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Abstract  
This paper aims to develop a three-parameter distribution called the Marshall–Olkin Extended Generalized Exponential 
(𝑀𝑂𝐸𝐺𝐸) distribution, which can be used in analyzing both reliability and survival data. Some statistical properties of 
the new distribution have been studied, which include, moments, incomplete moments, Renyl entropy, stochastic 
ordering, order statistics, and the moment generating function. The 𝑀𝑂𝐸𝐺𝐸 distribution has submodels such as the 
Marshall–Olkin Extended Exponential ( 𝑀𝑂𝐸𝐸) , the Generalized Exponential (GE), and the Exponential (𝐸) distribution. The maximum likelihood estimation technique is used to obtain the parameters estimate of the 𝑀𝑂𝐸𝐺𝐸 distribution, also, we constructed a 95% asymptotic confidence interval for the parameters. The performances 
of the estimators have been studied using Monte Carlo simulation, and finally, to demonstrate the applicability of the 𝑀𝑂𝐸𝐺𝐸 distribution, a traffic data set has been used. 
Keywords: Asymptotic confidence interval, estimator, Monte Carlo, Marshall–Olkin Extended Generalized exponential 
1. Introduction 
In survival/reliability experiment, exponential distribution is the most popular distribution for analyzing life-time data. 
But the application of this distribution is limited due to constant hazard rate because in many practical situation it is not 
realizable. Therefore, several generalization based on this distribution have been developed to address the problem of 
monotone failure rate behaviour see, Barlow and Proschan (1975), Gupta and Kundu (1999; 2001; 2002; 2007), 
Rajwant et al. (2016) etc. The Generalized Exponential (GE) distribution was proposed and studied by Gupta and 
Kundu (1999), developed to address the problem of monotone failure rate in Exponential (E) distribution. Further, the 
MOEE is also another generalization of the exponential distribution developed by Rajwant et al. (2016) to further 
increase the scope of applications of E distribution in modeling real life data. In this study we developed the 
Marshall-Olkin Extended Generalized Exponential distribution using a generalized family of distributions introduced by 
Marshall and Olkin (1997) called Marshall and Olkin family of distribution. This generalization have been used by 
many authors which includes: Alice and Jose (2003), Garcia et al. Ghitany et al. (2007), Ristic et al. (2007), Ristic and 
Kundu (2015), Okasha and Kayid (2016), and, Ogunde et al. (2020) among many others. The probability density 
function (PDF), cumulative distribution function (CDF) and the hazard function (hf) of this distribution are given as 𝑓(𝑥) = 𝛼𝑔(𝑥)[1 − 𝛼�̅�(𝑥) ,                                                                          (1) 

𝐹(𝑥) = 𝐺(𝑥)1 − 𝛼�̅�(𝑥),                                                                              (2) 

and ℎ(𝑥) = 𝑔(𝑥)𝐺(𝑥)[1 − 𝛼�̅�(𝑥)                                                                     (3) 

respectively and 𝛼 = 1 − 𝛼. 𝛼 is called the tilt parameter, the 𝐺(𝑥) and the 𝑔(𝑥) are respectively the baseline 
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distribution function and the baseline density function. 
The chief motivation for this study is to develop an extended form of the generalized exponential distribution which 
will be more applicable in several areas of reliability and survival studies with a more flexible modeling characteristics. 
The new distribution (MOEGED) 
The Probability density function (PDF) and survival function sf of the generalized exponential distribution, introduced 
and studied Ristic and Kundu (1999), for 𝑥 ˃ 0 and, 𝜌 ˃ 0, are given by 𝑔(𝑥) = 𝜂𝜌𝑒 (1 − 𝑒 ) ,                                                            (4) 𝑆(𝑥) = 1 − (1 − 𝑒 ) .                                                                    (5) 

Plugging (4) and (5) in (1) to obtain the PDF 𝑀𝑂𝐸𝐺𝐸 distribution as 𝑓(𝑥) = 𝛼𝜂𝜌𝑒 (1 − 𝑒 )[1 − 𝛼(1 − [1 − 𝑒 ) ;          𝑥, 𝛼, 𝜂, 𝜌 > 0,                                            (6) 

The CDF and hazard function associated to (6) is respectively, given by 𝐹(𝑥) = (1 − 𝑒 )[1 − 𝛼(1 − [1 − 𝑒 )          ; 𝑥, 𝛼, 𝜂, 𝜌 > 0,                                            (7) 

and 

ℎ(𝑥) = 𝛼𝜂𝜌𝑒 (1 − 𝑒 )[1 − 𝛼(1 − 𝑒 ) − [1 − 𝛼(1 − 𝑒 ) − (1 − 𝑒 )         ; 𝑥, 𝛼, 𝜂, 𝜌 > 0.       (8)  
where 𝛼 = 1 − 𝛼. The 𝑀𝑂𝐸𝐺𝐸 distribution can be applied in modeling a real life experiment and it can be explored as 
an alternative to the Weibull, gamma and other exponentiated family of distributions see Singh et al. (2013). Another 
beauty of this model is the density function (1) has increasing failure rate for  𝛼, 𝜂 > 1 , decreasing failure rate for 𝛼 , 𝜂 <  1 and constant failure rate for 𝛼 = 𝜂 =  1. 
The graph of the CDF, PDF and hazard function are given if figures 1 and 2 drawn below. 

Figure 1. Plots of the CDFs and PDFs of 𝑀𝑂𝐸𝐺𝐸 distribution. 
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Figure 2. Plot of the hazard function of 𝑀𝑂𝐸𝐺𝐸 distribution  
Figure 2 shows that the MOEGE distribution can be increasing, decreasing, constant, and bathtub shape which clearly 
indicates the MOEGE distribution can be used to model data exhibiting any shape of the hazard function. 
3. Mixture Representation 
The mixture representation of the density is always employed when deriving the statistical properties of generalized 
distributions. In this section, the mixture representation of the 𝑀𝑂𝐸𝐺𝐸 density function is derived. Considering the 
series representation 

(1 − 𝑧) = 𝛤(𝑘 + 𝑖)𝑖! 𝛤(𝑘) 𝑧                                                                             (9) 

Using (9) in (6), we have 

[1 − 𝛼(1 − [1 − 𝑒 ) = 𝛤(2 + 𝑖)𝑖! 𝛼 (1 − [1 − 𝑒 )                             (10) 

The PDF of MOEGE distribution given in (6) can be re-written as 

𝑓(𝑥) = 𝛼𝜂𝜌𝑒 𝛤(2 + 𝑖)𝑖! (−1) 𝑗𝑖, 𝛼 (1 − 𝑒 ) ( )                                             (10) 

Thus, the expression given in (10) is the exponentiated exponential distribution with shape parameter 𝜂(𝑗 + 1) and 
scale parameter 𝜌 
Further simplification of (10), gives 

𝑓(𝑥) = 𝛼𝜂𝜌 𝜂(𝑗 + 1) − 1𝑘 𝑗𝑖 (−1) 𝛤(2 + 𝑖)𝑖!, , 𝛼 𝑒 ( )                    (11) 

3.1 Quantile Function  
The quantile function plays a useful role when simulating random variates from a statistical distribution. The quantile 
function of the MOEGE distribution, say 𝑥 =  𝑄(𝑢) is given by: 
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Q(u) = − 1𝜌 𝑙𝑜𝑔 1 − 1 − 1 − 𝑢𝛼 + 𝛼(1 − 𝑢) ,        0 < 𝑢 < 1.                               (12) 

The median (𝑞 )and the upper quartile (𝑞 ) is obtained by substituting p = 0.5 and 0.75 respectively, into the quantile 
function. Hence, the median and the upper quartile are respectively, 

𝑞 = − 1𝜌 𝑙𝑜𝑔 1 − 1 − 0.5𝛼 + 0.5𝛼 ,                                                               (13) 

and 

𝑞 = − 1𝜌 𝑙𝑜𝑔 1 − 1 − 0.25𝛼 + 0.25𝛼 .                                                           (14) 

In many heavy tailed distributions, the classical measures of skewness and kurtosis cannot be obtained due to 
non-convergence of their higher moments. In such situations, the quantile can be used to estimate such measures. The 
Bowley’s coefficient of skewness which is developed using quartiles can be used to estimate the coefficient of skewness. 
It is given by 𝐵 = 𝑄 . − 2𝑄 . + 𝑄 .𝑄 . − 𝑄 . ,                                                                      (15) 

Consequently, the coefficient of kurtosis can be calculated using the Moors’ coefficient of kurtosis which is measured 
based on the octiles as 𝑀 = 𝑄 . − 𝑄 . − 𝑄 . + 𝑄 .𝑄 . − 𝑄 . ,                                                           (16) 

Table 1 shows the Bowley’s coefficient of skewness and Moors’ coefficient of kurtosis for fixed value of 𝜌 = 0.5 and 
varying the values of 𝛼 and 𝜂. 
Table 1. Values for Bowley’s coefficient of skewness and Moors’ coefficient of kurtosis 

Parameters 0.125 0.25 0.325 0.5 0.625 0.75 0.875 𝐵 𝑀 𝛼 = 0.3 𝜂 = 1.5 

0.1450 0.3189 0.5340 0.8119 1.1945 1.7800 2.8948 0.1059 3.8494

𝛼 = 0.5 𝜂 = 1.5 

0.1810 0.3973 0.6632 1.0028 1.4621 2.1459 3.3917 0.1029 3.5361

𝛼 = 0.5 𝜂 = 3.5 

0.2302 0.4991 0.8214 1.2219 1.7475 2.5040 3.8301 0.0903 3.1321

𝛼 = 0.8 𝜂 = 3.5 

0.2526 0.5461 0.8955 1.3261 1.8853 2.6792 4.0489 0.0869 3.0003

𝛼 = 0.8 𝜂 = 5.5 

0.2579 0.5567 0.9117 1.3480 1.9131 2.7135 4.0889 0.0860 2.9680

𝛼 = 0.8 𝜂 = 8.5 

0.2611 0.5633 0.9217 1.9642 1.9302 2.7343 4.1136 0.0851 2.0365
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From Table 1 it can be deduced that the MOEGE distribution can be positively skewed, mesokurtic, platykurtic and 
leptokurtic. 
3.2 Moments 
The moment of a random variable can be used in computing measures of central tendencies, dispersions and shapes. 
The 𝑟  non-central moment of the 𝑀𝑂𝐸𝐺𝐸 random variable is: 

𝐸(𝑋 ) = 𝜇 = 𝑥 𝑑𝐹 (𝑥)                                                                   (17) 

Putting (11) in (17), we obtain 

𝜇 = 𝛼𝜂𝜌 𝜂(𝑗 + 1) − 1𝑘 𝑗𝑖 (−1) 𝛤(2 + 𝑖)𝑖!, , 𝛼 𝑥 𝑒 ( ) 𝑑𝑥                            (18) 

By letting 𝑚 = 𝜌(𝑘 + 1)𝑥, 𝑑𝑚 = 𝜌(𝑘 + 1)𝑑𝑥, plugging it into (18), finally we have 

   𝜇 = 𝛼𝜂 𝜂(𝑗 + 1) − 1𝑘 𝑗𝑖 (−1) 𝛤(2 + 𝑖)𝑖!, , 𝛼 𝜌 (𝑘 + 1) ( )𝛤(𝑟 + 1)            (19) 

for 𝑟 =  1,2,3, . . ., where 𝛤 (·) is the gamma function. Table 2 displays the first six moments, variance (𝜎 ), 
Coefficient of Variation (CV), Coefficient of Skewness (CSK) and Coefficient of Kurtosis (CKU). The values for 𝜎 , 
CV, CSK and CKU for 𝜌 = 2.5 are respectively given by 

σ = (𝜇 − 𝜇 ) ,     𝐶𝑉 = 𝜎𝜇 ,     CSK = 𝜇 − 3𝜇𝜇 − 2𝜇𝜇 − 𝜇  𝑎𝑛𝑑  
CKU = 𝜇 − 4𝜇𝜇 + 6𝜇 𝜇 − 2𝜇(𝜇 − 𝜇 )  

Table 2. First six moments, 𝜎 , 𝐶𝑉, 𝐶𝑆𝐾 and 𝐶𝐾𝑈  𝜇  𝛼 = 0.3, 𝜂 = 1.5 
𝛼 = 0.5, 𝜂 = 5.5 

𝛼 = 0.8, 𝜂 = 3.5 𝜇  0.8222 1.1405 1.3061 𝜇  0.9644 1.5933 2.0064 𝜇  1.4408 2.6508 3.5711 𝜇  2.6167 5.1578 7.2877 𝜇  5.6264 11.5900 16.9248 𝜇  14.0629 29.7766 44.4520 σ  0.2883 0.2929 0.30050 𝐶𝑉 0.6531 0.4743 0.2732 CSK 1.1212 1.0510 1.0051 CKU 5.0368 4.9525 4.8378 
From Table 2, it can be concluded that the moments of MOEGE distribution increases when the values of the 
parameters increases but the coefficient of variation, coefficient of kurtosis, and coefficient of skewness decreases. 
3.3 Moment-Generating Function  
The moment generating function of random variable X that follows the 𝑀𝑂𝐸𝐺𝐸 distribution, if it exist, is represented 
by 

𝑀 (𝑡) = 𝐸(𝑒 ) = 𝑒 𝑓(𝑥)𝑑𝑥 = 𝑡𝑟! 𝜇                                                                                     (20) 



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 12, No. 5; 2023 

6 

= 𝛼𝜂 𝑡𝑟! 𝜂(𝑗 + 1) − 1𝑘 𝑗𝑖 (−1) 𝛤(2 + 𝑖)𝑖!, , 𝛼 𝜌 (𝑗 + 1) ( )𝛤(𝑟 + 1) 

3.4 Incomplete Moment  
The incomplete moment is a very useful applications in different fields of study. The first incomplete moment is 
employed in estimation of the Bonferroni and Lorenz curves which are useful in reliability, insurance, demography, 
medicine, and economics. The 𝑟  incomplete moment of the 𝑀𝑂𝐸𝐺𝐸 random variable is: 

𝜑 (𝑡) = 𝑥 𝑑𝐹 (𝑥)                                                                         (21) 

= 𝛼𝜂𝜌 𝜂(𝑗 + 1) − 1𝑘 𝑗𝑖 (−1) 𝛤(2 + 𝑖)𝑖!, , 𝛼 𝑥 𝑒 ( ) 𝑑𝑥                   (22) 

By using the complementary incomplete gamma function in (22), it yields: 

𝜑 (𝑡) = 𝛼𝜂 𝜂(𝑗 + 1) − 1𝑘 𝑗𝑖 (−1) 𝛤(2 + 𝑖)𝑖!, , 𝛼 𝜌 (𝑘 + 1) ( )𝛤 (𝑟 + 1), 𝜌(𝑗 + 1)𝑡   (23) 

where 𝛤 (𝑣, 𝑧)  =  𝑤 𝑒 𝑑𝑤 is the complementary incomplete gamma function. 
3.5 Entropy  
Entropy has been applied in many areas of engineering sciences and information theory as measures of uncertainty. The 
Renyi entropy of a random variable X having the 𝑀𝑂𝐸𝐺𝐸 distribution is given as: 

𝐼 (𝑣) = 11 − 𝑣 𝑙𝑜𝑔 𝑓 (𝑥)𝑑𝑥 ,                                                              (24) 

Plugging (11) into (24) followed by simple algebraic manipulation, we have 

𝐼 (𝑣) = 11 − 𝑣 𝑙𝑜𝑔 (𝛼𝜂𝜌) (−1),
𝜂(𝑘 + 1) − 1𝑙 𝛤(2𝑣 + 𝑘)𝛤(2𝑣)𝑘! (𝛼) 𝑒 ( ) 𝑑𝑥        (25) 

Letting, 𝑦 = 𝜌(𝑙 + 1)𝑥, 𝑑𝑦 = 𝜌(𝑙 + 1)𝑑𝑥 and plugging it in (25), yields and expression for the Entropy of 𝑀𝑂𝐸𝐺𝐸 
distribution given as  

𝐼 (𝑣) = 11 − 𝑣 𝑙𝑜𝑔 𝛼 𝜂 𝜌 (−1),
𝜂(𝑘 + 1) − 1𝑙 𝛤(2𝑣 + 𝑘)𝛤(2𝑣)𝑘! (𝛼) (𝑙 + 1)              (26) 

3.6 Stochastic Ordering  
Stochastic ordering is the frequent way of expressing ordering mechanism in lifetime distributions. Let 𝑋  ∼ 𝑀𝑂𝐸𝐺𝐸(𝛼 , 𝜂, 𝜌) and 𝑋  ∼  𝑀𝑂𝐸𝐺𝐸(𝛼 , 𝜂, 𝜌). The random variable 𝑋  is stochastically significant than 𝑋  in the: 
Stochastic order (𝑋 ≤ 𝑋 ) if the corresponding CDFs satisfies 𝐹 ≤ 𝐹  for all values 𝑥 
Hazard rate order (𝑋 ≤ 𝑋 ) if the corresponding CDFs satisfies ℎ ≤ ℎ  for all values 𝑥 
Likelihood ratio order (𝑋 ≤ 𝑋 ) if   is a decreasing function 
Given the PDFs of 𝑋  and 𝑋 , 𝑓𝑓 = 𝛼𝛼 1 − 𝛼 (1 − [1 − 𝑒 )1 − 𝛼 (1 − [1 − 𝑒 )  

Taking the logarithm of both sides of the equation and differentiating the ratio of the densities gives 
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𝑑𝑑𝑥 𝑙𝑜𝑔 𝑓𝑓 = 2𝜌𝜂𝑒 (1 − 𝑒 ) 𝛼1 − 𝛼 (1 − [1 − 𝑒 ) − 𝛼1 − 𝛼 (1 − [1 − 𝑒 ) < 0 

If  𝛼 < 𝛼  for all values of 𝑥 greater than zero. Then it follows from the implications of stochastic ordering that: 𝑋 ≤ 𝑋 ⇒ 𝑋 ≤ 𝑋 ⇒ 𝑋 ≤ 𝑋  

3.8 Order Statistics 
Suppose 𝑥 : < 𝑥 : < ⋯ < 𝑥 :  represents order statistics obtained from the 𝑀𝑂𝐸𝐺𝐸 distribution. Then the PDF, 𝑓 : (𝑥), of the 𝑠  order statistic 𝑥 :  is: 𝑓 : (𝑥) = 1𝐵(𝑠, 𝑛 − 𝑠 + 1) [𝐹(𝑥) [1 − 𝐹(𝑥) 𝑓(𝑥),                                            (27) 

Reducing () using binomial series expansion gives 

𝑓 : (𝑥) = 1𝐵(𝑠, 𝑛 − 𝑠 + 1) 𝑛 − 𝑠𝑖 [𝐹(𝑥) 𝑓(𝑥),                                                 (28) 

Where 𝐹(𝑥) and 𝑓(𝑥) are the CDF and PDF of the 𝑀𝑂𝐸𝐺𝐸 distribution respectively, and 𝐵(. , . ) is the beta 
function. Plugging the CDF and the PDF of the 𝑀𝑂𝐸𝐺𝐸 distribution in (28) follow by algebraic manipulation using (9) 
gives: 𝑓 : (𝑥) = ( , ) ∑ ∑ ∑ (−1) ( )( ) 𝛼 (1 − 𝑒 ) ( )         (29) 

Consequently, the PDFs of the smallest and the largest order statistics are respectively given by:  

𝑓 (𝑥) = 𝛼𝜂𝜌𝑒𝐵(𝑠, 𝑛 − 𝑠 + 1) (−1) 𝑛 − 𝑠𝑖 𝛤(𝑠 + 𝑖 + 𝑗 + 1)𝛤(𝑠 + 𝑖 + 1) 𝛼 (1 − 𝑒 ) ( )  

and 

𝑓 (𝑥) = 𝛼𝜂𝜌𝑒𝐵(𝑠, 𝑛 − 𝑠 + 1) (−1) 𝑛 − 𝑠𝑖 𝛤(𝑠 + 𝑖 + 𝑗 + 1)𝛤(𝑠 + 𝑖 + 1) 𝛼 (1 − 𝑒 ) ( )  

4. Parameter Estimation 
In this section, the parameters of the 𝑀𝑂𝐸𝐺𝐸 distribution are estimated using the maximum-likelihood estimation 
method. Given a random sample 𝑥 , 𝑥 , 𝑥 , … , 𝑥 of size 𝑛 from the 𝑀𝑂𝐸𝐺𝐸  distribution with parameter vector 𝜓 = (𝛼, 𝜌, 𝜂)′, then the log-likelihood function is given by: 𝑙 = log(𝛼𝜂𝜌) − 𝜌 ∑ 𝑥 + (𝜂 − 1) ∑ 𝑙𝑜𝑔(1 − 𝑒 ) − 2 ∑ 𝑙𝑜𝑔[1 − 𝛼 (1 − [1 − 𝑒 )   (27) 

By taking the partial derivatives of the log-likelihood function with respect to the parameters gives the component score 
vector 𝑉 = 𝑉 , 𝑉 , 𝑉 ′ as: 

𝑉 = 𝜕𝑙𝜕𝛼 = 𝑛𝛼 + 2 (1 − 𝑒 )[1 − 𝛼(1 − [1 − 𝑒 )                                                      (28) 

𝑉 = 𝜕𝑙𝜕𝜌 = 𝑛𝜌 − 𝑥 + (𝜂 − 1) 𝑥𝑒(1 − 𝑒 ) + 2 𝛼𝑥 𝑒 (1 − 𝑒 )[1 − 𝛼(1 − [1 − 𝑒 )           (29) 

𝑉 = 𝜕𝑙𝜕𝜂 = 𝑛𝜂 + (1 − 𝑒 ) + 2 𝛼(1 − 𝑒 ) 𝑙𝑜𝑔(1 − 𝑒 )[1 − 𝛼(1 − [1 − 𝑒 )                                  (30) 

Setting 𝑉 = 0 and solving then simultaneously gives the MLEs of  𝛼, 𝜌, and �̂� 
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To estimate an approximate confidence intervals (CIs) of the parameters of 𝑀𝑂𝐸𝐺𝐸 distribution, it is important to 
obtain an estimated values of the elements of variance covariance matrix 𝐹 of the MLEs. The variance-covariance 
matrix F is estimated by the observed information matrix ̂𝐹, 
Where 

𝐹 = − 𝐽 𝐽 𝐽𝐽 𝐽 𝐽𝐽 𝐽 𝐽 ,                                                                   (31) 

where 𝐽 , 𝑖, 𝑗 = 1, 2, 3, are the second partial derivatives of (27) with respect to α, 𝜂, and ρ. They are the values of 
Fisher’s information matrix analogous to α, 𝜂, and ρ, respectively. The diagonal element of the matrix in (31) gives the 
variances of the MLEs of α, 𝜂, and ρ, respectively. An approximate 100(1 − c)% confidence interval for 𝜃  as 𝜃 ± 𝑍 𝑣𝑎𝑟 𝜃 , 
Where 𝜃 = (𝛼, �̂�, 𝜌), 𝑍  is the upper ( ) 100  percentile of SN distribution. We can use the likelihood ratio (LR) 
test to compare the fit of the 𝑀𝑂𝐸𝐺𝐸 distribution with its submodels for a given data set. For example, to test 𝛾 = 0, the 
LR statistic is 𝐻 =  2[𝑙𝑛(( 𝛼, �̂�, 𝜌))−𝑙𝑛(𝐿(0, 𝜂, 𝜌))], where 𝛼, �̂�, and 𝜌 are the unrestricted estimates and 𝜂, 𝜌 are the 
restricted estimates. 
The LR test rejects the null hypothesis if 𝐻 > 𝜒∈, where 𝜒∈ denotes the upper 100 ∈ % point of the 𝜒 -distribution 
with 1 degree of freedom. 
4.1 Simulation Study of 𝑴𝑶𝑬𝑮𝑬 Distribution 
The validity of the method of estimation used in obtaining the estimate of the parameters of the 𝑀𝑂𝐸𝐺𝐸 distribution 
can be ascertained via a simulation study. The following steps can be followed: 
(1) By using (12), 2,000 samples of size 𝑛 are obtained. 
The variates of the 𝑀𝑂𝐸𝐺𝐸 distribution are developed using 

X = − 1𝜌 𝑙𝑜𝑔 1 − 1 − 1 − 𝑢𝛼 + 𝛼(1 − 𝑢) ,    0 < 𝑢 < 1                          (32) 

(2) The MLEs are computed for the samples, say 𝜃 = ( 𝛼 , �̂� , 𝜌 ) for 𝑝 =  1, 2, . . . , 1,000. 
(3)The mean square errors (MSEs) are calculated for every parameter. 
The above steps were repeated for 𝑛 = 50, 100, 200, 300, and 400 with 𝛼 =  0.6, 𝜂 =  0.6, 𝜌 =  1.2. Table 3 shows 
the absolute bias and standard error (SE) and the mean square error (MSEs) of 𝛼, 𝜂, and 𝜌. It can be deduced through 
the table that MSEs for individual parameters diminish to zero when sample size increases. 
Table 3. 𝐴𝐵, 𝑆𝐸, and 𝑀𝑆𝐸 for the 𝑀𝑂𝐸𝐺𝐸 parameters 

Parameters 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒𝑠 𝐴𝐵 𝑆𝐸 𝑀𝑆𝐸
 
 𝜌 

50 0.8653 1.8784 4.2771100 0.8293 1.2250 2.1884200 0.7735 0.5678 0.9207300 0.5510 0.6038 0.6682400 0.2323 0.4202 0.2305
 
 𝛼 

50 0.1180 0.1931 0.0512100 0.1796 0.1151 0.0455200 0.0768 0.0901 0.0140300 0.1063 0.0752 0.0170400 0.0648 0.0661 0.0086
 
 𝜂 

50 0.6452 0.3098 0.5123100 0.5281 0.1950 0.3169200 0.4922 0.1438 0.2629300 0.4760 0.1133 0.2394400 0.4352 0.1004 0.1995
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4.2 Application of 𝑴𝑶𝑬𝑮𝑬 Distribution to Real Life Data Set 
In this section, we compare the results of fitting the 𝑀𝑂𝐸𝐺𝐸 , Marshall-Olkin Extended Exponential (MOEE), 
Generalized Exponential (GE) and Exponential distributions to one real data set. All the computations done using the R 
programming language (R Development Core Team, First, we consider the data set consisting of the length of intervals 
times at which vehicles pass a point on a road. The data are initially provided by Jorgensen (1982) and has been used by 
Lemonte et al. (2013). The Exploratory data analysis for the traffic data is given in Table 4 which shows that the data is 
positively skewed with excess kurtosis of -1.08 meaning that the data is platykurtic, since the value of the mean is less 
than the variance we can conclude that the data is over-dispersed. The Kernel density plot and the Total Time on Test 
(TTT) plot is given in Figure 3. The Maximum Likelihood Estimates (MLEs) of the model parameters with errors in 
parentheses, confidence interval in curly brackets and the values of the AICr (Akaike Information Criterion), CAICr 
(Consistent Akaike Information Criterion), BICr (Bayesian Information Criterion) and HQICr (Hannan-Quinin 
Information Criterion) are given in Table 5. From the values of these 𝑀𝑂𝐸𝐺𝐸 model is better than the 𝑀𝑂𝐸𝐸, 𝐺𝐸 
and 𝐸 models.  
To further compare the 𝑀𝑂𝐸𝐺𝐸 distribution with its sub-models, a Likelihood Ratio Test (LRT) is performed. The 𝐿𝑅𝑇 results shown in Table 6 reveal that the MOEGE provides a better parametric fit to the Traffic data than its 
sub-models. The estimated variance-covariance matrix for the parameters of the 𝑀𝑂𝐸𝐺𝐸 distribution for the Traffic 
data is also obtained. 
Table 4. Exploratory data analysis for the traffic data 

Min. 𝑞  𝑞  𝑞  Max.  Mean Var. skewness Kurtosis

2.5 5.93 12.10 21.60 119.80 21.60 574.55 1.92 6.58 

 

Figure 3. Plot of the kernel density and TTT plot for the Traffic data 

Table 5. MLEs of the model parameters; traffic data 𝑴𝒐𝒅𝒆𝒍 Estimates Statistics 𝜌 𝜂 𝛼 −𝑙 𝐴𝐼𝐶𝑟 𝐶𝐴𝐼𝐶𝑟 𝐻𝑄𝐼𝐶𝑟 𝐵𝐼𝐶𝑟𝑴𝑶𝑬𝑮𝑬 6.95(5.38) −3.59,17.49 0.03(0.01) 0.01,0.05  
1.65(0.21)1.24,2.06 337.2 680.4 680.7 683.3 687.7𝑴𝑶𝑬𝑬 1.48(0.56) 0.38,2.58  −(−) −  
0.04(0.01)0.02,0.06 341.5 687.0 687.2 689.0 691.9𝑮𝑬 0.05(0.01) 0.03,0.07  

1.12(0.17) 0.79,1.45  
−(−) − 341.8 687.7 687.8 689.6 692.5𝑬 0.04(0.01) 0.02,0.06  

−(−) −  
−(−)− 342.1 686.2 686.3 687.2 688.7

To further compare the performance of MOEGE distribution in modeling lifetime data with its sub-models, a 
Likelihood Ratio Test (LRT) is carried out. The LRT results given in Table 6 reveals that the MOEGE distribution 
provides a better parametric fit to the data than its sub-models which is also visible in Figure 4. 
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Table 6. LRT Statistics 𝑀𝑜𝑑𝑒𝑙𝑠 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐿𝑅𝑇 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐺𝐸 𝐻 : 𝛼 = 1 𝑣𝑠 𝐻 = 𝐻 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 9.2 0.010𝑀𝑂𝐸𝐸 𝐻 : 𝜂 = 1 𝑣𝑠 𝐻 = 𝐻 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 8.6 0.014𝐸 𝐻 : 𝛼 = 𝜂 = 𝜃 = 1 𝑣𝑠 𝐻 = 𝐻 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 9.8 0.007
The variance-covariance matrix for the parameters of the MOEGE model for the traffic data set is:  

𝐹 = 0.41018  0.00252 −0.189860.00252  0.00008 −0.00017−0.18986 0.00002  0.13795  

The empirical and fitted densities plots for the estimated CDFs and PDFs for the data are given in Figure  

 
Figure 4. Plots of the estimated CDFs and PDFs for the Traffic data 

5. Concluding Remarks 
We have introduced a three parameter Marshall-Olkin Extended Generalized Exponential distribution as a suitable 
distribution in modeling lifetime data. Standard statistical properties of the new model were discuss which includes 
moments, incomplete moments, moment generating function, Stochastic ordering, Renyi entropy, and order statistics. 
Maximum likelihood estimation of the parameters are obtain and Monte Carlo simulation are performed to validate the 
properties of the estimator. Also, the observed information matrix for the model is obtained. Application of the 
Marshall-Olkin Extended Generalized Exponential distribution to a traffic data set shows that this distribution can 
produce a better fit than some known models. We expect that this generalization will attract wider applications in 
reliability and lifetime data analysis. 
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