =0.85, 1.5 and 2 respectively. K:1,2, and 4 for each 𝜇, with number of replication r= 1000 times. 

The results are shown below:  

Table 3.1. Parameter Estimate of CLS Estimator for INAR(1) Series             Replication=1000 

Estimator 
Parameter 

setting (𝛼) 

Parameter 

Estimate and 

S.E 

Sample Size (n) 

30 90 120 600 

Conditional Least 

Square 

0.2 
𝛼̂ 0.0924 0.0943 0.0945 0.0937 

S.E 0.1771 0.1805 0.1808 0.1797 

0.6 
𝛼̂ 0.5488 0.5469 0.5465 0.5464 

S.E 0.1482 0.1538 0.1555 0.1566 

0.8 
𝛼̂ 0.8133 0.8170 0.7975 0.8094 

S.E 0.1161 0.1134 0.1203 0.1181 

Table 3.1 presents the results of the parameter estimates of the Integer Auto regressive of order 1 (INAR(1)) model. The 

first row reports the parameter estimates of the model, while the second row reports the standard errors (S.E) of the 

estimates obtained by simulation. Results are based on 1000 replication.   

The results confirmed that, the standard error (SE) produced by the Conditional Least Squares (CLS) increases as the 

number of samples increases. The SE reduces as the parameter values increases. This means that estimating the 

parameter of INAR(1) model is better when the number of observations is small and the parameter value is high. 

Table 3.2. Estimation of K and 𝜇 of Negative Binomial Distribution for n=30,90,120, and 600 

Sample Size (n) 𝜇  K=1 K=2 K=4 

30 0.85 

 

 

𝑘̂=0.4965 

𝜇̂=1.0666 

AIC=87.8352 

𝑘̂=0.5387 

𝜇̂=0.600 

AIC=66.8343 

𝑘̂=0.4967 

𝜇̂=0.5334 

AIC=62.7172 

1.5 

 

 

𝑘̂=0.6576 

𝜇̂=1.7331 

AIC=87.8352 

𝑘̂=0.5936 

𝜇̂=1.000 

AIC=84.8273 

𝑘̂=0.9652 

𝜇̂=0.9667 

AIC=85.7712 

2.0 𝑘̂=0.6942 

𝜇̂=2.2664 

AIC=123.8003 

𝑘̂=0.4612 

𝜇̂=1.5340 

AIC=102.8366 

𝑘̂=0.9775 

𝜇̂=1.3001 

AIC=98.4756 

90 0.85 

 

 

𝑘̂=0.7585 

𝜇̂=0.9332 

AIC=244.4199 

𝑘̂=3.1373 

𝜇̂=0.7999 

AIC=222.3790 

𝑘̂=2.2996 

𝜇̂=0.8667 

AIC=232.7188 

1.5 

 

 

𝑘̂=0.8171 

𝜇̂=1.5669 

AIC=312.3411 

𝑘̂=2.2563 

𝜇̂=1.4444 

AIC=296.6447 

𝑘̂=2.7858 

𝜇̂=1.5556 

AIC=303.4139 

2.0 𝑘̂=1.2249 𝑘̂=1.5143 𝑘̂=4.5232 
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𝜇̂=1.9217 

AIC=341.3869 

𝜇̂=2.0444 

AIC=348.6402 

𝜇̂=2.1221 

AIC=335.6395 

120 0.85 

 

 

𝑘̂=0.8268 

𝜇̂=0.9501  

AIC=327.8408 

𝑘̂=2.9590 

𝜇̂=1.008 

AIC=331.9965 

𝑘̂=2.5928 

𝜇̂=0.9418 

AIC=321.632 

1.5 

 

 

𝑘̂=0.8957 

𝜇̂=1.6167 

AIC=421.4639 

𝑘̂=2.1894 

𝜇̂=1.6752 

AIC=421.6663 

𝑘̂=2.6640 

𝜇̂=1.5831 

AIC=406.9943 

2.0 𝑘̂=1.1353 

𝜇̂=1.9331 

AIC=455.4091 

𝑘̂=1.9922 

𝜇̂=2.2333 

AIC=476.1481 

𝑘̂=2.8983 

𝜇̂=2.1333 

AIC=458.4345 

600 0.85 

 

 

𝑘̂=1.0327 

𝜇̂=0.7931 

AIC=1481.292 

𝑘̂=1.8040 

𝜇̂=0.8583 

AIC=1532.379 

𝑘̂=1.7264 

𝜇̂=0.8099 

AIC=1443.602 

1.5 

 

 

𝑘̂=1.0882 

𝜇̂=1.450 

AIC=1991.472 

𝑘̂=2.2187 

𝜇̂=1.5402 

AIC=2010.441 

𝑘̂=6.5003 

𝜇̂=1.4667 

AIC=1901.274 

2.0 𝑘̂=1.0480 

𝜇̂=1.9848 

AIC=2287.914 

𝑘̂=2.3424 

𝜇̂=2.0767 

AIC=2279.278 

𝑘̂=5.2949 

𝜇̂=1.9482 

AIC=2149.624 

Table 3.2 present the result of the estimation results for K and 𝜇 of NB at different simple sizes. Comparing the AIC of 

the result at different K values and at different sample sizes, the estimation produced less AIC with low sample sizes 

especially when n=30. However, as the number of k increases the result showed a decreased in the value of AIC. This 

means that estimation of K of NB distribution is better when the number of observations is small and the more the 

dispersion the better for the estimation.  

3.2 Forecasting in INAR(1) Model With NB Innovation  

This section concentrate on the investigation of the forecasting accuracy of INAR(1) model, with NB innovation. The 

forecast accuracy at different lead time period 𝑙=1, 3, 5, 7, 9, and 15 were investigated with codes written in R 

statistical package. All results were based on 1000 runs. 

At time 𝑇, when 𝑌𝑇 is observed, the lead time forecast is obtained using equation (2.14), with the following Parameter 

values: 𝑙=1, 3, 5, 7, 9, and 15. 𝛼= 0.83, 𝜇=0.85, 𝑗 = 1, … . , 𝑙 + 1, and 𝑌𝑇=30, 90, 120, 600, number of replication 

r=1000. The result is summarized in the table 3.3.  

Table 3.3. MMSE of lead Time Forecasts For INAR(1) Series With mean of NB Distribution 

𝑌𝑇 𝑙=1 𝑙=3 𝑙=5 𝑙=7 𝑙=9 𝑙=15 

30 0.140044 0.140044 0.140051 0.140058 0.140102 0.165879 

90 0.03265801 0.03265801 0.0326592 0.03266839 0.03267158 0.03269515 

120 0.03928588 0.03928588 0.039355 0.03942412 0.03949324 0.0397006 

600 0.009020943 0.009020943 9.032981e-03 9.045019e-03 9.057057e-03 9.093171e-03 

Table 3.3 presents the results of the MMSE forecasts for INAR(1) series with NB innovation. The results showed that, 

the MMSE produced when the number of lead times forecasts between one and five were less than that produced when 

the numbers of lead times forecast were greater than five. The MMSE increased when the number of lead time periods 

increases. This result indicates that, forecasts with this class of model is better with short time frame of predictions.  

3.3 Application to COVID-19 Data Set 

The theoretical investigations result obtained in this study was applied to the number of deaths arising from COVID-19 

in Nigeria. The count time series data consists of 48 observations (weekly data), from January 2021 to December 2021. 

The data was obtained from the Nigeria Centre for Disease Control (NCDC), and analyzed with the aid of R statistical 

package. The results and the interpretation of the analysis are presented below:  
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Table 3.4. Descriptive Statistic of COVID-19 Death Cases 

 
Covid19 Death Cases 

Mean 28 

Median 14.5 i.e. 15 

Maximum 90 

Minimum 1 

Variance 876.16 

Observations 48 

 

Table 3.4 depicts the summary statistic of the number of deaths arising from COVID-19 in Nigeria in 2021. From the 

table, the mean and the variance respectively are 28 and 876.16 which is evident of overdispersion. 

Table 3.5. Preliminary Test 

Test type Test value p-value Decision 

Overdispersion Z=6.3476 1.094e-10 Reject H0 

Autocorrelation Chi-square=73.062 5.107e-15 Reject H0 

Table 3.5 presents the Preliminary test of the number of deaths from COVID-19 in Nigeria in the year 2021. The results 

suggest that the null hypotheses (H0) (i.e. no true dispersion and autocorrelation in the series and its residuals 

respectively) cannot be accepted, thus there is true dispersion in the Covid19 death series and presence of 

autocorrelation in the residuals of the Covid19 death series, which corroborates the descriptive analysis. Hence, a 

negative binomial distribution is assumed for the innovation.  

Fig3.1 and Fig3.2 respectively depicts the plots of ACF and PACF respectively. Based on the information supplied by 

the plots, the candidates’ models in table3.6 were suggested. Comparing the AIC of the models in table3.6. the INAR(1) 

model gives the minimum AIC and hence an INAR(1) model best fit the data set.  

 

 

 

 

 

 

 

 

 

  

 

Figure 3.1. ACF Plot of Covid-19 Death cases 
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Figure 3.2. PACF plot of Covid19 Death cases 

Table 3.6. Candidates of INARMA Models 

Candidate Models AIC 

INARMA(1,0) 414 

INARMA(0,1) 416 

INARMA(2,0) 417 

INARMA(1,1) 416 

INARMA(2,1) 419 

 

Table 3.7 Parameter Estimate of INMA(1) Model 

Model Parameter estimate Std. Error p-value 

INAR(1) -0.32582 0.13628 0.01681 

Table3.7 presents the estimate of parameter of INAR(1) model. In line with the simulation result, Conditional Least 

Square (CLS) estimation method was employed. The parameter value 𝛼 = -0.32582 with standard error of 0.13628, the 

model is found to be statistically significant at 5% level of significance (p< 0.05).  

Table 3.8. Lead Time Forecast of the Covid-19 Data Using INAR(1) Model 

Lead time  1 3 5 7 9 

Forecast  38.5552 38.5161 38.5119 38.5115 38.5114 

MMSE 9.3760 9.3760 9.3761 9.3772 9.3871 

Table 3.8 depicts the lead time forecast of the number of death arising from Covid-19 in Nigeria, using the fitted 

INAR(1) model. The accuracy of the forecast is measured by the MMSE. The error of forecast increases as the number 

of lead time increased. This result is in line with the theoretical investigations obtained in this study. This shows that 

forecasting with this class of model is better with short time prediction. The results show that, the number of death 

shows a decreasing trends as the number of leads time increases, 

4. Conclusion  

From our findings, the following conclusions were drawn: 

The results of the estimation of parameter of the INAR(1) model confirmed that the standard error (SE) produced by the 

Conditional Least Squares (CLS) increases as the number of samples increases, the error reduced as the parameter 

values increases. This means that estimating the parameter of INAR(1) model is better when the number of observations 

is small and the parameter value is high. 

The result of the estimation of the parameters (K and 𝜇) of NB distribution at different simple sizes. Comparing the 

Akaike Information Criterial (AIC) of the result at different K values and at different sample sizes, the estimation 

produced less AIC with low sample sizes especially when n=30. However, as the number of k increases the result 

showed a decreased in the value of AIC. This means that estimation of K of NB distribution is better when the number 

of observations is small and the more the dispersion the better for the estimation. 

The forecasting accuracy were measured by the MMSE. The results showed that, the MMSE produced when the 
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number of lead time forecasts between one and five were less than that produced when the numbers of lead times 

forecast were greater than five. The MMSE increased when the number of lead time periods increases. This result 

indicates that, forecasts with this class of model is better with short time frame of predictions.  

Lastly, the theoretical investigations were validated with a real life data using the number of death arising from 

Covid-19 in Nigeria. The results obtained corroborates the results from the theoretical investigations.  
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