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Abstract 

We proposed three methods to find an approximate confidence interval for the variance of the random effects for a 

one-way analysis of the variance model in completely randomized design. We compared the proposed methods with 

some other methods reported in the literature. Several criteria are used for the empirical comparisons: the mean width of 

the confidence interval, the variance of the width, and the coverage probability. We use Simulation and Monte-Carlo 

techniques to perform the comparison study. We use R language to facilitate the simulation procedures. We found that 

one of the proposed methods was in general superior to the others. 

Keywords: random effects model, one-way analysis of variance, variance of the random effects, variance components 

Introduction 

Experimentation is the essential component of any research activity in all disciplines. It is therefore important for the 

researcher to have a general knowledge of the design and analysis of experiments. A model is an appropriate way to 

describe the relationship between variables in the experiment. Therefore, it is important for the researcher to distinguish 

between different types of experimental design models. There are three main models, which are the fixed effects model, 

the random effects model, and the mixed effects model. In this paper, we are interested in finding the variance of the 

random effects in a one-way analysis of variance in a completely randomized design. 

The random effects analysis of the variance component model can be traced as far back as the works of the astronomers 

Airy (1861) and Chauvenet (1863). Many years later, statisticians re-invented the model beginning with Fisher (1925) 

who introduced the concept of analysis of variance, and Tippet (1931) who clarified the analysis of variance method of 

variance component estimation (as cited in Khuri and Sahai, 1985).  

The one-way random effects analysis of variance (ANOVA) model can be written as: 

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝑒𝑖𝑗       {
𝑖 = 1,2, … , 𝑘
𝑗 = 1,2, … , 𝑛

              

where 𝑦𝑖𝑗 is the j-th observation made at the i-th level of the factor (treatment), 𝜇 is the overall mean, 𝜏𝑖 is the 

unknown effect due to the i-th level, 𝑒𝑖𝑗 is a random error, 𝑘 is the number of treatments, and 𝑛 is the replication of 

each treatment. It is assumed that the errors 𝑒𝑖𝑗 are independently and identically distributed normal random variables 

with mean 0 and variance 𝜎2, and that the treatment effects 𝜏𝑖 are independently and identically distributed normal 

random variables with mean 0 and variance 𝜎𝜏
2, and that 𝑒𝑖𝑗 and 𝜏𝑖 are independent. 

There are several different quantities that may be of interest in the variance component analysis. One quantity that may 

be of interest is the variance of random effects 𝜎𝜏
2, which is a measure of the variability between the population group 

means. Another quantity is the total variance 𝜎𝜏
2 + 𝜎2. 

Confidence intervals are one of the most important and informative summary results in statistical applications. There is 

no exact confidence interval for 𝜎𝜏
2 (Searle S.R, Casella G, McCulloch C.E (2006) and Montgomery, D. C, (2017)). 

Therefore, scientists sought to find approximate confidence intervals for 𝜎𝜏
2, and we mention here some of them.  

Montgomery, D.C, (2017) mentioned that Satterthwaite (1941, 1946) proposed an approximate confidence interval for 

𝜎𝜏
2 based on a linear combination of mean squares. In addition, he mentioned that Graybill and Wang (1980) proposed 

a procedure called the modified large-sample method, which can be a very useful alternative to Satterthwaite’s method. 

Also, Welch (1956) proposed an approximate confidence interval for 𝜎𝜏
2 based on a normal approximation instead of 
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the Satterthwaite procedure.  

Bross (1950) derived a fiducial interval for 𝜎𝜏
2. Tukey (1951) and others have commented adversely on this procedure 

because the resultant limits fail to satisfy certain boundary properties. Anderson and Bancroft (1952), while discussing 

some of the available procedures for confidence intervals on 𝜎𝜏
2, they proposed a modified version of the Bross 

procedure which satisfies the boundary conditions as stated in (Sahai and Ojeda ,2004).  

A method for establishing a confidence interval for 𝜎𝜏
2 has been independently proposed by Tukey (1951) and 

Williams (1962). The Tukey-Williams method is based on two quadratic forms in normal variables, which are exactly 

distributed as multiples of 𝜒2 −distributed random variables. A good description of deriving this Williams interval is 

given in Graybill (1976).  

Moriguti (1954) and Bulmer (1957) independently developed the same confidence limits for 𝜎𝜏
2. Boardman (1974) 

showed that these two methods were identical, and Bulmer (1957) showed that the method gives very accurate 

approximations. Scheffee (1959) gave general formulas for obtaining approximate confidence limits for variance 

components based on Bulmer’s method.   

Sahai and Ojeda (2004) stated that Howe (1974) proposed a general procedure for constructing confidence intervals on 

a difference between two expected mean squares. An approximate procedure that seems to provide a shorter interval and 

has better coverage probability is given by Ting et al. (1990), and Burdick and Graybill (1992). Also, approximate 

procedures are given in Graybill (1961) and Searle (1971).  

Thomas and Hultquist (1978) obtained an approximate confidence interval in the case of unbalanced data. Bottai and 

Orsini (2004) obtained confidence intervals for the variance component of random-effects linear models. Taoufik et al. 

(2007) presented sequential confidence intervals for variance components in one-way random models.  

Researchers use statistical software packages to analyze their data. Two common software packages used in the field are 

SAS and SPSS. According to the SAS/STAT𝑅 9.1 User’s Guide, PROCMIXED provides chi-squared based confidence 

intervals for the variance components using a Satterthwaite approximation (SAS Institute 2004). Another procedure is 

given by Wald approximate Confidence Intervals (see Scheffé (1959)). Finally, there are several other estimators of 𝜎𝜏
2 

have been proposed in the literature (see Searle S.R, Casella G, McCulloch, C.E, (2006) for detailed reviews and 

derivations) as mentioned by Yandell BS (1997, pp307).  

Since the variance component model was first formally introduced in the 1930’s, it has been used to model experiments 

in many disciplines, including Astronomy, Agriculture, Animal Breeding, Medicine, Engineering, Education, and other 

fields. In all these disciplines, researchers need both point and interval estimates of the variance components to take 

decisions or test hypotheses. 

Background 

The error mean of squares (𝑀𝑆𝐸) and the treatment mean of squares (𝑀𝑆𝑇𝑟) can be converted into chi-square variables 

by multiplying each one of them by corresponding degree of freedom and then dividing by the corresponding expected 

mean square, that is: 
(𝑁−𝑘)𝑀𝑆𝐸

𝜎2 ~𝜒(𝑁−𝑘)
2 , where (𝑁 = 𝑛𝑘), and 

(𝑘−1)𝑀𝑆𝑇𝑟

𝜎2+𝑛𝜎𝜏
2 ~𝜒(𝑘−1)

2 . Therefore, it can be easily finding a 

confidence interval for the variance component 𝜎2, where the exact 100(1- 𝛼) % confidence interval for 𝜎2 is: 

(𝑁 − 𝑘)𝑀𝑆𝐸

𝜒
(

𝛼
2

,𝑁−𝑘)

2 ≤ 𝜎2 ≤
(𝑁 − 𝑘)𝑀𝑆𝐸

𝜒
(1−(

𝛼
2

),𝑁−𝑘)

2  

where 𝜒
(

𝛼

2
,𝑁−𝑘)

2
 and 𝜒

(1−(
𝛼

2
),𝑁−𝑘)

2
 are the 

𝛼

2
− th and (1 −

𝛼

2
) − th percentiles of 𝜒(𝑁−𝑘)

2 , respectively. 

Regarding the variance component 𝜎𝜏
2, it is known that an unbiased point estimator of it is: 

�̂�𝜏
2 =  

𝑀𝑆𝑇𝑟 − 𝑀𝑆𝐸

𝑛
 

The distribution of �̂�𝜏
2 is a linear combination of two chi-square random variables, say: 

𝜎2 + 𝑛𝜎𝜏
2

𝑛(𝑘 − 1)
 𝜒(𝑘−1)

2 − 
𝜎2

𝑛(𝑁 − 𝑘)
𝜒(𝑁−𝑘)

2  

Unfortunately, there is no exact formula (closed form) for the distribution of this linear combination (Sahai, H. & Ojeda, 
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M. M. (2004); Searle, S. R., Casella G, McCulloch, C. E. (2006) and Montgomery, D.C, (2017). Therefore, an exact 

confidence interval for 𝜎𝜏
2 cannot be found. Different approximate confidence intervals have been suggested in the 

literature. In this paper, we suggested new approximate confidence intervals for 𝜎𝜏
2. 

Methodology 

We compared the proposed three methods for finding approximate confidence intervals for 𝜎𝜏
2 with some other 

methods reported in the literature. Several criteria are used for the empirical comparisons, which are the mean and the 

variance of the width of the confidence interval and the coverage probability. We use Simulation and Monte-Carlo 

techniques to perform the comparison study. We use R language to facilitate the simulation procedures. 

The Proposed Methods 

It is known that an unbiased estimator of the variance component 𝜎2 is 𝑀𝑆𝐸, and an unbiased estimator of the 

variance component 𝜎𝜏
2 is �̂�𝜏

2 = (𝑀𝑆𝑇𝑟 − 𝑀𝑆𝐸)/𝑛. Also, it is known that 
(𝑁−𝑘)𝑀𝑆𝐸

𝜎2 ~𝜒(𝑁−𝑘)
2 , and an exact 100(1 −

𝛼)% confidence interval (C.I.) for 𝜎2 is 𝐿 < 𝜎2 < 𝑈, where: 

𝐿 =
(𝑁−𝑘)𝑀𝑆𝐸

𝛼
2,(𝑁−𝑘)

2  and 𝑈 =
(𝑁−𝑘)𝑀𝑆𝐸


1−

𝛼
2,(𝑁−𝑘)

2  

Also, it is known that 
(𝑘−1)𝑀𝑆𝑇𝑟

𝜎2+𝑛𝜎𝜏
2 ~𝜒(𝑘−1)

2 , 𝐹 =
𝑀𝑆𝐸

𝑀𝑆𝑇𝑟
 
𝜎2+𝑛𝜎𝜏

2

𝜎2 ~ 𝐹(𝑁−𝑘,𝑘−1) , and an exact 100(1 − 𝛼)% Confidence 

interval for 𝜎𝜏
2 is: 

𝜎2

𝑛
[
𝑀𝑆𝑇𝑟

𝑀𝑆𝐸

 𝐹
1−

𝛼
2

,(𝑁−𝑘,𝑘−1) − 1] <  𝜎𝜏
2 <

𝜎2

𝑛
[
𝑀𝑆𝑇𝑟

𝑀𝑆𝐸

 𝐹𝛼
2

,(𝑁−𝑘,𝑘−1) − 1] 

Since 𝜎2 is unknown, we suggested the following methods for finding confidence intervals: 

𝑊1 :  
𝑀𝑆𝑇𝑟 𝐹

1−
𝛼
2

,(𝑁−𝑘,𝑘−1) − 𝑀𝑆𝐸

𝑛
<  𝜎𝜏

2 <
𝑀𝑆𝑇𝑟 𝐹𝛼

2
,(𝑁−𝑘,𝑘−1) − 𝑀𝑆𝐸

𝑛
 

 𝑊2 :   
𝑈

𝑛
[

𝑀𝑆𝑇𝑟

𝑀𝑆𝐸
 𝐹1−

𝛼

2
,(𝑁−𝑘,𝑘−1) − 1] <  𝜎𝜏

2 <
𝐿

𝑛
[

𝑀𝑆𝑇𝑟

𝑀𝑆𝐸
 𝐹𝛼

2
,(𝑁−𝑘,𝑘−1) − 1] 

𝑊3 :  
𝐿

𝑛
[
𝑀𝑆𝑇𝑟

𝑀𝑆𝐸

 𝐹
1−

𝛼
2

,(𝑁−𝑘,𝑘−1)
− 1] <  𝜎𝜏

2 <
𝑈

𝑛
[
𝑀𝑆𝑇𝑟

𝑀𝑆𝐸

 𝐹𝛼
2

,(𝑁−𝑘,𝑘−1)
− 1] 

We will investigate these three approximate confidence intervals in a coming section. 

Some Approximate Intervals Found in the Literature 

1. Williams' confidence interval: 

The following approximate interval is found in (Searle S.R., Casella G, McCulloch C.E. (2006), and Sahai, H. & Ojeda, 

M. M. (2004)): 

Wil:  
(𝑘 − 1)(𝑀𝑆𝑇𝑟 − 𝑀𝑆𝐸 ∗ 𝐹

(𝑘−1,𝑁−𝑘 ; 
𝛼
2

)

𝑛𝜒
(𝑘−1 ; 

𝛼
2

)

2  ≤ 𝜎𝜏
2 ≤

(𝑘 − 1)(𝑀𝑆𝑇𝑟 − 𝑀𝑆𝐸 ∗ 𝐹
(𝑘−1,𝑁−𝑘 ; 1− 

𝛼
2

)

𝑛𝜒
(𝑘−1 ; 1−

𝛼
2

)

2  

2. Wald's Confidence Interval: 

The following approximate interval is found in (Kraemer, Kari. (2012)):  
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WW:   �̂�𝜏
2 ± Ζ

1−
𝛼
2

 
√2 (�̂�𝜏

2 +
�̂�2

𝑛
)

2

𝑘 − 1
+

2 (
�̂�2

𝑛
)

2

𝑁 − 𝑘

 

3. SAS confidence interval: 

The following approximate interval is found in (Kraemer, Kari. (2012)) and used by SAS: 

SAS: 
𝑢 �̂�𝜏

2

𝜒
(𝑢 ; 

𝛼
2)

2  ≤ 𝜎𝜏
2 ≤

𝑢 �̂�𝜏
2

𝜒
(𝑢 ; 1−

𝛼
2)

2         where: 𝑢 =
(𝑀𝑆𝑇𝑟−𝑀𝑆𝐸)2

𝑀𝑆𝑇𝑟
2

(𝑘−1)
+

𝑀𝑆𝐸
2

(𝑁−𝑘)

. 

Simulations and Empirical Comparisons: 

We use Monte Carlo simulation method to calibrate coverage probabilities and construct the approximate confidence 

intervals and facilitating the comparisons. 

We choose six values of the number of treatments (k=5, 10, 15, 20, 25 and 30) and four values of replications (n=5, 10, 

20, and 30) for a total of 24 different cases. We make simulations for the random effects and errors assuming that they 

are independently and normally distributed. We choose three different values of the variance of the random effects (𝜎𝜏
2) 

and the variance of the errors (𝜎2) which are (1,1), (4,1) and (1,4) respectively and the constant μ was set to zero 

(without loss of generality). We use these data to calculate the various approximate confidence intervals. For each of the 

24 cases, we generate 10,000 Monte Carlo trials, we calculate (95 and 99) % approximate confidence intervals for 𝜎𝜏
2 

for each method, and we obtain the coverage probabilities by classifying each interval as contains or does not contain 

the true value of 𝜎𝜏
2.  

In Simulation process, we calibrated the empirical confidence coefficients to be almost the same for all the confidence 

intervals of 𝜎𝜏
2 . We make this simulation by using a program R. We follow the following steps to find the empirical 

coverage probability: 

1. Generate a random a sample of size k, (𝜏1, 𝜏2, … , 𝜏𝑘), from N (0, 𝜎𝜏
2 ). 

2. For each 𝜏𝑖, generate a random sample of size n, (𝜖𝑖1, 𝜖𝑖2, … , 𝜖𝑖𝑛), from N(0,𝜎2). 

3. Calculate 𝑌𝑖𝑗 = 𝜏𝑖 + 𝜖𝑖𝑗. 

4. Calculate L, U, 𝑀𝑆𝐸, and 𝑀𝑆𝑇𝑟. 

5. Calculate (1 − 𝛼)100% approximate confidence intervals for 𝜎𝜏
2 using the six methods. 

6. For each method (i.e., for each confidence interval), calculate: 

𝑀𝑟 = {
1;  𝜎𝜏

2  ∈ 𝐶. 𝐼.  

0;   𝜎𝜏
2  ∉  𝐶. 𝐼.  

 

7. Repeat steps (from 1 to 6) 10,000 times (𝑟 = 1, 2, … , 10000). 

8. Calculate the following proportion (empirical coverage probability) for each method: 

𝑝 =
number of times 𝜎𝜏

2 belongs to the C. I.

10000
=

∑ 𝑀𝑟
10000
𝑟=1

10000
 

Results and Findings   

We demonstrate the comparisons’ results using graphs. We compare the average width of the six approximate 

confidence intervals as well as the variance of the width. The best confidence interval would be that one with the 

smallest average width and the smallest variance of the width. 

The First Case  

For this case, the standard deviation of the random effects is 𝜎𝜏= 1, and the standard deviation of the errors is 𝜎 = 1. 

The graphs for this case are Figure 1 to Figure 6 which follow: 
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Figure 1. Mean and Variance for the Six Intervals of the First Case When K=5 and α=0.01 (left), 0.05 (right) 

It is known that the lower of the 𝛼, the wider of the interval, and this is what we notice in this Figure. As for the 

average width of the intervals, we notice that at 𝛼 = 0.01, 𝑊3 and 𝑊1 have the smallest width average for small 

values of n. For large values of n, Wald interval has the smallest width average (but we recall that the Wald interval in 

this case is at 𝛼 between 0.03-0.04, so the comparison here is unfair with other methods. So, it can be said in general 

that 𝑊3 is the best for this case. For 𝛼 =0.05, 𝑊3 and 𝑊1 have the smallest width average for all values of n. The 

same remarks are said for the variance. 
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Figure 2. Mean and Variance for the Six Intervals of the First Case When K=10 and α=0.01 (left), 0.05 (right) 

Here we notice that for all 𝛼 values, 𝑊1 is the best for small values of n and then 𝑊3 competes it strongly with the 

remaining n values . So, we notice that 𝑊3 is the best in general. The same remarks are said for the variance. 
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Figure 3. Mean and Variance for the Six Intervals of the First Case When K=15 and α=0.01 (left), 0.05 (right) 

Here, we notice that the best interval is 𝑊3 at 𝛼 = 0.01 and at 𝛼 = 0.05, then 𝑊1 comes next and then the Williams 

interval and Wald come last in the average width. The same applies to the variance of the width of the intervals. 
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Figure 4. Mean and Variance for the Six Intervals of the First Case When K=20 and α=0.01 (left), 0.05 (right) 

Here, it is good that the SAS interval enter in the comparisons. But 𝑊3 is still the best, then comes the SAS interval 

and then 𝑊1 at 𝛼 = 0.01. The case is different at 𝛼 = 0.05, where we notice that 𝑊1 is the best, then 𝑊3 competes 

with the SAS interval, then comes the Williams interval, then 𝑊2 and finally the Wald interval. Also, we notice that 

𝑊2 approaches good intervals at large values of n. As for the variance, at 𝛼 = 0.01, we notice that SAS is the best 

except for small n values. For 𝛼 = 0.05, The variances for all intervals are very similar except for Wald interval. 
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Figure 5. Mean and Variance for the Six Intervals of the First Case When K=25 and α=0.01 (left), 0.05 (right) 

Here, we notice that as the values of k increase, the average width of the intervals approaches each other very 

significantly, and 𝑊3 is still the best in general. For the variance, SAS interval is almost the best then 𝑊3 rivals it. 
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Figure 6. Mean and Variance for the Six Intervals of the First Case When K=30 and α=0.01 (left), 0.05 (right) 

Here, we notice that 𝑊3 is the best then 𝑊1, then SAS and Williams intervals are compete. As for variance, SAS is 

best for small values of n and 𝑊3 is best for large values of n. 

Conclusion of the first case: 

Regarding the average width of the interval, and in general, 𝑊3 is the best, then 𝑊1 and then the Williams interval. If 

the SAS interval is presented in the comparison, it competes strongly with 𝑊1 but it is faulted for its excessive 

sensitivity when n and k are small. In addition, 𝑊2 and Wald interval approach the other intervals if k and n are 

increased. As for the variance, it takes the same behavior as the average, but when SAS interval entering in comparison, 

it is the best for small and moderate n and 𝑊3 is the best for large n. 

There is a problem that many researchers have had in finding SAS interval, such as Kraemer, Kari, (2012) which is the 

sensitivity of the SAS interval to small values of n and k. By examining the program, we found that some values of 

q1sas and q2sas are equal to zero, which are values in the denominator of sasll and sasul, which results in “NAN”. So, if 

there are some values of “NAN” then the variance of the length of the intervals will of course be a missing value (NA). 

The Second Case  

In this case we would like to see what happen if we change the variance for random effects. For this case, the standard 

deviation of the random effects is 𝜎𝜏= 2, and the standard deviation of the errors is 𝜎 = 1. The graphs for this case are 

Figure 7 to Figure 12 which follow: 
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Figure 7. Mean and Variance for the Six Intervals of the Second Case When K=5 and α=0.01 (left), 0.05 (right) 

In this case, we notice that 𝑊3 is the best followed by 𝑊1 then William’s interval for all 𝛼 values. In addition, we 

exclude the Wald interval from the comparison because 𝛼 in the left part of the graph is between 0.03-0.04 not at 0.01, 

but at 𝛼 =0.05, we notice that it approaches the other intervals strongly when the value of n increases. As for the 

variance of the width of the intervals, we find that 𝑊3 is the least and therefore it is the best, followed by 𝑊1. 
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Figure 8. Mean and Variance for the Six Intervals of the Second Case When K=10 and α=0.01 (left), 0.05 (right) 

In general, we notice that 𝑊3 is the best for all 𝛼 values, then the comparison is difficult between 𝑊1 and SAS 

interval, then William’s interval. The same applies to variance as well. 
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Figure 9. Mean and Variance for the Six Intervals of the Second Case When K=15 and α=0.01 (left), 0.05 (right) 

In general, 𝑊3 is still the best of all 𝛼 values for the mean and the variance. 
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Figure 10. Mean and Variance for the Six Intervals of the Second Case When K=20 and α=0.01 (left), 0.05 (right) 

For all 𝛼 values, comparison between 𝑊3 and 𝑊1 in terms of preference is difficult, followed by the Williams and 

SAS intervals. For the variance, we notice the same between 𝑊1 and 𝑊3, then comes the Williams and SAS intervals. 
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Figure 11. Mean and Variance for the Six Intervals of the Second Case When K=25 and α=0.01 (left), 0.05 (right) 

In general, 𝑊3 is the best then 𝑊1 for all 𝛼 values and for both mean and variance. 
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Figure 12. Mean and Variance for the Six Intervals of the Second Case When K=30 and α=0.01 (left), 0.05 (right) 

In general, 𝑊3 is the best for all 𝛼 values for both mean and variance. 

Conclusion of the second case: 

For this case (𝜎𝜏 = 2, 𝜎 =1), we notice that 𝑊3 is still the best at all 𝛼 values, then 𝑊1, and then SAS interval which 

competes with the Williams interval. As for the variance, it takes the same behavior as the mean. The variance of 𝑊3 is 

the least, and 𝑊1 competes with it, and then SAS interval which competes with the Williams interval. 

The Third Case  

In this case we would like to see what happen if we change the variance for random errors. For this case, the standard 

deviation of the random effects is 𝜎𝜏= 1, and the standard deviation of the errors is 𝜎 = 2. The graphs for this case are 

Figure 13 to Figure 18 which follow: 
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Figure 13. Mean and Variance for the Six Intervals of the Third Case When K=5 and α=0.01 (left), 0.05 (right) 

Here, we notice that if we increase the variance of random errors, the situation has changed. For all 𝛼 values, Wald 

interval is better for small values of n and 𝑊3 is better for large values of n. As for the variance, it is generally that 

Wald interval is the best at small n values. At 𝛼 = 0.01, 𝑊3 is better for large n values. At 𝛼 = 0.05, it becomes very 

difficult to compare between 𝑊3 and 𝑊1 for large n values. 
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Figure 14. Mean and Variance for the Six Intervals of the Third Case When K=10 and α=0.01 (left), 0.05 (right) 

For the mean, in general and at 𝛼 =0.01, 𝑊1 is the best then 𝑊3. But at 𝛼 =0.05, the competition between them is 

strong. While for the variance, at 𝛼 =0.01, Wald interval then 𝑊1 are better for small values of n, and 𝑊1 competes 

with 𝑊3 for large values of n. For 𝛼 = 0.05, 𝑊2 is the best for small n values, then 𝑊1, 𝑊3 and William’s interval 

are competing at higher n values. 
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Figure 15. Mean and Variance for the Six Intervals of the Third Case When K=15 and α=0.01 (left), 0.05 (right) 

For the average, at 𝛼 = 0.01, 𝑊1 and 𝑊3 are better in general. Also, at 𝛼 = 0.05, 𝑊1 is the best in general, and then 

𝑊3 competes with the Williams interval. As for the variance, we notice that 𝑊2 is the best for only small n values for 

all 𝛼 values, then 𝑊3, 𝑊1 and the Williams interval compete strongly. 
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Figure 16. Mean and Variance for the Six Intervals of the Third Case When K=20 and α=0.01 (left), 0.05 (right) 

Here, we find that at 𝛼 = 0.01, 𝑊1 is best for small values of n and 𝑊3 is the best for larger values of n. At 𝛼 = 0.05, 

𝑊2 is the best for small values of n, but for larger values of n, 𝑊1 competes with 𝑊3. The case is different for the 

variance, we find that 𝑊2 is the best at small n values, followed by 𝑊1, 𝑊3 and the Williams interval in a different 

way for all 𝛼 values. 
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Figure 17. Mean and Variance for the Six Intervals of the Third Case When K=25 and α=0.01 (left), 0.05 (right) 

In general, for the average, we notice that 𝑊1 and 𝑊3 are the best. As for the variance, 𝑊2 is the best for small 

values of n, and for the largest value of n, we notice that 𝑊1and 𝑊3 are the best. 
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Figure 18. Mean and Variance for the Six Intervals of the Third Case When K=30 and α=0.01 (left), 0.05 (right) 

Here, we notice that the higher the value of k, the closer the average width of the intervals to each other. But, in general, 

we notice that 𝑊3 and 𝑊1 are the best. While for variance, 𝑊2 remains the best for most values of n. 

Conclusion of the third case: 

For this case (𝜎𝜏 = 1, 𝜎 =2), we notice that there is a difference in the behavior of the mean width of the intervals 

according to the value of k. In the case of too small k, we find that the average width of the Wald interval is better for 

small values of n and 𝑊3 is better for large values of n. For large value of k, and in general, the comparison between 

𝑊1 and 𝑊3 is difficult in terms of preference, and in some cases 𝑊2 is better only for small n values. As for the 

variance, we notice that for too small values of k, Wald is better for small values of n and 𝑊3 and 𝑊1 are better for 

large values of n, while for high and moderate values of k, 𝑊2 is better at small values of n, and 𝑊1and 𝑊3 and the 

Williams interval are the best at the higher value of n. Finally, for too large value of k, we notice that 𝑊2 is better for 

most values of n. 

General Conclusion 

When comparing our proposed intervals (W1, W2, and W3) with some of the intervals in the literature (Wald, Williams, 

and SAS), we noticed the following:  

1. The higher the value of k, the closer the six intervals are to each other in the mean and variance of the interval's width, 

and they almost become equal when we increase the number of treatments to 80. 

2. In general, 𝑊3  is the best among all intervals, although SAS interval competes with it when entering the 
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comparisons, but it is weakness for not showing its values at small values of n and k, especially since most designs do 

not take large values of k. 

3. In most cases, we found a strong competition between 𝑊3 and 𝑊1, then Williams competes with SAS interval, but 

𝑊3 maintains the lead.  

4. 𝑊2's interval and Wald's interval approach other intervals at large values of n and k. 

5. When we allow an increase in the variance of errors (to 4 for example) then 𝑊3 is better for large values of n while 

Wald and 𝑊2 intervals are better for small values of n. 

In conclusion, we empirically found that 𝑊3 is the best for most cases. This is because of calibration and adjusting the 

confidence level since they are all approximate methods, and they are somewhat conservative. 
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