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Abstract

This paper provides third and fourth-order coverage probability errors of delta method confidence intervals (CIs) for the
covariance parameters of a time series generated by a linear regression model with strongly dependent errors. The CIs are
based on the plug-in maximum likelihood (PML) estimators. Bounds have been established on the coverage probability
errors of one-and two-sided delta method CIs based on the plug-in log-likelihood (PLL) function under some sets of
conditions on the regression coefficients, the spectral density function, and the parameter values. It is shown that the the
fourth order delta method CIs in the case of linear regression model with Gaussian, stationary and strongly dependent
errors have coverage probability errors of O(n−1) and that of the third-order has errors of O(n−1/2) which is the same order
of magnitude asymptotically as in the independent and identically distributed (iid) case.
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1. Introduction

Let {ωi, i ≥ 1} be a discrete time stationary and Gaussian process with unknown mean µ0 and spectral density fθ(λ) for
λ ∈ (−π, π), where θ = (d, θ2, . . . , θr)′ ∈ Rr and

fθ(λ) = O(|λ|−2d−δ) (1.1)

as |λ| ↓ 0,∀δ > 0, d ∈ (0, 1/2), and θ1 = d. The parameter d is generally termed as the fractional ’differencing’
operator and when 0 < d < 1/2, the process whose spectral density satisfies (1.1) is known as a long-memory process
with long-memory parameter d. The most well known model for long-memory processes satisfying (1.1) above is the the
autoregressive fractionally integrated moving average ARFIMA (p,d,q) process introduced by Hosking (1980) and Grangr
et al. (1981) and defined by

Φ(B)Xt = ψ(B)(1 − B)−dεt, (1.2)

where Φ(B) = 1 + Φ1B + ... + ΦpBp and Ψ(B) = 1 + Ψ1B + ... + ΨqBq are autoregressive and moving-average operators,
Φ(B) and Ψ(B) have no common roots, d ∈ (0, 1

2 ), (1 − B)−d is defined by the binomial formula (1 − B)−d =
∑∞

j=0 η jB j,
where

η j =
Γ( j + d)

Γ( j + 1)Γ(d)
, (1.3)

and Γ is the gamma function, and εt is a white noise sequence with finite variance. The auto-covariance function of the
process in (1.2) is slow decaying leading to the non-summability that corresponds to a pole at the origin in the spectral
density function. In general, a process with spectral density satisfying

fθ(λ) ∼ |λ|−α(θ)Aθ(λ) (1.4)

as λ → ∞, with 0 < α(θ) < 1, where ∼ indicates that the ratio of the left and right sides tend to 1 and Aθ(λ) is slowly
varying at 0 in the sense that λδAθ(λ) is bounded for every δ, is referred to as strongly dependent or long memory by
Beran (1992, 1994), Robinson (1994, 1995), Baillie (1996), Taqqu (1986) and others. The ARFIMA (p,d,q) given in (1.2)
satisfies (1.4) with α(θ) = 2d because its spectral density function can be written as:

fθ(λ) =
σ2

2π
|2 sin

λ

2
|−2d |Ψ(e−iλ)|2

|Φ(e−iλ)|2
(1.5)

and it can be shown that

fθ(λ) ∼
σ2

2π
|Ψ(1)|2

|Φ(1)|2
(1.6)
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for |λ| → 0 (see Palma (2007), pp 47.)
Andrews et al. (2006) have determined the coverage probability errors of the delta method confidence intervals for
covariance parameters of the process {ωt} described in (1.1) above. In this paper we establish the coverage probability
errors of the delta method confidence intervals for the covariance parameters of a linear regression process whose error
terms are the long-meory process {ωt} by imposing an additional condition on the regression coefficients and a mild
condition on the spectral density function.

Our model, which we call the Gaussian long-memory linear regression model is described as follows. Let β0 =
(
β1, β2, . . . , βp

)′
be a vector of deterministic, but unknown real numbers. Let {Yi, i ≥ 1} be a process such that: Yi = Ziβ0 + ωi, where
Zi =

(
zi1, zi2, . . . , zip

)
are non-stochastic regressors for i = 1, 2, ..., n and ωi are the stationary Gaussian processes men-

tioned above. With out loss of generality we can assume that the mean of the ωi is zreo.
Now, the process {Yi, i ≥ 1} is non-stationary because the mean of Yi is µi = EYi = Ziβ0, which varies with i. However, if
Y = (Y1,Y2, . . . ,Yn)′ is an observed sample of size n andW = (ω1, ω2, . . . , ωn)′ , then clearly the covariance matrix of Y
is the same as that ofW.
Let µ = (µ1, µ2, . . . , µn) be the true mean of Y. Then, the least square estimate (LSE) β̂ =

(
β̂1, β̂2, . . . , β̂p

)′
of β0 is given

by β̂ = V−1Z′Y, where Z = (zi j) for i = 1, ..., n and j = 1, ..., p denote the design matrix of our regression model and

V = Z′Z (1.7)

is a p × p matrix. Thus, the estimator of µ is µ̂ = (µ̂1, . . . , µ̂n), where µ̂t = Ztβ̂, t = 1, 2, ..., n. We shall assume the rank of
Z is p. Then, the matrixV (and henceV−1) is symmetric and positive definite.

The n × n (Toeplitz) covariance matrix corresponding to fθ(λ) is denoted by Γn( fθ) and has ( j, k) element defined by:

Γn( fθ) j,k =

∫ π

−π

ei( j−k)λ fθ(λ)dλ. (1.8)

The log-likelihood function is

Λn(θ, µ) = −
n
2

ln(2π) −
1
2

ln(det(Γn( fθ))) −
1
2

(Y − µ)′Γ−1
n ( fθ)(Y − µ). (1.9)

We refer to Λn(θ, µ̂), where µ̂ is replaced for µ in (1.9) above, as the plug-in log-likelihood (PLL) function. Let An =

ZV−1Z′ and let Kn = In − An, where In is the n × n identity matrix. We note that there exists an n × p matrix E such that

An = EE′. (1.10)

Using the fact that (Y − µ̂)′ = Y ′Kn, the PLL function can now be written as

Λn(θ, µ̂) = −
n
2

ln(2π) −
1
2

ln(det(Γn( fθ))) −
1
2

Y ′KnΓ−1
n ( fθ)KnY. (1.11)

Let Θ̂n denote the set of solutions to the first order conditions of the PLL function. That is, ∂
∂θ

Λn(θ̂n, µ̂) = 0 for all
θ̂n ∈ Θ̂n. If no solution to this condition exists, then we define Θ̂n to contain values that maximize the PLL function.
Let θ̂n denote an element of Θ̂n. We call θ̂n a plug-in maximum likelihood (PML) estimator of the true parameter θ0.
By Theorem 2.1 of Dahlhaus (1989), the asymptotic covariance matrix of a consistent PML estimator θ̂n is Σ(θ0), where
Σ(θ) =

[
1

4π

∫ π

−π
∂
∂θ

ln( fθ(λ)) ∂
∂θ′

ln( fθ(λ))dλ
]−1

. A consistent estimator of Σ(θ0) is Σ(θ̂n), provided that fθ(λ) is smooth with
respect to θ. Our goal is to formulate the structure of delta method test statistic and confidence intervals of the true
parameter θ0 of the process using Σ(θ̂n) and then determine the magnitude of the coverage probability errors.
The remainder of the paper proceeds as follows. Section 2 presents some preliminaries and lists a set of assumptions.
Section 3 describes the delta method and provides bounds on the third and fourth-order coverage probability errors of one
and two-sided delta method confidence interval estimates.

2. Background Preliminaries and Assumptions

2.1 A Brief Description of Delta Method CIs and Tests

Let θh denote some element of Θ, the parameter space. Let θ0,r, θh,r, and θ̂n,r denote the r-th elements of θ0, θh, and θ̂n,
respectively. Let Σr,r(θ̂n) denote the (r,r)-th element of Σ(θ̂n).
(a) The t statistic for testing the null hypothesis H0 : θ0,r = θh,r is

tn(θh,r) =

√
n(θ̂n,r − θh,r)

Σ
1/2
r,r (θ̂n)

. (2.1)
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Let zα denote the 1 − α quantile of the standard normal distribution.
(b) The two-sided delta method CI for θ0,r with approximate confidence level 100(1−α)% based on the PML estimator θ̂n is

I2(θ̂n) =

θ̂n,r − zα/2
Σ

1/2
r,r (θ̂n)
√

n
, θ̂n,r + zα/2

Σ
1/2
r,r (θ̂n)
√

n

 . (2.2)

(c) The upper one-sided delta method 100(1 − α)% CI for θ0,r is

Iup(θ̂n) =

θ̂n,r − zα
Σ

1/2
r,r (θ̂n)
√

n
,∞

 . (2.3)

(d) The two-sided delta method t test of H0 : θ0,r = θh,r versus H1 : θ0,r , θh,r with significance level α rejects H0 if
|tn(θh,r)| > zα/2.
(e) The one sided t test of H0 : θ0,r ≤ θh,r versus H1 : θ0,r > θh,r with significance level α rejects H0 if tn(θh,r) > zα.

2.2 Background on Cumulants and Edgeworth Expansion

For a random variable U with a characteristic function ϕ(t) = E(eitU), the jth cumulant, κ j, of U is defined to be the
coefficient of 1

j! (it)
j in a power series expansion of

lnϕ(t) =
∑
j≥1

1
j!
κ j(it) j. (2.4)

Since
ϕ(t) = E(eitU) = 1 + E(U)it +

1
2!

E(U2)(it)2 + ... +
1
j!

E(U j)(it) j + ..., (2.5)

substituting (2.5) in (2.4) with E(U j) denoted by µ j we obtain

∑
j≥1

1
j!
κ j(it) j = ln

1 +
∑
j≥1

1
j!
µ j(it) j

 (2.6)

and using the Taylor series expansion identity ln(1 + x) = Σk≥1(−1)k+1 xk

k , the right hand side of (2.6) above equals

∑
j≥1

(−1)k+1 1
k

∑
j≥1

1
j!
µ j(it) j

k

. (2.7)

By equating the coefficients of 1
j! (it)

j from the left hand side of (2.6) with those in (2.7) we obtain κ1 = µ1, κ2 = µ2−µ
2
1, κ3 =

µ3 − 3µ1µ2 + 2µ3
1, κ4 = µ4 − 4µ1µ3 − 3µ2

2 + 12µ2
1µ2 − 6µ4

1, and so on, the formula for κ10 for example containing more than
41 such terms. (See Hall, (1992), pp. 41-46.)
Now, let θ̂ be an estimate of the parameter θ0, constructed from a sample of size n. Under certain conditions n1/2(θ̂ − θ0)
is asymptotically normally distributed with zero mean and variance σ2 and for many situations of practical interest the
distribution function of n1/2(θ̂ − θ0) is expanded as a power series in n−1/2 as follows:

P(
n1/2(θ̂ − θ0)

σ
≤ u) = Φ(u) + n−1/2 p1(u)φ(u) + ... + n− j/2 p j(u)φ(u) + ..., (2.8)

where φ and Φ are the Standard Normal density and distribution function, respectively, and p j is a polynomial in terms of
cumulants and is of degree 3 j − 1. The expansion on the right hand side of (2.8) is known as an Edgeworth expansion of
the distribution function on the right. For example, if U1,U2, ...,Un are independent and identically distributed with mean
µ = θ0 and finite variance σ2 and if θ̂ represent the sample mean, then p1 and p2 are of degrees 2 and 5, respectively, and
are given by

p1(u) = − 1
6κ3(u2 − 1), and

p2(u) = − 1
24κ4(u3 − 3u) − 1

72κ
2
3(u5 − 10u3 + 15u).

Details on more general cumulant and Edgeworth expansion can be found in Hall, (1992), and Barndorff et al. (1989).
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2.3 Assumptions

Most of the assumptions stated below for the PML estimator are standard assumptions of long-memory processes and
have appeared in numerous papers in the literature under different contexts including Fox et al. (1986), Dahlhaus (1989),
Lieberman et al. (2003), Andrews et al. (2006), and Palma (2007) among others. Assumption A1 specifies the parameter
space for which the results of this paper hold. Assumption A2 states that the sequence of estimators θ̄n for which we
construct confidence intervals are consistent. Assumption A3 is essentially a modified version of Condition NS s of
Andrews et al. (2006) and Assumptions A4-A8 are also those of Andrews et al. (2006) restated here for convenience.
This paper includes two additional assumptions, A9 and A10. Assumption A9 is included to impose a mild additional
condition on the spectral density function fθ(λ), requiring fθ(λ) to be bounded away from zero. Assumption A10 puts a
restriction on the design matrix Z. Assumptions A4-A8 below depend on a positive integer s ≥ 3 that indexes the order
of the PLL derivatives that are used in the Edgeworth expansions employed in the proofs of the CI coverage probability
results.
A1. The parameter space Θ is a subset of Rr where r = dim(θ) with non-empty interior.

A2. For all ε > 0 and all compact subsets Θc of Θ, the sequence of PML estimators {θ̄n : n ≥ 1} for which the results of
this paper hold satisfy

sup
θ0∈Θc

Pθ0 (||θ̄n − θ0|| > n−1/2ln(n)ε) = o(n1−s/2) as n→ ∞

for some integer s ≥ 3.

A3. The matricesDn(θ) andD(θ) in (2.23) below are positive definite.

A4. For some integer s ≥ 3, fθ(λ) is s + 1 times continuously differentiable with respect to θ, and all of the derivatives are
continuous in (λ, θ) for λ , 0. In addition, f −1

θ (λ) is continuous in (λ, θ) for all λ ∈ [0, π] and θ ∈ Θ.

A5. The derivatives ∂
∂λ

f −1
θ (λ) and ∂2

∂λ2 f −1
θ (λ) are continuous in (λ, θ) for λ , 0. In addition, there exists c1(θ, δ) < ∞ such

that | ∂
k

∂λk f −1
θ (λ)| ≤ c1(θ, δ)|λ|2d−k−δ for k = 0, 1, 2 and all δ > 0, where θ = (d, θ1, ..., θr)′ and d ∈ (0, 1/2).

A6. There exists c2(θ, δ) < ∞ and c3(θ, δ) < ∞ such that for all δ > 0 and λ ∈ [0, π]:

(a) | fθ(λ)| ≤ c2(θ, δ)|λ|−2d−δ and

(b) for all ( j1, ..., jk) with k ≤ s + 1, with duplication among the ji allowed, | ∂k

∂θ j1 ,...,θ jk
f −1
θ (λ)| ≤ c1(θ, δ)|λ|2d−k−δ.

A7. For any compact subset Θc of Θ, there exists a constant C(Θc, δ) < ∞ such that c1(θ, δ), c2(θ, δ), and c3(θ, δ) in a A3
and A4 are bounded by C(Θc, δ) for all θ ∈ Θc.

A8. (a) There exists a function Ω(λ) that is integrable over (0, π) and a constant c4(θ) < ∞ such that for all ( j1, ..., jk) with
k ≤ s + 1, with duplication among the ji allowed, | ∂k

∂θ j1 ,...,θ jk
f −1
θ (λ)| ≤ c4(θ)Ω(λ) for λ ∈ (0, π). For any compact subset Θc

of Θ, there exists a constant C̃(Θc) < ∞ such that c4(θ) ≤ C̃(Θc) for all θ ∈ Θc.

(b) When computing derivatives of the form ∂k

∂ j1 ,...,∂ jk
γθ(u) for k ≤ s + 1 and u = 0, 1, 2, ..., the derivatives may be taken

inside the integral sign of (1.8), where γθ(u) = Eθ(Xi − µi)(Xi − µi+u) and Eθ denotes expectation when the true parameter
is θ.

A9. The spectral density function is bounded away from zero on a compact subset of the parametric space.

A10. The design matrix Z is chosen in such a way that for the matrix

E = (ei j), i = 1, ..., n, j = 1, ..., p (2.9),

defined in (1.10) there exists a constant M0 < ∞ such that |ei j| ≤
M0√

n for 1 ≤ i ≤ n, 1 ≤ j ≤ p.

One drawback of the results of this paper is that the design matrix is required to satisfy assumption A10. A natural question
would be whether one can find a design matrix of practical value that satisfies the condition imposed in this assumption.
The next lemma provides such a matrix. The n × p matrix Z given in the lemma is a special case of the so called
Vandermonde matrix which arises in many applications such as polynomial least squares fitting, Lagrange interpolating
polynomials, and the reconstruction of a statistical distribution from the distribution’s moments.

Lemma 2.1. There exists a design matrix Z of rank p which satisfies assumption A10.
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Proof: Consider the Vandermonde Matrix

Z =


1 a1 a2

1 . . ap−1
1

1 a2 a2
2 . . ap−1

2
. . . . .

1 an a2
n . . ap−1

n

 , (2.10)

where 1 < a1 < a2 < ... < an. We would like to form the matrix E of (1.10) from the design matrix Z above and show
that this matrix satisfies assumption A10. Using the notationU for the analogue of matrixV defined in (1.7), we obtain

U = Z′Z =


n Σn

i=1ai . . Σn
i=1ap−1

i
Σn

i=1ai Σn
i=1a2

i . . Σn
i=1ap

i
. . . .

Σn
i=1ap−1

i Σn
i=1ap

i . . Σn
i=1a2p−2

i

 =


O(n) O(nan) . . O(nap−1

n )
O(nan) O(na2

n) . . O(nap
n )

. . . .

O(nap−1
n ) O(nap

n ) . . O(na2p−2
n )

 . (2.11)

Looking at the orders of the entries of the matrixU in (2.11) above we see that its inverse should be of the form:

U−1 =


O( 1

n ) O( 1
nan

) . . O( 1
ap−1

n
)

O( 1
nan

) O( 1
na2

n
) . . O( 1

nap
n
)

. . . .

O( 1
nap−1

n
) O( 1

nap
n
) . . O( 1

na2p−2
n

)

 . (2.12)

Let λk, k = 1, ..., p be the distinct eigenvalues and uk = (u1k, u2k, ..., upk)′ be the corresponding eigenvectors ofU−1. λk are
the roots of the symmetric characteristic polynomial |λI −U−1| = 0, which may be written as

(λ − O(
1
n

))(λ − O(
1

na2
n

))...(λ − O(
1

na2p−2
n

)) + O(
1

na4
n

) + O(
1

na5
n

) + ... + O(
1

nap+2
n

) = 0. (2.13)

From this we see that the vanishing of the characteristic polynomial |λI −U−1| is determined by the the first term

(λ − O(
1
n

))(λ − O(
1

na2
n

))...(λ − O(
1

na2p−2
n

)) (2.14)

of (2.13) because all the remaining terms are of order ≤ O( 1
na4

n
)). But (2.14) vanishes for λ = O( 1

n ),O( 1
na2

n
), ...,O( 1

na2p−2
n

).

Thus O(λk) ≤ O( 1
n ) for k = 1, 2, ..., p.

Now let’s use the notation U−1 = (νi j), i, j = 1, ..., p for the matrix U−1 in (2.12). For each k = 1, ..., p, we find the
eigenvectors uk by solving the equations:

(νi1 − λk)u1k + νi2u2k + ... + νipupk = 0 (2.15)

for i = 1, 2, ..., p. Let u1k = 1. From (2.12) we observe that for i, k = 1, 2, ..., p, νik = O( 1
nak+i−1

n
) and therefore we

may replace each νik by Nk+i

nak+i−1
n

and each λk by N
n , where N,Nk+i are constants. Replacing these values in (2.15) above

the first equation in (2.15) becomes: ( N1
n −

N
n ) + N2

na2
n
u2k + ... +

Np

nap
n
upk = 0 and the second equation in (2.15) becomes:

( N2
na2

n
+ ( N3

na3
n
− N

n )u2k + ...+
Np+1

nap+1
n

upk = 0. Solving for upk in the first of the above equations and substituting in the second we

obtain: −nap
n Nu2k + nap−1

n (N2 −
Np+1N1

Np
−

Np+1N
Np

) + O(nap−2
n ) + ... + O(n) = 0. Looking at the first two terms of the above

equation we see that u2k must have order O( 1
nan

). Similarly, u3k = O( 1
na2

n
) obtained from the first and the 3rd equations of

(2.12), and in general uik = O( 1
nai−1

n
) for i = 2, ..., p. Now, the matrix E of (2.9) is given by E = ZB, where B = PDP′,

P = ( ui j

||u j ||
), i, j = 1, ..., p and u1 j = 1, and D is the matrix whose diagonal entries are

√
λk, for k = 1, ..., p and zero

elsewhere. Then we have

B =


Σ

p
i=1

√
λi

||ui ||
2 Σ

p
i=1

u2i
√
λi

||ui ||
2 . . Σ

p
i=1

upi
√
λi

||ui ||
2

Σ
p
i=1

u2i
√
λi

||ui ||
2 Σ

p
i=1

u2
2i

√
λi

||ui ||
2 . . Σ

p
i=1

u2iupi
√
λi

||ui ||
2

. . . .

Σ
p
i=1

upi
√
λi

||ui ||
2 Σ

p
i=1

u2iupi
√
λi

||ui ||
2 . . Σ

p
i=1

u2
pi

√
λi

||ui ||
2


. (2.16)
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Using the above notation of matrix B, we can now form the matrix E as E = ZB = (ei j) for i = 1, ..., n, j = 1, ..., p. To
show that E satisfies assumption A10, it suffices to show that O(ei j) ≤ O( 1

√
n ) for i = 1, 2, ..., n and j = 1, ..., p. To this end

it suffices to show that O(en j) ≤ 1
√

n for j = 1, ..., p (because en j ≥ ei j for i = 1, 2, ..., n and j = 1, ..., p.) Now, for j = 1 we
have

O(en1) = O
(
Σ

p
i=1

√
λi

||ui ||
2 + (anΣ

p
i=1

u2i
√
λi

||ui ||
2 + .. + ap−1

n Σ
p
i=1

upi
√
λi

||ui ||
2 )

)
≤ O

(
p
√

n + an( 1
nan

p
√

n + .. + ap−1
n

1
nap−1

n

p
√

n

)
= O( 1

√
n )

. (2.17)

A similar calculation shows that O(en j) ≤ O( 1
√

n ) for j = 2, ..., p and this completes the proof of the lemma. �

Another drawback of the results of this paper is that the PML estimators are required to satisfy assumption A2, which
implies that these estimators are consistent. The same drawback occurs in Andrews et al. (2006), Bhattacharya et al.
(1978), and Aga et al. (2007). While Andrews et al. (2006) Lemma 1 provides a sequence of estimators that satisfies this
condition, it is generally unknown to date whether or not the result of this paper and those of others in the literature are
valid without it.

2.4 Parameter Values and Log-likelihood Derivatives

We begin by specifying the parameter values θ for which we establish delta method confidence intervals. To this end we
introduce some additional notations.

Let υ = (r1, r2, ..., rq)′ denote a q-vector of positive integers each less than or equal to r = dim(θ) for q ≤ s where s is as
given in assumptions A2 and A4. We write the real valued q-th order partial dervative of the PLL function indexed by υas

Λn,υ = DυΛn(θ, µ̂) =
∂q

∂θr1 . . . ∂θrq

Λn(θ, µ̂) = Fn,υ(θ) + Y ′MnBn,υ(θ)MnY (2.18)

where Fn,υ(θ) and Bn,υ(θ) are given by

Fn,υ(θ) = −
1
2

Dυ ln(det(Γn( fθ))) =

b∑
k=1

aktr

 pk∏
j=1

Γ−1
n ( fθ)Γn(gθ,k, j)

 (2.19)

Bn,υ(θ) = −
1
2

DυΓ
−1
n ( fθ) =

b∑
k=1

ak

 pk∏
j=1

Γ−1
n ( fθ)Γn(gθ,k, j)

 Γ−1
n ( fθ) (2.20)

for some constants b, ak, and pk that depend on υ and with gθ,k, j being certain partial derivatives of the spectral density
with respect to the components of θ of order q or less. Note that, when computing the partial derivatives of Γn( fθ) j,k, we
have used assumption A8 (b) to take the derivative in side the integral sign of (1.8) and assumption A4 to compute the
derivatives of fθ.

Delta method confidence intervals of the PML estimator are based on the Edgeworth expansion of a vector of centered
and normalized log-likelihood derivatives (LLDs). To specify such a vector, let

Zn(θ) = (Λn,υ(1)(θ), . . . ,Λn,υ(m)(θ)), (2.21)

where each vector υ( j) is of the same form as υ defined in (2.18)-(2.20) above for m = dim(Zn(θ)) and j = 1, 2, ...,m. Let

Wn(θ) = n−1/2(Zn(θ) − EθZn(θ)). (2.22)

Without loss of generality we may assume that EθZn(θ) = 0. Let

Dn(θ) = E[Wn(θ)Wn(θ)′] (2.23)

and let D(θ) = limn→∞ Dn(θ).

Because Wn(θ) is a vector of centeral quadratic forms in Gaussian variables plus a vector of nonrandom quantities we have

Dn(θ)i, j = tr
(
Bn,νi Tn( fθ)Bn,ν j Tn( fθ)

)
(2.24)

and the (i, j) element of D(θ) is given by

D(θ)i, j =
1
π

∫ π

−π

{Dυi f −1
θ (λ)}{Dυ j f −1

θ } f
2
θ (λ)dλ. (2.25)

(See Anderson (1984) for details of equation (2.24) and Lemma 8 of Andrews et al. (2006) for that of (2.25).)
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3. Delta Method Confidence Intervals

For u ∈ Rm let hn(u, θ) be the density of Wn(θ) when the true parameter is θ, where m is as given in (2.22). Let h̃τ−2
n (u, θ)

be the formal Edgeworth expansion of hn(u, θ) of order τ − 2. Let ξn(x, θ) = Eθ exp(ix′Zn(θ)) denote the characteristic
function of Zn(θ) when θ is the true value, and x ∈ Rm. Let η = (η1, ..., ηq) be a q-vector of none-negative integers each
of which is less than or equal to m. Define Dx,η = ∂q

∂xη1 ...∂xηq
. Let κn,s(θ)η denote the η cumulants of Zn(θ). By definition,

κn,s(θ)η = i−qDx,η ln(ξn(x, θ))|x=0, where i =
√
−1. The vector κn,s(θ) is composed of elements κn,s(θ)η for vectors η of

dimension q ≤ s. The following lemma gives the expilicit form of the Edgeworth expansion of the density function
hτ−2

n (u, θ) of Wn(θ).

Lemma 3.1 Suppose assumptions A1-A10 hold and let Wn(θ) be as defined in (2.14). Then, the formal Edgeworth
expansion h̃τ−2

n (u, θ) of the density of Wn(θ) is given by

h̃τ−2
n (u, θ) =

1
√
|Dn(θ)|(2π)m

exp{−
1
2

u′D−1
n (θ)u}

1 +

τ∑
j=3

n−( j−2)/2Pn j(x, θ)

 (3.1)

where the polynomial Pn j is as defined in (3.10) below.

Proof.

Let
ζn(x, θ) =

1
n

ln ξn(x, θ) +
1
2

x′Dn(θ)x, (3.2)

and denote by ζnτ(x, θ) the Taylor series approximation without remainder term of ζn(x, θ) in powers of the components of
x from 3 to τ, that is

ζnτ(x, θ) =

τ∑
j=3

Σ j

 ∂ jζn(x, θ)

∂x j1
1 ...∂x jm

m


x=0

x j1
1 ...x

jm
m

j1!... jm!
, (3.3)

where Σ j denotes summation over integers j1, ..., jm ≥ 0 such that Σk jk = j, and m is as in (2.22). Thus, combining this
with (3.2) and neglecting the reminder term of the Taylor expansion (3.3), we obtain

ζnτ(
x
√

n
, θ) =

1
n

ln{ξn(
x
√

n
, θ) exp{

1
2

x′Dn(θ)x}}, (3.4)

which is equivalent to

exp{nζnτ(
x
√

n
, θ)} = ξn(

x
√

n
, θ) exp{

1
2

x′Dn(θ)x}. (3.5)

Expanding the left hand side of (3.5) we get

1 +

∞∑
j=1

1
j!
{nζnτ(

x
√

n
, θ)} j = ξn(

x
√

n
, θ) exp{

1
2

x′Dn(θ)x}. (3.6)

We let
τ−2∑
j=1

1
j!
{nζnτ(

x
√

n
, θ)} j =

τ∑
j=3

n−( j−2)/2πn j(x, θ) + αnr(x, θ), (3.7)

be the expansion in powers of n−1/2, where πn j is a polynomial in powers of the components of x from 3 to j and αnr

regarded as a polynomial in powers of n−1/2, is of degree greater than τ− 2 with coefficients which are polynomials in the
components of x. Thus αnr contributes an amount of order n−(τ−1)/2 which, in fact, we shall neglect.

Neglecting αnr and combining (3.6) with (3.7) we obtain

exp{−
1
2

x′Dn(θ)x} + exp{−
1
2

x′Dn(θ)x}
τ∑

j=3

n−( j−2)/2πn j(x, θ) = ξn(
x
√

n
, θ). (3.8)

We note that the left hand side of (3.8) is only an approximate of the right hand side. Now, let h̃τ−2
n (u, θ) be the Fourier

transform of the left hand side of (3.8). Then we have

h̃τ−2
n (u, θ) = 1

√
|Dn(θ)|(2π)m exp{− 1

2 u′D−1
n (θ)u}

+
∑τ

j=3 n−( j−2)/2 1
(2π)m

∫
Rm exp{−ix′u − 1

2 x′Dn(θ)x}πn j(x, θ)dx.
(3.9)
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Now, we define the polynomial Pn j by

1
√
|Dn(θ)|(2π)m

exp{−
1
2

u′D−1
n (θ)u}Pn j(u, θ) =

1
(2π)m

∫
Rm

exp{−ix′u −
1
2

x′Dn(θ)x}πn j(x, θ)dx. (3.10)

As shown by Hall (1992) page 244, the polynomial Pn j is a polynomial in terms of−D and κn,s(θ), where D =
(

∂
∂x(1) , ...,

∂
∂x(m)

)′
and κn,s(θ) is the vector cumulant defined in the paragraph preceding equation (3.1) above. Combining (3.9) and (3.10)
above we see that the explicit form of the formal Edgeworth expansion h̃τ−2

n (u, θ) of the density of Wn(θ) is given by

h̃τ−2
n (u, θ) =

1
√
|Dn(θ)|(2π)m

exp{−
1
2

u′D−1
n (θ)u}

1 +

τ∑
j=3

n−( j−2)/2Pn j(x, θ)

 . (3.11)

The following lemma is essentially Theorem 3.2 of Aga (2011) and is an important ingredient in the proof of the main
results of this paper.
Lemma 3.2. Suppose assumptions A1-A10 hold. Then for all compact sets Θc ⊂ Θ and all τ ≥ 3,

(a) supθ0∈Θc
supu∈Rds |hn(u, θ0) − h̃τ−2

n (u, θ0)| = o(n−(τ−2)/2) and

(b) Pθ0 (Wn(θ0) ∈ C) =
∫

C h̃τ−2
n (u, θ0)du + o(n−(τ−2)/2), uniformly over all Borel sets C and all θ0 ∈ Θc.

Our first main result determines the magnitude of the probability error of a two-sided delta method confidence interval
and is stated in part (b) of the next theorem. We introduce some additional notations. Let Φ(·) denote the distribution
function of the standard normal random variable. Let κ̄n,s(θ) =

κn,s(θ)
n . By Lemma 4.5(c) of Aga et al. (2007), the elements

of κ̄n,s(θ) are O(1). Let pi(δ, κ̄n,s(θ)) be a polynomial in δ = ∂/∂z whose coefficients are polynomials in the elements of
κ̄n,s(θ) and for which pi(δ, κ̄n,s(θ))Φ(z) is an even function of z when i is odd and an odd function of z when i is even for
i = 1, 2, ..., s − 2. The Edgeworth expansion of the delta method t-statistic tn(θ0,r) given in (2.1) depends on pi(δ, κ̄n,s(θ0)).

Theorem 3.3. Suppose assumption A1-A10 hold and let s ≥ 3 be as given in assumption A2. Then, for all ε > 0,

(a) supθ0∈Θc supz∈R |Pθ0 (tn(θ0,r) ≤ z) − [1 +
∑s−2

i=1 n−i/2 pi(δ, κ̄n,s(θ0))]Φ(z)| = o(n−(s−2)/2).
(b) supθ0∈Θc

Pθ0 (θ0 ∈ I2(θ̄n)) = (1 − α) + O(n−1) f or s = 4.

Proof

(a) Let n−1Z+
n (θ0) denote the vector n−1Zn(θ0) of normalized LLDs augmented to include the vector of expected values of

all partial derivatives with respect to θ of order s of n−1Λn(θ0). By Theorem 3(b) of Bhattacharya and Ghosh (1978) the
normalized PML estimator and the t statistic tn(θ0,r) can be approximated by smooth functions of n−1Z+

n (θ0). Specifically,
there is an infinitely differentiable function G(.) that does not depend on θ0 that satisfies G(n−1Eθ0 Z+

n (θ)) = 0 for all n large
and all θ0 ∈ Θc and

sup
θ0∈Θc

sup
B∈Bd

|Pθ0 (tn(θ0) ∈ B) − Pθ0 (n1/2G(n−1Z+
n (θ0)) ∈ B)| = o(n−(s−2)/2). (3.12)

Now, let Ps(θ0) = 1 +
∑s−2

i=1 n−i/2 pi(δ, κ̄n,s(θ0)). Then,

|Pθ0 (tn(θ0,r) ≤ z) − Ps(θ0)Φ(z)| ≤ |Pθ0 (tn(θ0,r) ≤ z) − Pθ0 (n1/2G(n−1Z+
n (θ0)) ≤ z)|

+ |Pθ0 (n1/2G(n−1Z+
n (θ0)) ≤ z) − Ps(θ0)Φ(z)|. (3.13)

The first term of the right hand side of (3.13) is equal to o(n−(s−2)/2) by Lemma 10 of Andrews et al. [2006]. Thus, we
only need to show that

|Pθ0 (n1/2G(n−1Z+
n (θ0)) ≤ z) − Ps(θ0)Φ(z)| = o(n−(s−2)/2) (3.14)

uniformly over θ0 ∈ Θc. That is, it suffices to show that n1/2G(n−1Z+
n (θ0)) possesses an Edgeworth expansion given

in the present Lemma with remainder o(n−(s−2)/2) uniformly over θ0 ∈ Θc. We note that an Edgeworth expansion of
Wn(θ0) = n−1/2(Zn(θ0) − EθZn(θ0)) is established by lemma 3.2 above for each θ0 ∈ Θc. Now, an Edgeworth expansion
for n1/2G(n−1Z+

n (θ0)) is obtained from that of n−1/2(Zn(θ0) − EθZn(θ0)) by the argument of Battacharya and Ghosh (1978),
Theorem 2, p. 436 using the smoothness of G(.), G(n−1Eθ0 Z+

n (θ0)) = 0 for all n ≥ 1 and all θ0 ∈ Θc, and assumption A3.
(b) From the definition of I2(θ̄n) given in section 2.1 we observe that

Pθ0 (θ0 ∈ I2(θ̄n)) = Pθ0 (θ̄n,r − zα/2
√∑

r,r
√

n ≤ θ0,r ≤ θ̄n,r − zα/2
√∑

r,r
√

n )

= Pθ0 (−zα/2 ≤
√

n(θ0,r−θ̄n,r)
√∑

r,r(θ̄n)
≤ zα/2)

= Pθ0 (|tn(θ0,r)| ≤ zα/2)

(3.15)
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and that
Pθ0 (|tn(θ0,r)| ≤ zα/2) = Pθ0 (tn(θ0,r) ≤ zα/2) − Pθ0 (tn(θ0,r) ≤ −zα/2). (3.16)

Denoting 1 + n−1/2 p1(δ, κ̄n,4(θ0)) + n−1 p2(δ, κ̄n,4(θ0)) by P4(θ0) as in (3.13) and substituting z by zα/2 and s by 4 in part (a)
of this theorem we obtain

|Pθ0 (|tn(θ0,r)| ≤ zα/2) − P4(θ0)(Φ(zα/2) − Φ(−zα/2))| = o(n−1). (3.17)

We observe that p1(δ, κ̄n,4(θ0))Φ(z) is an even function in z which leads to p1(δ, κ̄n,4(θ0))(Φ(zα/2)−Φ(−zα/2)) = 0. It follows
that

sup
θ0∈Θc

|Pθ0 (|tn(θ0,r)| ≤ zα/2) − [1 + n−1 p2(δ, κ̄n,4(θ0))(Φ(zα/2) − Φ(−zα/2))]| = o(n−1). (3.18)

Because Φ(zα/2) − Φ(−zα/2) = 1 − α and n−1 p2(δ, κ̄n,4(θ0))(Φ(zα/2) − Φ(−zα/2)) = o(n−1), this establishes part (b).�

Theorem 3.4. Suppose assumptions A1-A10 hold and let s = 3. Consider {θ̄n : n ≥ 1} as given in assumption A2 and let
Θc be any compact subset of Θ, the parameter space. Then,

(a) supθ0∈Θc
Pθ0 (θ0 ∈ I2(θ̄n)) = (1 − α) + O(n−1/2).

(b) supθ0∈Θc
Pθ0 (θ0 ∈ Iup(θ̄n)) = (1 − α) + O(n−1/2).

Proof.

(a) We apply Theorem 3.3 (a) with s = 3 to obtain (3.18) above with n−1 p2(δ, κ̄n,4(θ0)) deleted and o(n−1) replaced by
o(n−1/2). This yields part (a).
(b) We have Pθ0 (θ0 ∈ Iup(θ̄n)) = Pθ0 (tn(θ0,r) ≤ zα). Again by Theorem 3.3 (a) with s = 3, and using the fact that
Φ(zα) = 1 − α we have

sup
θ0∈Θc

|Pθ0 (θ0 ∈ Iup(θ̄n)) − (1 − α)| = sup
θ0∈Θc

|Pθ0 (tn(θ0,r) ≤ zα) − (1 − α)|

≤ sup
θ0∈Θc

(|Pθ0 (tn(θ0,r) ≤ zα) − [1 + n−1/2 p1(δ, κ̄n,3(θ0))]Φ(zα)|

+|[1 + n−1/2 p1(δ, κ̄n,3(θ0))]Φ(zα) − (1 − α)|)

≤ sup
θ0∈Θc

|(1 − α)n−1/2 p1(δ, κ̄n,3(θ0))| + o(n−1/2) = O(n−1/2).

This proves part (b) of the Theorem. �
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