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Abstract

This paper aims to develop a three-parameter distribution called the Marshall-Olkin Extended Generalized Exponential
(MOEGE) distribution, which can be used in analyzing both reliability and survival data. Some statistical properties of
the new distribution have been studied, which include, moments, incomplete moments, Renyl entropy, stochastic
ordering, order statistics, and the moment generating function. The MOEGE distribution has submodels such as the
Marshall-Olkin Extended Exponential ( MOEE) , the Generalized Exponential (GE), and the Exponential
(E) distribution. The maximum likelihood estimation technique is used to obtain the parameters estimate of the
MOEGE distribution, also, we constructed a 95% asymptotic confidence interval for the parameters. The performances
of the estimators have been studied using Monte Carlo simulation, and finally, to demonstrate the applicability of the
MOEGE distribution, a traffic data set has been used.

Keywords: Asymptotic confidence interval, estimator, Monte Carlo, Marshall-Olkin Extended Generalized exponential
1. Introduction

In survival/reliability experiment, exponential distribution is the most popular distribution for analyzing life-time data.
But the application of this distribution is limited due to constant hazard rate because in many practical situation it is not
realizable. Therefore, several generalization based on this distribution have been developed to address the problem of
monotone failure rate behaviour see, Barlow and Proschan (1975), Gupta and Kundu (1999; 2001; 2002; 2007),
Rajwant et al. (2016) etc. The Generalized Exponential (GE) distribution was proposed and studied by Gupta and
Kundu (1999), developed to address the problem of monotone failure rate in Exponential (E) distribution. Further, the
MOEE is also another generalization of the exponential distribution developed by Rajwant et al. (2016) to further
increase the scope of applications of E distribution in modeling real life data. In this study we developed the
Marshall-Olkin Extended Generalized Exponential distribution using a generalized family of distributions introduced by
Marshall and Olkin (1997) called Marshall and Olkin family of distribution. This generalization have been used by
many authors which includes: Alice and Jose (2003), Garcia et al. Ghitany et al. (2007), Ristic et al. (2007), Ristic and
Kundu (2015), Okasha and Kayid (2016), and, Ogunde et al. (2020) among many others. The probability density
function (PDF), cumulative distribution function (CDF) and the hazard function (hf) of this distribution are given as
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respectively and @ =1 — a.«a is called the tilt parameter, the G(x) and the g(x) are respectively the baseline



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 12, No. 5; 2023

distribution function and the baseline density function.

The chief motivation for this study is to develop an extended form of the generalized exponential distribution which
will be more applicable in several areas of reliability and survival studies with a more flexible modeling characteristics.

The new distribution (MOEGED)

The Probability density function (PDF) and survival function sf of the generalized exponential distribution, introduced

and studied Ristic and Kundu (1999), for x >0 and,p > 0, are given by
g(x) = npe™P*(1 — e~ P*)171,
Sx)=1—-(0—ePO)n,
Plugging (4) and (5) in (1) to obtain the PDF MOEGE distribution as

anpe P*(1 — e=P*¥)n-1

O = i—aa-a-ermr’

x,a,n,p >0,

The CDF and hazard function associated to (6) is respectively, given by
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where @ = 1 — a. The MOEGE distribution can be applied in modeling a real life experiment and it can be explored as
an alternative to the Weibull, gamma and other exponentiated family of distributions see Singh et al. (2013). Another
beauty of this model is the density function (1) has increasing failure rate for «,n > 1 , decreasing failure rate for

a,n < 1 and constant failure rate for « =n = 1.

The graph of the CDF, PDF and hazard function are given if figures 1 and 2 drawn below.
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Figure 1. Plots of the CDFs and PDFs of MOEGE distribution.
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Graph of hazard function of MOEGE distribution
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Figure 2. Plot of the hazard function of MOEGE distribution

Figure 2 shows that the MOEGE distribution can be increasing, decreasing, constant, and bathtub shape which clearly
indicates the MOEGE distribution can be used to model data exhibiting any shape of the hazard function.

3. Mixture Representation

The mixture representation of the density is always employed when deriving the statistical properties of generalized
distributions. In this section, the mixture representation of the MOEGE density function is derived. Considering the
series representation

[ee]
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Using (9) in (6), we have
2 +10) .
1z -1 -e P =y CEE D aiq - 1 — ey (10)
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The PDF of MOEGE distribution given in (6) can be re-written as
2+ N\ .
£G = anperr y TEED a3y (N ai(q - g=pryren-s (10)
£,j=0 '

Thus, the expression given in (10) is the exponentiated exponential distribution with shape parameter n(j + 1) and
scale parameter p

Further simplification of (10), gives

f(x) = anp Z (TI(I +1) - 1) (]) (_1)j+k@&ie_ﬁ7(k+l)x (11)

k i
i,j,k=0
3.1 Quantile Function

The quantile function plays a useful role when simulating random variates from a statistical distribution. The quantile
function of the MOEGE distribution, say x = Q(u) is given by:
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1—u
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The median (q,)and the upper quartile (g3) is obtained by substituting p = 0.5 and 0.75 respectively, into the quantile
function. Hence, the median and the upper quartile are respectively,

1 '/
w==plos1-[1-Tosa] 13

and

= 11 1 [1 0-25 ]/n 14
4 = pOg a+0.25a ' 14

In many heavy tailed distributions, the classical measures of skewness and kurtosis cannot be obtained due to
non-convergence of their higher moments. In such situations, the quantile can be used to estimate such measures. The
Bowley’s coefficient of skewness which is developed using quartiles can be used to estimate the coefficient of skewness.
It is given by

B = Qo.75 = 2Qo5 + Qo.zs’ (15)

Qo75 — Qozs

Consequently, the coefficient of kurtosis can be calculated using the Moors’ coefficient of kurtosis which is measured
based on the octiles as

— - +
M= Q0.875 Q0.625 QO.375 QO.125’ (16)

Q0.75 - QO.ZS

Table 1 shows the Bowley’s coefficient of skewness and Moors’ coefficient of kurtosis for fixed value of p = 0.5 and
varying the values of a and 7.

Table 1. Values for Bowley’s coefficient of skewness and Moors’ coefficient of kurtosis

Parameters | 0.125 0.25 0.325 0.5 0.625 0.75 0.875 B M

a=03 |0.1450 | 0.3189 | 0.5340 | 0.8119 | 1.1945 | 1.7800 | 2.8948 | 0.1059 | 3.8494

a=05 |0.1810 | 0.3973 | 0.6632 | 1.0028 | 1.4621 | 2.1459 | 3.3917 | 0.1029 | 3.5361

a=05 |0.2302 | 04991 | 0.8214 | 1.2219 | 1.7475 | 2.5040 | 3.8301 | 0.0903 | 3.1321

a=08 | 0.2526 | 0.5461 | 0.8955 | 1.3261 | 1.8853 | 2.6792 | 4.0489 | 0.0869 | 3.0003

a=08 |0.2579 | 0.5567 | 0.9117 | 1.3480 | 1.9131 | 2.7135 | 4.0889 | 0.0860 | 2.9680

a=08 | 0261105633 | 0.9217 | 1.9642 | 1.9302 | 2.7343 | 4.1136 | 0.0851 | 2.0365
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From Table 1 it can be deduced that the MOEGE distribution can be positively skewed, mesokurtic, platykurtic and
leptokurtic.

3.2 Moments

The moment of a random variable can be used in computing measures of central tendencies, dispersions and shapes.
The r*" non-central moment of the MOEGE random variable is:

BO) = = [ 2 dFogos () (17)
0
Putting (11) in (17), we obtain
o G+ -1\ L TRAD [
#; = anp Z (T)(] k) >(]l> (_1)]+k¥&1f xTe—Pk+D)X ]y (18)
i,j,k=0 0

By letting m = p(k + 1)x,dm = p(k + 1)dx, plugging it into (18), finally we have

w=an Y (”U+1)_1> () o B gy eorg vy 9)

4 k i
i,j,k=0

for r = 1,2,3,..., where I' (-) is the gamma function. Table 2 displays the first six moments, variance (o?),
Coefficient of Variation (CV), Coefficient of Skewness (CSK) and Coefficient of Kurtosis (CKU). The values for o2,
CV, CSK and CKU for p = 2.5 are respectively given by

ts — 3upy — 243 .
3
/2 7
2\/.“2 — p?

= 4ppy + 6pP s, — 2t

o
o2 = (up —pu2) 2, CV= o CSK = nd

cKu (uy — u?)?
Table 2. First six moments, ¢2, CV, CSK and CKU

- a=0.3, a=0.5, a=0.8,
n=15 n=>55 n=235

Y 0.8222 1.1405 1.3061
U 0.9644 1.5933 2.0064
us 1.4408 2.6508 3.5711
U 2.6167 5.1578 7.2877
Us 5.6264 11.5900 16.9248
Ug 14.0629 29.7766 44.4520
o2 0.2883 0.2929 0.30050
cv 0.6531 0.4743 0.2732
CSK 1.1212 1.0510 1.0051
CKU 5.0368 49525 4.8378

From Table 2, it can be concluded that the moments of MOEGE distribution increases when the values of the
parameters increases but the coefficient of variation, coefficient of kurtosis, and coefficient of skewness decreases.

3.3 Moment-Generating Function
The moment generating function of random variable X that follows the MOEGE distribution, if it exist, is represented
by

[oe]
r

M(©) = Be™) = [ e fdr =) 20)

0 r=0
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3.4 Incomplete Moment

The incomplete moment is a very useful applications in different fields of study. The first incomplete moment is
employed in estimation of the Bonferroni and Lorenz curves which are useful in reliability, insurance, demography,
medicine, and economics. The 7" incomplete moment of the MOEGE random variable is:

t

0r() = f X" dFiyopes (0) @1)
0

o G+ D=1\ LT+ |
= anp Z (77(/ k) )(]l) (_1)]+k%alfxre—p(k+1)xdx (22)

i,j,k=0 0

By using the complementary incomplete gamma function in (22), it yields:

N +1) -1 re+i

o =ar Y ("0 () et e e eori 4 0,00+ 011 23)
i,jk=0

where I' (v,z) = fzoo w? le™Wdw is the complementary incomplete gamma function.

3.5 Entropy

Entropy has been applied in many areas of engineering sciences and information theory as measures of uncertainty. The
Renyi entropy of a random variable X having the MOEGE distribution is given as:

1 [ee]
(@) = = log [ [ foses (x)dxl, 24)

Plugging (11) into (24) followed by simple algebraic manipulation, we have

1 - k+1)—1\I'2v+k
—log l(anp)"Z(—n (P e @ f : p(l“)"dxl 25)
k,l

r(w) = 1

Letting, y = p(I + 1)x,dy = p(I + 1)dx and plugging it in (25), yields and expression for the Entropy of MOEGE
distribution given as

Ir(w) =

L vvv—loo nk+1)—1\IrQv+k)
1_vlog[a np ;(—1) ( I ) F 2okl @I+ 1) l (26)

3.6 Stochastic Ordering

Stochastic ordering is the frequent way of expressing ordering mechanism in lifetime distributions. Let X; ~
MOEGE (ay,n,p) and X, ~ MOEGE(a,,n,p). The random variable X, is stochastically significant than X; in the:

Stochastic order (X; < X,) if the corresponding CDFs satisfies Fx, < Fx, for all values x
Hazard rate order (X; <j X,) if the corresponding CDFs satisfies hy, < hy, for all values x
Likelihood ratio order (X; <; X,) if % is a decreasing function

Given the PDFs of X; and X,,

fx, (“1) 1-a(1—[1—e PN
fxz_ 1—a,(1—[1—eP*]")
Taking the logarithm of both sides of the equation and differentiating the ratio of the densities gives
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ilo Sy = 2pne P*(1 — e~PX)1-1 @ - 2 <0
dx gfx2 A 1—a,(1-[1—ePX]7) 1—a,(1—[1—e Px]")

If a; < a, forall values of x greater than zero. Then it follows from the implications of stochastic ordering that:

X1 X=X 5, X2 X 5 X,
3.8 Order Statistics

Suppose x1., < Xy, < -+ < X, Tepresents order statistics obtained from the MOEGE distribution. Then the PDF,
fom(x), of the st order statistic x,., is:

fon(x) = Bsn—s+D [FCOI~ 1 = F)I" = f (%), (27)
Reducing () using binomial series expansion gives
1 S on—s e
fsn(x) = m; ( ; ) [FCOIS+1f (o), (28)

Where F(x) and f(x) are the CDF and PDF of the MOEGE distribution respectively, and B(.,.) is the beta
function. Plugging the CDF and the PDF of the MOEGE distribution in (28) follow by algebraic manipulation using (9)
gives:

—px i j i —s\ F(s+i+j+1) _
fs:n(x) — _anpe 77 ?:12?2?1 Z{(:1(_1)z+k (niS)M j (1 —e px)n(k+1) 1 (29)

B(sn—s+1) r(s+i+1)

Consequently, the PDFs of the smallest and the largest order statistics are respectively given by:

n s+i+1 J . .

and
anpeP* n gt n—s\I'(s+i+j+1)_. _ B
frn ) = B(s,n—s+ 1)2 Z Z( 1)l+k i )ma} (1 - emoryndern™

4. Parameter Estimation

In this section, the parameters of the MOEGE distribution are estimated using the maximum-likelihood estimation
method. Given a random sample x,,x,, X3, ..., x,0f size n from the MOEGE distribution with parameter vector
Y = (a, p,n)’, then the log-likelihood function is given by:

L=loglanp) —pXiix;+ (=D X log(1 —e ) =23 log[l—a,(1—[1—-e P*]IM)] (27)

By taking the partial derivatives of the log-likelihood function with respect to the parameters gives the component score
vector Vy, = (Va,l/;,,l/;,)' as:

al n - (1 — e~ Px)n
“Tha " Zz =& —[1—e7I"] 28
al _n xe P ax;e PXi(1 — e PXi)n
" zx e ”Z A=l 2 imsas e @
n . oy, . a(l —e PX)og(1 — e P*i)
_—+;(1—ep )+2; M= a1 —ec P ")] (30)

Setting Vi, = 0 and solving then simultaneously gives the MLEs of @&, p, and 7
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To estimate an approximate confidence intervals (Cls) of the parameters of MOEGE distribution, it is important to
obtain an estimated values of the elements of variance covariance matrix F of the MLEs. The variance-covariance
matrix F is estimated by the observed information matrix F,

Where

- 1 Jiz Ji3
F=- []21 J22 ]231, 31)
31 Ja2 a3

where J;j, i, j = 1, 2, 3, are the second partial derivatives of (27) with respect to a, 7, and p. They are the values of
Fisher’s information matrix analogous to a, 1, and p, respectively. The diagonal element of the matrix in (31) gives the
variances of the MLEs of a, 7, and p, respectively. An approximate 100(1 — ¢)% confidence interval for 6, as

ép +Zc fv?ir(ép),
2

Where 8, = (&,1, p), Zg is the upper (§) 100t" percentile of SN distribution. We can use the likelihood ratio (LR)
test to compare the fit of the MOEGE distribution with its submodels for a given data set. For example, to test y = 0, the
LR statisticis H = 2[In(( &,7,p))—In(L(0,7,p))], where &,7, and p are the unrestricted estimates and j, 5 are the
restricted estimates.

The LR test rejects the null hypothesis if H > yZ, where y2 denotes the upper 100 € % point of the y2-distribution
with 1 degree of freedom.

4.1 Simulation Study of MOEGE Distribution

The validity of the method of estimation used in obtaining the estimate of the parameters of the MOEGE distribution
can be ascertained via a simulation study. The following steps can be followed:

(1) By using (12), 2,000 samples of size n are obtained.
The variates of the MOEGE distribution are developed using

X = —Llogl1 [1 1-u ]% O<u<l 32
h pOg a+a(l—u) ’ v (32)

(2) The MLEs are computed for the samples, say §p= ( @, fip, Pp) for p = 1,2,...,1,000.

(3)The mean square errors (MSEs) are calculated for every parameter.

The above steps were repeated for n = 50, 100, 200, 300, and 400 with « = 0.6, n = 0.6, p = 1.2. Table 3 shows
the absolute bias and standard error (SE) and the mean square error (MSEs) of a, 7, and p. It can be deduced through
the table that MSEs for individual parameters diminish to zero when sample size increases.

Table 3. AB, SE,and MSE forthe MOEGE parameters

Parameters Sample sizes AB SE MSE
50 0.8653 1.8784 4.2771
100 0.8293 1.2250 2.1884
p 200 0.7735 0.5678 0.9207
300 0.5510 0.6038 0.6682
400 0.2323 0.4202 0.2305
50 0.1180 0.1931 0.0512
100 0.1796 0.1151 0.0455
a 200 0.0768 0.0901 0.0140
300 0.1063 0.0752 0.0170
400 0.0648 0.0661 0.0086
50 0.6452 0.3098 0.5123
100 0.5281 0.1950 0.3169
U] 200 0.4922 0.1438 0.2629
300 0.4760 0.1133 0.2394
400 0.4352 0.1004 0.1995
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4.2 Application of MOEGE Distribution to Real Life Data Set

In this section, we compare the results of fitting the MOEGE, Marshall-Olkin Extended Exponential (MOEE),
Generalized Exponential (GE) and Exponential distributions to one real data set. All the computations done using the R
programming language (R Development Core Team, First, we consider the data set consisting of the length of intervals
times at which vehicles pass a point on a road. The data are initially provided by Jorgensen (1982) and has been used by
Lemonte et al. (2013). The Exploratory data analysis for the traffic data is given in Table 4 which shows that the data is
positively skewed with excess kurtosis of -1.08 meaning that the data is platykurtic, since the value of the mean is less
than the variance we can conclude that the data is over-dispersed. The Kernel density plot and the Total Time on Test
(TTT) plot is given in Figure 3. The Maximum Likelihood Estimates (MLEs) of the model parameters with errors in
parentheses, confidence interval in curly brackets and the values of the AICr (Akaike Information Criterion), CAICr
(Consistent Akaike Information Criterion), BICr (Bayesian Information Criterion) and HQICr (Hannan-Quinin
Information Criterion) are given in Table 5. From the values of these MOEGE model is better than the MOEE, GE
and E models.

To further compare the MOEGE distribution with its sub-models, a Likelihood Ratio Test (LRT) is performed. The
LRT results shown in Table 6 reveal that the MOEGE provides a better parametric fit to the Traffic data than its
sub-models. The estimated variance-covariance matrix for the parameters of the MOEGE distribution for the Traffic
data is also obtained.

Table 4. Exploratory data analysis for the traffic data

Min. o q qs Max. Mean Var. skewness Kurtosis

25 5.93 12.10 21.60 119.80 21.60 574.55 1.92 6.58

kernel density of traffic data
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Figure 3. Plot of the kernel density and TTT plot for the Traffic data
Table 5. MLEs of the model parameters; traffic data

Model Estimates Statistics
p n a -1 AlCr CAICr HQICr BICr
MOEGE 6.95(5.38) 0.03(0.01) | 1.65(0.21) 337.2 680.4 680.7 683.3 687.7
{—3.59,17.49} | {0.01,0.05} | {1.24,2.06}
MOEE 1.48(0.56) —(-) 0.04(0.01) 341.5 687.0 687.2 689.0 691.9
{0.38,2.58} {-} {0.02,0.06}
GE 0.05(0.01) 1.12(0.17) (=) 341.8 687.7 687.8 689.6 692.5
{0.03,0.07} {0.79,1.45} {-}
E 0.04(0.01) (=) -(=) 342.1 686.2 686.3 687.2 688.7
{0.02,0.06} {-} {-}

To further compare the performance of MOEGE distribution in modeling lifetime data with its sub-models, a
Likelihood Ratio Test (LRT) is carried out. The LRT results given in Table 6 reveals that the MOEGE distribution
provides a better parametric fit to the data than its sub-models which is also visible in Figure 4.
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Table 6. LRT Statistics

Models Hypothesis LRT Statistics p — value
GE Hy:a =1vsHy = Hy is false 9.2 0.010

MOEE Hy:n =1vs Hy = H, is false 8.6 0.014
E Hya=n=0=1vsH, = Hyis false 9.8 0.007

The variance-covariance matrix for the parameters of the MOEGE model for the traffic data set is:

Fl=

0.41018
0.00252
—0.18986 0.00002

Estimated Cdfs for Traffic data

40

5. Concluding Remarks

T
60

x-value

Figure 4. Plots of the estimated CDFs and PDFs for the Traffic data

80

100 120

0.00252
0.00008

(x)

0.005 0.010 0.015 0.020 0.025 0.030

0.000

—0.18986
—0.00017
0.13795

The empirical and fitted densities plots for the estimated CDFs and PDFs for the data are given in Figure

Estimated Pdfs for Traffic data

MOEGE
— MOEE
-- GE

x-value

We have introduced a three parameter Marshall-Olkin Extended Generalized Exponential distribution as a suitable
distribution in modeling lifetime data. Standard statistical properties of the new model were discuss which includes
moments, incomplete moments, moment generating function, Stochastic ordering, Renyi entropy, and order statistics.
Maximum likelihood estimation of the parameters are obtain and Monte Carlo simulation are performed to validate the
properties of the estimator. Also, the observed information matrix for the model is obtained. Application of the
Marshall-Olkin Extended Generalized Exponential distribution to a traffic data set shows that this distribution can
produce a better fit than some known models. We expect that this generalization will attract wider applications in

reliability and lifetime data analysis.
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