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Abstract

This paper explores the possibility for using the copulas in the context of evaluating the reliability for the exponential
family of distributions.
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1. Introduction:

The exponential family of distributions have many applications in our lives. For example, our life span follows the
exponential pattern. The life-time of electronic gadgets follow the exponential pattern. The exponential family of
distributions are used in both statistical and engineering quality control analysis. These distributions are used in
reliability evaluations. There has been steady interest in the reliability evaluations since the time of Marshall and Olkin
Failure Model (1966). Bemis (1971) has chronicled the literature with regard to the exponential distribution prior to
1971. Ristic and Kundu (2015) summarize the literature about the research work done after 1971. Recently, the focus is
on the generalized exponential family of distributions. However, there is very little known work related to copulas in the
context of exponential distributions. This article somewhat seeks to fill the void in the context of exponential
distributions.

The idea of using copulas to approximate the joint probability distributions originated after Sklar’s Theorem (1959).
Gumbel (1960), Clayton (1978) and Joe (1993) developed Copula models bearing their names. There were a sudden
influx of research papers beginning from the 1980’s in Economics, Finance, and Engineering. Frees and Valdez (1998)
discuss in detail the copula construction and the applications in topics such as quantile regression, actuarial science and
stochastic ordering. The interested readers are referred to Nelson (1999) for the literature review.

In this paper, we investigate the reliability in the context of exponential families by using the Copula models. We are
interested in identifying the Copula model which yields a better approximation for the joint distribution. In this regard,
we begin our investigation first with the Bivariate Exponential distribution. Next, we extend it to the Tri-variate
situation. Overall, the Clayton Copula model seemed to perform better while approximating the Bivariate and
Tri-variate Exponential distributions. Moreover, there is no difference whether we use the arithmetic mean or geometric
mean or harmonic mean of the dependence parameter based on the pairwise copulas for the dependence parameter in
the three variable situation.

2. Methodology

Here, we will use the Archimedean Copulas such as Clayton, Gumbel, and Frank and the non-Archimedean Copula
such as the Gaussian Copula for modeling the joint distribution.

Bivariate Exponential Distribution

First, we will look to see the how the bivariate-exponential arises in nature. Let us consider the situation where there are
three independent exponential variables such that U ~exp(4,), V ~exp(4,), and W ~exp(4).

Let X =min(U,W), Y =min(V,W)

=
Fy (X)=P(X <x)=1-P(X >x)
=1-P(min(U,W)>x)=1-P(U >x,V >X)
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=1-P(U>x)P(W >x)

— 1_ e—ilx e—ix

:1_e’(ﬂi+4‘)x
Similarly, F, (y)=1-e ="
Next, we will derive the joint distribution of X and Y .

Let H(x,y)=P(X <xY <y)

=P(min(U,W)<xmin(V,W)<y)
Consider,
H (x,y)=P(min(U,W)>x,min(V,W)>y)
=P(U>xV>yW>max(xy))

=P(U>x)P(V >y)P(W >max(x,y))
— e—ﬂlx ef/lzy e—/lmax(x,y)

_ g X Ay=Amax(x.y)

Notethat,  H(x,y)-H(xy)+ EF (X)+ 2R (y)=
=

H (X, y) :l_e—(ﬂiJrl)x _e—(/ﬁz+l) y + e—ﬂi X—=2p y—Amax(X,y)

Archimedean Copula Models for Reliability
Bivariate Exponential Distribution

Let X be the stress and Y be the strength of a material (say window glass panel). Let us further assume that the joint
distribution of X and Y is bivariate exponential. As shown above, the cumulative joint distribution function for the
bivariate exponential is of the form

H (X y) —1—g AtAx _ g (B+A)y | g-Ax-Apy-imax(x.y) )
From this equation we can infer by setting Y to oo, the marginal distribution function of X is
F(x)=1-g " @)

From (2) itis clear that the marginal distribution of X is exponential.
Similarly we can infer by setting X to oo, the marginal distribution function of Y is

G(y)=1-e =" ®)

From (3) itis clear that the marginal distribution of 'Y is exponential.
Moreover, the bivariate exponential density function is given by
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(A +2)Ae ARy sy

21(12 +i)e*/ﬁx*(ﬂz+‘~)y, X<y (4)
2 Arhra)y L X=y

f(xy)

One can easily show that

(A +24,+24)

E(XY)= 5
) D (s a2 2) ©
Cov(X,Y)= 4 (6)
(A A) (L + ) (At A+ A)
The theoretical correlation coefficient is given by
A
P ke ) )
The theoretical reliability can be shown to be
R=P(X <Y)

=P(X<Y)+P(X =Y)

f(x,y)dxdy +P(X =Y)

]

O <

:ﬂ(ﬂ7 +A) Ay A gy dy+ ] e =AY gy
4
(h+A+2) (h+4+2)
A+
“Tened ®

Next, we will use some Copula models for computing the reliability.
Note: As previously indicated X is the stress endured by a glass panel and Y is the strength of the glass material.
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Clayton Copula
The Clayton Copula is defined as

Clxy) = (FOOy* +G(y)y ~1)«

and the Copula density is

c(xy) = az;((;;/y)

1
c(xy)=(1+ a)[(l—e’“““x)ﬂ +(1—e"”‘?*’“)y)w _1} “
(1) T 1) (4 2) (4, + ) g

For the Clayton Copula, we can estimate the dependence parameter & by using the equation
a A

a2 P A A
So, the theoretical reliability R=P(X <Y)can be approximated by the integral

©)

(10)

(11)

(12)

Y
w2 [ny] i)\ i)\ o’ i) YO )\ i) ()
=~ l-e +|1-e n -1 l1-e 1-e n e " e

j=0 i=0

Where N means the number of very small partitions of the interval (O, y) .
Gumbel Copula
The Gumbel Copula is defined as

1

C(xy)- o ([F AT e ()T

and the Copula density is

a°C(x,y)

c(xy) = oX oy

5

(13)

(14)

= RGO (Lo ) T (-n6 () 2 — () g) {(-InF(0)” + (G ()Y

F(x) ¢(»)
.{(a — 1)+ [(-InF0)* + (—lnG(y))a]E}

For the Gumbel Copula, we can estimate the dependence parameter & by using the equation
4
L+4L+A

So, again, the theoretical reliability R = P(X SY) can be approximated by the integral

fom nyc(x,y) dx dy

ST G O

l-a'=p=
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Where N means the number of very small partitions of the interval (0, y) .

Farlie-Gumbel Morgenstern (FGM) Copula
The Farlie-Gumbel Morgenstern Copula is defined as

Cx yr B X G)yra( + (B)(x +( B)

oxoy

= f (x)g(y){1+a(l—2F(X))(l—ZG(y))}

cly) = 2Cb)

(18)

(19)

For the Farlie-Gumbel Morgenstern Copula, we can estimate the dependence parameter & by using the equation,

1 A
e P,
3 A+ +A
The reliability R=P(X <Y) is approximated by the integral

y
f c(x,y) dxdy

2
a
-~
S=
S
N————
-~
Sie
N————
~
Sie
N——

j=0
Where N means the number of very small partitions of the interval (O, y)

Frank Copula
The Frank Copula is defined as

(e“F(X) _1)(e“G(Y) _1)

E=

C(x,y):éln 1+

L@ aF(3) gaoly) 1+(eaF(X)_l)(eaG(Y)_1)

(ea _1) (ea _1) F(x)a(y)

For the Frank Copula, we can estimate the dependence parameter & by using the equation,

1—i{D1(—a)—1}zp=
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(20)

(21)

(22)

(23)

(24)
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1x t

Xo

where Dl(x):_.[(et _1)

dt

X
and D, (—x) =D, (x)+ > for the negative values of X. (25)

Table 1. Archimedean Copula based reliability for bivariate exponential distribution

Numerical Results for Reliability: (n = 200and 1000 simulation runs)

Index A A, A Theoretical Clayton Gumbel FGM Frank
1 0.5 0.3 0.2 0.700 0.751 0.751 0.751 0.751
2 0.3 0.2 0.3 0.750 0.697 0.697 0.697 0.697
3 04 0.2 0.1 0.714 0.809 0.809 0.809 0.809
4 0.5 25 1.0 0.375 0.340 0.341 0.341 0.344
5 15 1.0 0.5 0.667 0.729 0.729 0.728 0.729
6 3.0 2.0 2.0 0.714 0.700 0.696 0.696 0.698

Bi-Variate Normal Distribution

Next, we investigate the Bivariate Normal distribution. Let X and Y be random variables following a bivariate

normal distribution.

The reliability

i

Note: In order to use the copula based approximations, we used the following results.
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()2

1 (=-p
f(xy)= e
(x.3) 27 0,0,\1- p*
R= P(X SY)
=P(X <Y)+P(X =Y)
—[f (x,y)dydx+0
05 (x4 Z;Z_ x| y=ttp
RTENIN - A ey TN
X 27 Oy 0'2\/1—/02
e 1 efo.s[x;—fljz T 1 eazz(f'spz)[y—uz—/f:(x—m)] dy i
1 oro, Nro -

(26)
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1 1
“=BX)=277 %%

1 1
:EY = s =
# =E(Y) Lii o 2T

I

Clayton Copula
For the bivariate normal distribution, the copula density based on the Clayton Copula is

c(x,y) :azch(_;w
“a e (29)
walo52] o(52)] of sl

Where @(X) and ¢(X) are the standard normal distribution and the standard normal density function respectively.

So, the theoretical reliability R = P(X <Y ) can be approximated by the integral

o3

Y
jc(x,y)dxdy
0

01 )\ 02

(%)—W o) ()2 )

Where N means the number of very small partitions of the interval (0, y) (30)

Frank Copula:
The Frank Copula is defined as

{;@(%]_1]{;@&:’2]_1]
1+ (31)

X,¥)==1In
C(xy) (e-1)
c(x,y) = az;((;;,y)

<l ) sy

0, 0, )\ 02
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For the Frank Copula, we can estimate the dependence parameter & by using the equation,

4 A
l—E{Dl(—a)—l}zpzm (33)
Xt
where D1 (X) = ;g (et _1) dt
and
D, (—x) =D, (x) +g for the negative values of X. (34)
Gumbel Copula
The Gumbel Copula density is
0°C(x,
o(x )= (x.Y)
ox oy
_ el e [_mq{x_ Mj]“‘l[_m[y_ﬂz D 1
%1 0, (D[X_M)q)(y_ﬂzj
%1 0,

AT
- (a_1)+[(_ln®[x;fﬁna{_m(y;——mT

Gumbel Copula, we can estimate the dependence parameter & by using the equation

lginp=— 36
P A a1 A (36)
So, again, the theoretical reliability R=P(X <Y) can be approximated by the integral
y
f c(x,y) dxdy
0
0
[nyl] L 1
~ LIV (2) (=
DPRBICE
j=0
Where N means the number of very small partitions of the interval (O, y) (37)

Farlie-Gumbel Morgenstern (FGM) Copula
The Farli-Gumbel Morgenstern Copula is defined as

Cxyr ENXG)yte( + (H)(x (1) (38)
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C(X y) = —82C(X’ y)
’ OX oy
= £ () g(y){L+a(1-2F(x))(1-2G(y))} (39)
For the Farlie-Gumbel Morgenstern Copula, we can estimate the dependence parameter & by using the equation,
L Rp= 4 40
ATy (40)
The reliability R= P(X SY)is approximated by the numerical integral as in the other copulas.
Again note that in the context of bivariate normal distribution we are using the parameters,
4= )
Hy =0, = %ﬂfz +ﬂ,)
_ 2
P %ﬂl +2,+2)
Table 2. Archimedean Copula based reliability for bivariate normal distribution
Numerical Results for Reliability: (n =200 and 1000 simulation runs)
Index A A, A Theoretical Clayton ~ Gumbel FGM Frank
1 0.5 0.3 0.2 0.614 0.426 0.411 0.400 0.215
2 0.3 0.2 0.3 0.571 0.368 0.344 0.341 0.197
3 0.4 0.2 0.1 0.657 0.504 0.492 0.483 0.232
4 0.5 2.5 1.0 0.296 0.099 0.097 0.093 0.085
5 15 1.0 0.5 0.601 0.401 0.390 0.375 0.209
6 3.0 2.0 2.0 0.583 0.381 0.362 0.355 0.201

As you can see from the numerical results, the Archimedean Copulas such as Clayton, Gumbel, Frank, and
Farlie-Gumbel Morgenstern (FGM) are not suitable for computing the reliability based on a bivariate normal
distribution.

Next, we will investigate the tri-variate exponential distribution.
Tri-variate Exponential Distribution

In this section, we deal with the tri-variate exponential distribution.
Let us define the following independent variables as follows

U~ exph)
V ~ expd,)

W ~ exp;)
Z,~expl,)
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Z,~expl,)
Zy ~exp(ys)
Zy~exp(4s)
X =min(U,Z,,2,,2,)

Y=min(V,Z,,Z,,Z,)

Z=mifW Z Z 2 (41)

We can verify the joint distribution as follows.

P(X2xY2>y,Z>7)
=PU=X2,2%X2Z,2X2,2xV 2Yy,2,2Yy,Z,>y,Z,2yW >2,Z,>2,2,>2,Z,>1)

=P(U=2xV2yW=>2z2Z >max(x,y,z),Z, >max(x,y),Z, >max(y,z),Z, > max(x,z))

=P(U>x)P(V>y)P(W >z)P(Z,>max(x,y,z))P(Z, > max(x,y))
P(Z,>max(y,z))P(Z, > max(x,z))

— e—ﬂix e—ﬂzy e—ﬂsz e*ﬂizs max(x,y,z) e7212 max(x,y) e*ﬂ'zz max(y,z) e*ﬂis max(x,z)

_ e—ﬂix—ﬂzy—ﬂsz—ﬂlz max(X, Y )~/ Max(X,z)—Aps max(y,z)—Aps max(x,y,z) (42)
=
nyz (X, Y, Z) =1— e*(ﬁﬁﬂuﬂaaﬁm)x _ e*(ﬂﬁﬁuﬂzs%zs)y _ ef(ﬂeﬂiﬁﬂaaﬂm)z
4 @ (Ate) x4+ 229)y~(Aiz + Az )max(x.y)
VvVt )x(3.2) | (i) x(2)
X~ aY =t~ MRX(X,Y) a5 MX(x,2) g5 MaX( ¥ 2)~/azs Max(,,2) 3)
=
F ( x) — 1 p athethathn)x
F, (y) _ 1 g erhthathn)y
F, (z) — 1 p erhathatizn)
Case 1: X< y< .
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F123 (X, Y, Z) =1-— e_(ﬂi"'ﬂiz*'/iis"'/lus)x _ e_(ﬁz*'ﬂiz +hgtAs)y e_(ﬂe‘*ﬂm‘*‘@s"’ﬂizs)z

+ ei(jﬁﬂm)xi(ﬂ’ﬁﬂ%)y*(ﬂi2+ﬂ1z3)y
B R P LIPS R M LS C R S R L

_e—ﬂix—ﬂ,z Y=A3Z— Ao Y—A3Z—Ap3Z—Ayp32

The density function

fiag (X, 1 2) = A4 (A + Ay ) (Ao o Ao o gy + g ) V200U

Similarly for the other cases, the density function can be found and represented by the subscript order.

Suppose that we want to compute the probability that

Case 2:

Case 3:

Case 4:

R =P(X<Y<Z)

fps (X, y, z)dz dy dx

o~—8

/

< —8

A (4 + )
(//11+/12+13+/112 +/q‘13+ﬂ‘23+2123)(/12+112+/13+//113+2‘23+1123)

y< X<

R,=P(Y<X<2Z)
:ijj f,i5 (X, y,2)dz dxdy
y X

2y (ot p)

X<y<z

(ﬂl+ﬂ’2+ﬂ§+212 +/113+/123+/1123)(11+112+A’3+//113+/123+//1123)

X< Z<

R,=P(X <Z<Y)

fis (X, Y, 2)dydzdx

o—8

/

Ne—8

A (A +As)
(Zl+ﬂ’2 +//13+112+113+2’23+/’1123)(Z’2+//112 +ﬂ3+113+2‘23+/’1123)

Z< X< )

R,=P(Z<X<Y)

:!;J..[ fslz(X, y,z)dydxdz
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Ay (A + Ais)
(A4 g+ A Ao + Ay o+ A+ Ay ) (A + g + g+ Ay + Ay + Az )

Case 5: y<i<)

R,=P(Y<Z<X)

f, (X, y,z)dxdzdy

o—8

?

~N—38

ﬂvz(ﬂerﬂya)
(ﬂ"l-"_//{/z+Z’3+112+/,113+/123+1123)(/’11+112+2’3+113+/123+1123)

Case 6: Z< y< )

R,=P(Z <Y <X)

o—8

] f321(X, y,Z)dXdde
zy

23(/12 +ﬂ“23)

(/11+/12+//13+ﬂ12+213+A'23+2123)(ﬂ‘1+212+/12+/113+/123+/,1123)

Note 1:

P(X=Y=2)= Arag
A+ + A+ Ay + A+ Ay + Ay

Note 2:

COV(X,Y): Ao+ g

(48)

(49)

(50)

(51)

(ﬂ'l+112 +ﬂl3+2’123)(ﬂ'2 +2’12 +2’23+1123)(ﬂ‘.l+2’2 +ﬂ’l2+ﬂ'.l.3+ﬂ’23+j’123)

- Ay + Ao
At Ayt A+ At Ay + Ay

Px.y

where Oy y means the correlation coefficient of X and Y .

- vy Az
Note 3: P(X _Y)_gj+12+/112+/113+123+/1123

Copula Construction
Here we will investigate the Copula models for approximating the tri-variate exponential distribution.

Let U, =P(X <X)
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u,=P(Y <y)
u,=P(Z<z)
Clayton Copula:
-1
C (U, Uy, Uy) = (U™ +U, +uy” = 2) (55)

Notations

@ = The dependence parameter of the pairwise copula linking variables X, and Xj

Pi = The correlation coefficient of the variables X;and )(j
& = The overall dependence parameter
p=P(X=Y=2)

First, we will discuss this in the context of Clayton Copula.

. 2
(I). Simple Reliability (probability) based approach where « =ﬁand P is as described above in equation (51).
. . 2pij

For other approaches listed below, in the case of Clayton Copula «; = E

i
(ii). & is the harmonic mean of &, Qyg, 5.
(iii). a is the geometric mean of ¢z, &g, Q5.
(iv). & is the arithmetic mean of &, , 2y, ¢ty
Gumbel Copula

1
C (Ul, u,, U3) = e—{(—ln(ul))“+(—In(u2))“+(—ln(u3))a}" (56)

Similarly, we propose methods to estimate the dependence parameter & . We will discuss this in the context of Gumbel
Copula.

. 1
(I). Simple Reliability (probability) based approach where a = 1— and Qs as described in equation (51).
—-pP
: 1 . : .
For other approaches, in the case of Gumbel Copula, &%; = g where 0y is the correlation coefficient.
i

(ii). s the harmonic mean of &, , Xy, 1y
(iii). ais the geometric mean of az,, 5, 5.

(iv). & is the arithmetic mean of ¢z, , Ctyg, 4.
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Frank Copula

e ey o

Again along the same lines, we propose methods to estimate the dependence parameter & . We will discuss this in the

C(ul,uz,ug)zéln 1+

context of Frank Copula.

1x t
(i). Simple Reliability (probability) based approach where pzl—%[Dl(—a)—l] and Dl(x):;gmdt is the
“Debye” function and D, (—x)= Dl(x)+§

For other approaches given below, we will use the correlation coefficient oj; .
(ii). & is the harmonic mean of &, Xy3, 5.

(iii). & is the geometric mean of &, 2y, 5.

(iv). o is the arithmetic mean of &, Qyg, 5.

Three variate Pairwise Hierarchical Copula

As seen from the accompanying hierarchical copula diagram, at the top level, the generator function is i/, . At the next
level, the generator isy/,, . There is a hierarchy in the level arrangement. Note that ¢r,and «,, are the dependence
parameters at the first level and second level respectively. The variables that exhibit the higher order of correlation are
placed at the higher level.

So, one can write the hierarchical copula as follows.

C(ul’uzvua):‘//1_1(‘//1(C2(u1’Uz))""//l(us)) (58)

Clayton Copula (Hierarchical)

1

C(ul’uz’u3) = [1+‘//1(C2(u11u2))"“/’1(“3)]7‘71

- :1+ l//l(l/llz_l(‘//lz (ul)+ Vi (Ug))>+ l/ll(u3)] &

= :1"‘ [‘//12_1(‘//12 (U1)+ Vi (Uz ))]—% -1+ Wl(us )Ial

= Y2 B (‘//12 (ul ) ¥ (UZ ))]7(11 +Uy - 1}%

= (1+W12(ul)+l//12(u2))7112+u37a1 -1

oy o

= (1+ u, " U, M — 2)[712 +u, -1

o @
= (ul’“‘12 +u, —1)%2 +u, - (59)

Gumbel Copula (Hierarchical)

-

C (Ul, u,, U3) = e_{'//l(clz(ulvuz))+|//1(u3)}2
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-{[(—wul))““ +{-In(u))*? }“L(—In(ua))“}a (60)
=e
Frank Copula (Hierarchical)
TN T
C(uy,Uy,Uy) = - In [1+ (eau —1)(e” _1) (61)

Numerical Simulation

Here, we compare the performance of Clayton, Gumbel, and Frank Copulas in approximating the Tri-variate
Exponential Distribution. The results are based on 10000 simulation runs.

. C-F,
In order to compare the performance, we will use absolute percentage error {Fy}m%

"
where nyz represents the cumulative distribution of the Tri-variate Exponential and C is the Copula.

NOTATIONS (in Table 3):

S: Simple reliability based dependence parameter
d:  Arithmetic Mean based dependence parameter
h: Harmonic Mean based dependence parameter
0: Geometric Mean based dependence parameter
hi: Hierarchical Copula based parameter

Table 3. Absolute Percentage Error in Percentage

5 6 7T 09 06 14 12 22 13 19 14 14 29 23 27 23 23
1 2 3 09 06 14 12 27 14 22 15 14 36 26 33 26 26
3 4 S 09 06 14 1.2 25 15 21 15 15 32 25 29 25 25
7 6 5 09 06 1.4 1.2 22 14 20 15 14 29 23 27 23 23
3: 2 1 09 06 1.4 12 29 16 25 17 16 38 28 34 28 28

5 4 3 09 06 1.4 1.2 26 16 23 16 16 33 26 31 26 26

1 2 3 06 09 1.2 14 26 15 23 15 15 36 27 34 27 27
3 4 5 06 09 1.2 14 24 16 22 16 16 33 31 26 26 26
7 6 5 06 09 1.2 14 23 I5 21 16 16 30 24 28 24 24

0.6 09 1.2 14 28 17 26 18 17 38 29 36 29 29

-
=]
—

4

5 R 3 06 09 1.2 14 25 17 23 17 17 3
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Table 3. (continuation) for Frank Copula Absolute Percentage Error in Percentage

A A A Ay Ay Ay Ay s a h h g

S 6 7 0.9 06 14 12 435 44 57 44 44
1 2 3 0.9 06 14 12 48 48 58 48 48
3 4 5 0.9 06 14 12 41 41 58 41 41
7 6 5 0.9 06 14 12 37 37 63 37 37
3 2 1 0.9 06 14 1.2 49 49 59 49 49
5 4 3 0.9 06 14 12 43 42 78 42 42
5 6 7 0.6 09 1.2 1.4 37 36 76 36 36
1 2 3 06 09 12 14 S0 50 81 50 50
3 4 5 0.6 09 12 14 50 50 58 50 50
7 6 5 0.6 09 12 14 38 38 42 38 38
3 2 1 0.6 0.9 12 14 51 51 59 5l 51
5 4 3 0.6 09 1.2 14 43 43 53 43 43

Discussion and Conclusion

At first this paper studied the use of Bivariate Copulas in the context of approximating the Bivariate Exponential
distribution and the Bivariate Normal distribution. The Archimedean Copulas did reasonably well in approximating the
Bivariate Exponential distribution while not doing well with respect to the Bivariate Normal distribution. So, we
decided to use the Archimedean Copulas to approximate the Tri-variate Exponential distribution. In Archimedean
Copula constructions in the context of higher dimensions, the question arises as to how one should estimate the
dependence parameter. This paper aims to seek an answer for this question based on some commonly used Archimedean
Copula models such as Clayton, Gumbel, and Frank models in the case of a three dimensional problem. Overall, the
Clayton Copula model is seen to perform better in approximating the Tri-variate Exponential distribution. As you can
see from the numerical results for the absolute percentage error, Clayton Copula gives the smallest percentage error.

Moreover, there is not much of a difference between the absolute percentage error calculated based on the dependence
parameter estimates using the arithmetic mean or geometric mean or harmonic mean. The dependence parameter
estimate based on the probability P(X =Y =Z) vyields a high error rate and therefore should not be recommended.
Also, the use of hierarchical copulas should be avoided as these also yield high error rates.
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