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Abstract

This paper determines bounds on the asymptotic orders of the coverage probability errors of parametric bootstrap confi-
dence intervals (CIs) and tests for the covariance parameters of a time series generated by a regression model with Gaus-
sian, stationary, and strongly dependent errors. The CIs and tests are based on the plug-in Whittle maximum likelihood
(PWML) estimators. It is shown that, under some sets of conditions on the regression coefficients, the spectral density
function, and the parameter values, the bounds on the coverage probability errors of symmetric two-sided and one-sided
parametric bootstrap confidence intervals on the plug-in Whittle log-likelihood function are shown to be O(n−3/2 ln n) and
O(n−1 ln n), respectively. Apart from the ln n term, the magnitudes of the coverage probability errors of the one-sided
bootstrap confidence intervals for our model is shown to be essentially the same as that of the independent and identically
distributed (iid) data. The error for the two-sided confidence intervals is not as small as the error O(n−2) that has been
established for many confidence intervals in the literature, see Hall (1992), pp 102-108.
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1. Introduction

Introduced by Efron (1979), the bootstrap approximation technique has a history of less than half a century. Most research
work in the literature during the last few decades of the introduction of the bootstrap was geared towards its application
in the iid case or short memory time series in the nonparametric context. During subsequent years Efron and others
have expanded the applicability of the bootstrap for confidence intervals, hypothesis testing, regression models, and more
complex problems. Such ideas were explored in Efron (1982), Efron and Gong (1983), Diaconis and Efron (1983), and
Efron and Tibshirani (1986). The explosion of Bootstrap papers grew at an exponential rate during the 1980s and 1990s
when more key results appeared in the works of Singh (1981), Bickel and Freedman (1981, 1984), Beran (1982), Martin
(1990), Hall (1986, 1988), Hall and Martin (1988), and Navidi (1989) among others. Today bootstrapping has become a
popular technique for approximating the distribution of many statistics of time series mainly in situations of short term
persistence. While its use with long memory time series has increased significantly over the last two decades, there exist
few theoretical justifications of its validity in the context of long memory processes.

Time series exhibiting long range dependence have applications in a variety of fields including astronomy, hydrology,
economics, and finance where correlations may decrease particularly slowly between observations over time (see Hurst
(1951), Maldelbrot and Van Ness (1968), and Beran (1994) among others.) While the bulk of material in the literature
on linear regression models is focused on data whose error components are short memory, regression models whose error
terms exhibit long-range disturbances have also been studied extensively; see for example, Kunsch (1986), Yajima (1988,
1991), Dalhaus (1995), Robinson and Hidalgo (1997), Sibbertsen (2001), Koul, Baillie, and Surgailis (2004), Choy and
Taniguchi (2001), Ivanov and Leonenko (2008) among others. Yajima (1988) investigated estimation of the regression
parameters by the least square estimator (LSE) and those describing the correlation structure of the error terms by using
the residuals obtained from the LSE. Yajima (1991) established many asymptotic results for least squares error estimators
and best linear unbiased estimators. Dahlhaus (1995) studied the estimation of the coefficients of a regression model in
which the error terms exhibit long-range dependence. Robinson and Hidalgo (1997) investigated stochastic regressors
where the components of the desgin matrix follow stationary process in the presence of long-range dependence in both
errors and stochastic regressors.

Among the works towards the justification of the application of bootstrap on long memory time series are Lahiri (1993),
Hidalgo (2003), Franco et al. (2004), Andrews et al. (2006), Aga et al. (2007), Hidalgo (2021) and some other more
recent publications. Lahiri (1993) has shown that the moving block bootstrap provides valid approximation to the dis-
tribution of the normalized sample mean for a class of long-range dependent observations if and only if the underlying
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statistic is asymptotically normal. He has immensely contributed to the development of the use of the block bootstrap
technique in his subsequent extensive publications. Hidalgo (2003) proposed an alternative approach to the moving block
bootstrap resampling for the estimator of the parameters for time-series regression models. Franco et al. (2004) compar-
atively investigated the various available bootstrap techniques in semiparametric estimation methods for Auto-Regressive
Fractionally Integrated Moving Average (ARFIMA) models through Monte Carlo simulation. Andrews et al. (2006)
provided the coverage probability errors of both delta method and parametric bootstrap confidence intervals for both the
plug-in maximum likelihood (PML) and plug-in Whittle maximum likelihood (PWML) estimators for the covariance pa-
rameters of stationary long-memory Gaussian time series. Aga (2007) extended the work of Andrews et al. (2006) to
a linear regression model with Gaussian, stationary, and long-memory errors and provided coverage probability errors
of the parametric bootstrap for the PML estimators of the covariance parameters of the model. This article determines
the coverage probability errors when the Whittle maximum likelihhod estimators are used to approximate the plug-in
maximum likelihood estimators of the parameters of the model.

Consider a linear regression model {Yt = Z′tβ + εt, t ≥ 1}, where β = (β1, β2, ..., βp)′ is a p vector of deterministic but
unknown real numbers, {Zt = (zt1, zt2, ..., ztp)′ ∈ Rp, t ≥ 1, p ≥ 1} are non-stochastic regressors, and the error terms
{εt, t ≥ 1} are stationary, Gaussian, and strongly dependent discrete time series. The process {εt, t ≥ 1} is assumed to have
mean zero and spectral density fθ(λ) for λ ∈ (−π, π), where θ = (θ1, θ2, . . . , θr)′ ∈ Rr and

fθ(λ) = O(|λ|−2d−δ)

as |λ| ↓ 0,∀δ > 0, d ∈ (0, 1/2), and θ1 = d, referred to as the ”long-memory parameter” of the process (see Andrews et al.
(2006)).

Let Y = (Y1,Y2, . . . ,Yn)′ be an observed sample of size n and E = (ε1, ε2, . . . , εn)′ be the corresponding error terms, where
for each i = 1, 2, ..., n,Yi = Z′iβ + εi. We note that the covariance matrices of Y and E are the same.

If β̂ =
(
β̂1, β̂2, . . . , β̂p

)′
denote the least square estimate (LSE) of β, then β̂ = V−1 ∑n

t=1 YtZt, where V =
∑n

t=1(ZtZ′t ) is a
p × p matrix. Let µ = (µ1, µ2, . . . , µn) be the true mean of Y. Then, an estimator of µ is µ̂ = (µ̂1, . . . , µ̂n), where µ̂t = Z′t β̂,
t = 1, 2, ..., n. Let Z denote the design matrix given by Z = (zi j) for i = 1, ..., n and j = 1, ..., p, where the rank of Z is p.
We note that the matrix V is symmetric and positive definite.

The n × n (Toeplitz) covariance matrix corresponding to fθ(λ) is denoted by Tn( fθ) and has ( j, k) element defined by:

Tn( fθ) j,k =

∫ π

−π

exp(i( j − k)λ) fθ(λ)dλ. (1.1)

The log-likelihood function is

L(θ, µ) = −
n
2

ln(2π) −
1
2

ln(det(Tn( fθ))) −
1
2

(Y − µ)′T −1
n ( fθ)(Y − µ). (1.2)

Based on the fact that
1
n

ln(det(Tn( fθ)))→
1

2π

∫ π

−π

ln( fθ(λ))dλ (1.3)

as n→ ∞ and
Tn((2π)−2 f −1

θ )→ T −1
n ( fθ) (1.4)

as n→ ∞ (Beran, 1994), the log-likelihood function (1.2) can now be approximated by

LW (θ, µ) = −
n
2

ln(2π) −
n

4π

∫ π

−π

ln( fθ(λ))dλ −
1
2

(Y − µ)′Tn((2π)−2 f −1
θ )(Y − µ). (1.5)

We refer to LW (θ, µ̂), where µ̂ is replaced for µ in (1.5) above, as the plug-in Whittle log-likelihood (PWLL) function. Let
Rn = ZV−1Z′ and let Mn = In − Rn, where In is the n × n identity matrix. One can easily verify that the matrices Mn

and Rn have the following properties: (a) BothMn and Rn are symmetric. (b) Y′Mn = (Y − µ̂)′. (c) If U = Y − µ, then
MnY =MnU. (d) There exists an n × p matrix B such that

Rn = BB′. (1.6)

Using the properties (a) through (d), the PWLL function can now be written as

LW (θ, µ̂) = −
n
2

ln(2π) −
n

4π

∫ π

−π

ln(( fθ)(λ)) −
1
2

Y ′MnTn((2π)−2 f −1
θ )MnY (1.7)
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On the other hand, the last term in (1.5) can be approximated as

1
2

(Y − µ)′Tn((2π)−2 f −1
θ )(Y − µ) ≈

n∑
j,l=1

(Y j − µ j)
1

8π2

∫ π

−π

f −1
θ (λ)ei(l− j)λdλ(Yl − µl)

=
1

8π2

∫ π

−π

f −1
θ (λ)

n∑
j,l=1

(Y j − µ j)(Yl − µl)ei(l− j)λdλ

=
1

8π2

∫ π

−π

f −1
θ (λ)

∣∣∣∣∣∣∣∣
n∑

j=1

(Y j − µ j)eiλ j

∣∣∣∣∣∣∣∣
2

=
n

4π

∫ π

−π

f −1
θ (λ)I(λ)dλ,

(1.8)

and therefore, the PWLL function becomes

LW (θ, µ̂) = −
n
2

ln(2π) −
n

4π

∫ π

−π

(ln( fθ(λ) + f −1
θ (λ)In(λ))dλ, (1.9)

where In(λ) = | 1
2nπ

∑n
j=1 ei jλ(Y j − µ̂ j)|2 is the periodogram.

By definition, the Whittle Maximum Likelihood Estimator (WMLE), θ̂n, solves the equation:∫ π

π

∂

∂θr
(ln fθ(λ) + f −1

θ (λ)In(λ))dλ = 0 (1.10)

for r = 1, ..., dθ, where dθ = dim(θ).

Andrews et al. (2006) have established the coverage probability errors of the symmetric two-sided and one-sided para-
metric bootstrap confidence intervals based on the Plug-in maximum likelihood (PML) and plug-in Whittle maximum
likelihood (PWML) estimators of the parameter of the error component {εt, t ≥ 1} given above. In this paper we extend
the work of Andrews et al. (2006) and establish the asymptotic order of magnitude of the coverage probability errors of
the parametric bootstrap based on the PWML estimator of the linear regression processes described above by imposing
an additional condition on the regression coefficients and a mild additional condition on the spectral density function.

The remainder of the paper proceeds as follows. Section 2 provides some preliminaries and background assumptions. In
this section we present some preliminaries on cumulants and Edgeworth expansions, introduce the general set-up of para-
metric bootstrap confidence intervals and tests, describe the Whittle log-likelihood derivatives, and state the background
assumptions. Section 3 presents and proves several lemmas and two main theorems on the coverage probability errors of
the parametric bootstrap of the PWML estimator of our linear regression model.

2. Preliminaries and Assumptions

2.1 Cumulants and Edgeworth Expansions

For a random variable Y with a characteristic function χ(t) = E(eitY ), the jth cumulant, κ j, of Y is defined to be the
coefficient of 1

j! (it)
j in a power series expansion of log χ(t) =

∑
j≥1

1
j!κ j(it) j. Moreover, the jth moment µ j of Y is defined

by µ j = E(Y j). Using these notations we have

χ(t) = E(eitY ) = 1 + µ1it +
1
2!
µ2(it)2 + ... +

1
j!
µ j(it) j + ..., (2.1)

and ∑
j≥1

1
j!
κ j(it) j = log

1 +
∑
j≥1

1
j!
µ j(it) j


=

∑
j≥1

(−1)k+1 1
k

∑
j≥1

1
j!
µ j(it) j

k

.

(2.2)

By equating the coefficients of 1
j! (it)

j we obtain κ1 = µ1, κ2 = µ2 − µ
2
1, κ3 = µ3 − 3µ1µ2 + 2µ3

1, κ4 = µ4 − 4µ1µ3 − 3µ2
2 +

12µ2
1µ2 − 6µ4

1, and so on.
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Let X1, ..., Xn be independent and identically distributed with mean θ0 and finite variance σ2 and let θ̂ be the sample mean.
Then by the Central Limit Theorem S n =

√
n(θ̂ − θ0)/σ is asymptotically normally distributed with zero mean and unit

variance and the characteristic function χn(t) of S n can be written as

χn(t) = E(exp itS n)

= exp{−
1
2

t2 + n−1/2 1
3!
κ3(it)3 + ... + n−( j−2)/2 1

j!
κ j(it) j + ...}

= e−t2/2 + n−1/2r1(it)e−t2/2 + ... + n− j/2r j(it)e−t2/2 + ...,

(2.2)

where r j is a polynomial with real coefficients depending on the cumulants κ3, ..., κ j+2. Using the inverse Fourier transform
of (2.2) we obtain

P(S n ≤ x) = Φ(x) + n−1/2π1(x)φ(x) + n−1π2(x)φ(x)... + n− j/2π j(x)φ(x) + ...

where the polynomial π j is in terms of cumulants, Φ and φ denote the standard normal cumulative distribution function
and probability distribution function, respectively. The right hand side (rhs) of the last equation above is an Edgeworth
expansion of the distribution function P(S n ≤ x). (For more general Edgeworth expansion theory see Hall (1992), pp
39-81.)

2.2 Confidence Intervals and Tests of the Parametric Bootstrap

To help us introduce the bootstrap coverage probability errors, we first define the parametric bootstrap sample and formu-
late the general set up of bootstrap confidence intervals and tests.

Bootstrapping is one of the different re-sampling techniques in which a series of random samples are drawn a large number
of times with replacement from an original sample X obtained from the population of interest. The statistic of interest
is then calculated from each of the bootstrap samples and an approximate of the sampling distribution of the statistic is
obtained from the calculated values. This is what is known as the non-parametric bootstrap. When the distribution Fθ0 of
the population is assumed to be completely known up to a vector θ0 of unknown parameters, then a parametric bootstrap
may be used. If θ̂ is an estimate of θ0 computed from the sample X, then a parametric bootstrap sample X∗ is obtained by
drawing from the distribution Fθ̂. Then, a large number of parametric bootstrap samples are generated in this way and the
statistic of interest to be computed from these samples (see Hall (1992) for details).

Now, let Y = (Y1,Y2, . . . ,Yn)′ be a sample from our linear regression model with strongly dependent errors as described
in section 1 above. Then, the parametric bootstrap sample Y∗= (Y∗1 , ...,Y

∗
n ) is the same as the distribution of the original

sample except that the true parameters are (θ̂n, µ̂) instead of (θ0, µ). In other words, Y∗ consists of random variables from
a linear regression process with stationary, Gaussian, and strongly dependent errors having mean µ̂ and spectral density
fθ̂n

(λ) conditional on the original sample Y.

In order to establish the coverage probability errors of the bootstrap confidence intervals, we will need to define the
boostrap analogues of sample mean, the PWLL function, the bootstrap estimator of the true parameter θ0, the bootstrap
t-statistic, and the one-sided and two-sided bootstrap confidence intervals.
(a) The bootstrap sample mean µ̂∗ is then given by µ̂∗ = (µ̂∗1, ..., µ̂

∗
n), where, for t = 1, ..., n, µ̂∗t = Z′t β̂

∗, β̂∗ = V−1 ∑n
t=1 Y∗t Zt,

where V =
∑n

t=1(ZtZ′t ) as defined in section 1.

(b) The bootstrap PWLL function LW (θ, µ̂∗) is defined in the same way as the PWLL function LW (θ, µ̂) (see (1.7) above)
but with Y∗ and µ̂∗ replacing Y and µ̂, respectively.

(c) Let Θ∗ denote the set of solutions in the parameter space Θ to the first order conditions for the bootstrap PWLL
function. The bootstrap estimator θ̂∗n can now be defined as that value of θ that maximizes the bootstrap PWLL function
LW (θ, µ̂∗). Observe that the true parameter of the bootstrap sample is θ̂n, and hence θ̂∗n is a PWML estimator of θ̂n.

Let θh denote some element of Θ, the parameter space. Let θ0,r, θh,r, and θ̂n,r denote the r-th elements of θ0, θh, and θ̂n,
respectively. The asymptotic covariance matrix of a consistent PWML estimator θ̂n is Σ(θ0), where

Σ(θ) =

(
1

4π

∫ π

−π

∂

∂θ
ln( fθ(λ))

∂

∂θ′
ln( fθ(λ))dλ

)−1

.

A consistent estimator of Σ(θ0) is Σ(θ̂n), provided that fθ(λ) is smooth with respect of θ. Let Σr,r(θ̂n) denote the (r,r)-th
element of Σ(θ̂n). Let zα denote the 1 − α quantile of the standard normal distribution.

(d) We define the t-statistic by

τn(θ0,r) =
n1/2(θ̂n,r − θ0,r)∑1/2

r,r (θ̂n)
(2.3)
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and the bootstrap t-statistic by

τ∗n(θ̂n,r) =

√
n(θ̂∗n,r − θ̂n,r)

Σ
1/2
r,r (θ̂∗n)

(2.4).

where θ̂∗n,r denotes the r-th element of θ̂∗n.

(e) Let z∗
|τ|,α and z∗τ,α denote the 1 − α quantiles of |τ∗n(θ̂n,r)| and τ∗n(θ̂n,r), respectively. To be precise, z∗

|τ|,α is defined to be a
value that minimizes |P∗(|τ∗n(θ̂n,r)| ≤ z) − (1 − α)| over z ∈ R. (The precise definition of z∗τ,α is analogous.)

(f) The symmetric two-sided bootstrap CI for θ0,r with approximate confidence level 100(1 − α)% based on the PWML
estimator θ̂n is

I2(θ̂n) =

θ̂n,r −
z∗
|τ|,αΣ

1/2
r,r (θ̂n)
√

n
, θ̂n,r +

z∗
|τ|,αΣ

1/2
r,r (θ̂n)
√

n

 .
(g) The upper one-sided bootstrap 100(1 − α)% CI for θ0,r is

I1(θ̂n) =

θ̂n,r −
z∗τ,αΣ

1/2
r,r (θ̂n)
√

n
,∞

 .
(h) The symmetric two-sided bootstrap t test of H0 : θ0,r = θh,r versus H1 : θ0,r , θh,r with significance level α rejects H0
if |τn(θh,r)| > z∗

|τ|,α.

(i) The one sided bootstrap t test of H0 : θ0,r ≤ θh,r versus H1 : θ0,r > θh,r with significance level α rejects H0 if
τn(θh,r) > z∗τ,α.

2.3 The Whittle Log-likelihood Derivatives

Let ν = (r1, r2, ..., rq)′ denote a q-vector of positive integers each less than or equal to dim(θ). Let LW (θ, µ̂) be as defined
in (1.9) and let Mn be as in the paragraph preceding (1.6). We write the real valued q-th order partial derivative of the
PWLL function indexed by ν as

LW,ν = DνLW (θ, µ̂) =
∂q

∂θr1 . . . ∂θrq

LW (θ, µ̂) = Fn,ν(θ) + Y′MnGn,ν(θ)MnY (2.5)

where

Fn,ν(θ) = −
n

4π

∫ π

−π

Dν ln( fθ(λ))dλ (2.6)

and

Gn,ν(θ) = −
1
2

DνTn((2π)−2 f −1
θ ). (2.7)

Equations (2.5)-(2.7) are modified versions of equations (A.3) and (A.4) of Andrews et al. [2006] in which we used the
matrixMn and the estimator µ̂ of our sample Y as defined in section 1 above. We shall introduce some more notations. Let

Un(θ) = (LW,ν(1)(θ), . . . ,LW,ν(r)(θ)), (2.8)

where each vector ν( j) is of the same form as ν defined in (2.5)-(2.7) above for r = dim(Un(θ)) and j = 1, 2, ..., r. Let

Wn(θ) = n−1/2(Un(θ) − EθUn(θ)). (2.9)

Without loss of generality we may assume that EθUn(θ) = 0. Let

Dn(θ) = E[Wn(θ)Wn(θ)′] (2.10)

and letD(θ) = limn→∞Dn(θ).
Because Wn(θ) is a vector of centeral quadratic forms in Gaussian variables plus a vector of nonrandom quantities we
have

Dn(θ)i, j = tr(Gn,νiTn( fθ)Gn,ν jTn( fθ)) (2.11).

(See Anderson, 1984 for details.)
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2.4 Assumptions

In this subsection we present the assumptions for which the results of this paper hold. Assumptions A1-A3 impose con-
ditions on the parameter space. In particular the PWML estimators for which we establish bootstrap coverage probability
errors are required to be consistent by A2 and the matrices Dn(θ) and D(θ) in (2.10) are required to be positive definite
by A3. Assumptions A4-A9 are needed to control the behavior of the spectral density function, its inverse, and their
derivatives in the neighborhood of the origin. These assumptions depend on a positive integer s ≥ 3 that indexes the order
of the Whittle Log-likelihood Derivatives (WLLDs) that are used in the construction of the bootstrap confidence intervals.
Assumption A10 gives some restriction on the design matrix. It is mainly due to this assumption that we extend the results
of Andrews et al. (2006) on establishing the magnitude of errors of the bootstrap confidence intervals and tests to our
current model. In particular, Theorem 3.3 of Aga (2021) uses this assumption to establish that the rth cumulants κr(θ) of
the WLLDs in the Edgeworth expansion are bounded by O(n) which in turn are used to prove lemmas presented in section
3 of this paper.

A1. The parameter space Θ is a subset of Rr where r = dim(θ0) with non-empty interior, where θ0 is the true parameter.

A2. For all ε > 0 and all compact subsets Θc of Θ, the sequence of PWML estimators {θ̄n : n ≥ 1} for which the results of
this paper hold satisfy

sup
θ0∈Θc

Pθ0 (||θ̄n − θ0|| > n−1/2 ln(n)ε) = o(n1−s/2) as n→ ∞

for some integer s ≥ 3.

A3. The matricesDn(θ) andD(θ) in (2.10) are positive definite.

A4. For some integer s ≥ 3, g(θ) =
∫ π

−π
ln fθ(λ)dλ and h(θ) =

∫ π

−π
f −1
θ (λ)In(λ)dλ can be differentiated s + 1 times under the

integral sign.
A5. fθ(λ) is continuous at all (λ, θ) for which λ , 0, f −1

θ (λ) is continuous at all (λ, θ), and ∀δ > 0, ∃c1(θ, δ) < ∞ such that

| fθ(λ)| ≤ c1(θ, δ)|λ|−2d−δ

for all λ in the neighborhood Nδ of the origin, where θ = (d, θ2, ..., θr) and d ∈ (0, 1/2).
A6. For all ( j1, ..., jk) with k ≤ s + 1 and ji ∈ {1, ..., r}, (∂k/(∂θ j1...∂θ jk)) f −1

θ (λ) is continuous at all (λ, θ) and ∀δ > 0,
∃c2(θ, δ) < ∞ such that ∣∣∣∣∣∣ ∂k f −1

θ (λ)
∂θ j1...∂θ jk

∣∣∣∣∣∣ ≤ c2(θ, δ)|λ|2d−δ,∀λ ∈ Nδ.

A7. (∂/∂λ) fθ(λ) is continuous at all (λ, θ) for which λ , 0 and ∀δ > 0, ∃c4(θ, δ) < ∞ such that∣∣∣∣∣∂ fθ(λ)
∂λ

∣∣∣∣∣ ≤ c4(θ, δ)|λ|2d−1−δ,∀λ ∈ Nδ.

A8. For all ( j1, ..., jk) with k ≤ s + 1 and ji ∈ {1, ..., r}, (∂k+1/(∂λ∂θ j1...∂θ jk)) f −1
θ (λ) is continuous at all (λ, θ) for which

λ , 0 and ∀δ > 0, ∃c5(θ, δ) < ∞ such that∣∣∣∣∣∣ ∂k+1 f −1
θ (λ)

∂λ∂θ j1...∂θ jk

∣∣∣∣∣∣ ≤ c4(θ, δ)|λ|2d−1−δ,∀λ ∈ Nδ.

A9. For any compact subset Θc of the parameter space there exists a constant C(Θc, δ) < ∞ such that the constants ci(θ, δ)
for i = 1, ..., 4 given above are bounded by C(Θc, δ), ∀θ ∈ Θc and ∀δ > 0.
A10. The design matrix Z is chosen in such a way that for the matrix

B = (ei j), i = 1, ..., n, j = 1, ..., p, (2.12)

defined by (1.6) above, there exists a constant M < ∞ such that |ei j| ≤
M
√

n for i = 1, ..., n, j = 1, ..., p.

Most of the assumptions stated above are standard assumptions in asymptotic theory and have appeared in numerous
papers in the literature under different contexts including Dahlhaus (1989), Lieberman et al. (2003), Andrews et al. (2006),
and Aga et al. (2007) among others. Assumptions A1 and A4-A9 are essentially Assumptions W1-W7 of Andrews et al.
(2006) restated here for convenience and Assumption A3 is Assumption VIII of Lieberman et al. (2003). Assumption A2
is Condition Cs of Andrews et al. (2006) suitably adjusted.

One drawback of the results of this paper is that the sequence of PWML estimators for which the bootstrap coverage
probability errors are established are required to satisfy Assumption A2. The same drawback exists in Dahlhaus (1989),
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Lieberman et al (2003) and Aga et al. (2007). While Lemma 1 of Andrews et al. (2006) shows the existence of PWML
estimators that satisfy this assumption, it is generally unknown whether or not all sequences of PWML estimators satisfy
this assumption.

Another drawback of the result of this paper (and that of Aga et al. (2007) and Aga (2021)) is the restriction imposed
on the design matrix by A10 which requires the elements of the design matrix to be bounded by M

√
n for M < ∞. While

Lemma 3.1 of Aga et al. (2007) provides a useful example of design matrix that satisfies this assumption, we do not
generally show that the results of this paper and others about the current regression model will go through without this
condition.

3. Bootstrap Coverage Probability Errors of the PWML Estimators

In this section we present the main result of establishing the bootstrap coverage prpbability errors of the Whittle maximum
likelihood estimators of our linear regression model. The next lemma is one of the key ingredients to achieve this goal.
First we introduce some additional notations.

Let Φ(·) denote the distribution function of the standard normal distribution. Define Dω,η = ∂q

∂ωη1 ...∂ωηq
, for η = (η1, ..., ηq).

Let ϕn(ω, θ) = Eθ exp(iω′Un(θ)) denote the characteristic function of Un(θ) where ω ∈ Rd and let κn(θ)η denote the η
cumulants of Un(θ) (see equation (2.8) above). By definition, κn(θ)η = i−qDω,η ln(ϕn(ω, θ))|ω=0, where i =

√
−1. The

vector κn(θ) is composed of elements κn(θ)η for vectors η of dimension q ≤ s, where s is as given in Assumption A2. Let
κ̄n(θ) =

κn(θ)
n . By Theorem 3.3 of Aga (2021), the elements of κ̄n(θ) are O(1).

Let P j(∆, κ̄n(θ)) be a polynomial in ∆ = ∂/∂z whose coefficients are polynomials in the elements of κ̄n(θ) and for which
P j(∆, κ̄n(θ))Φ(x) is an even function of x when j is odd and an odd function of x when j is even for j = 1, 2, ..., s − 2. (see
for example Hall (1992), pp. 41-45).

Lemma 3.1. Let {ξn(θ0) ∈ Rd : n ≥ 1} and {Zn(θ0) ∈ Rd : n ≥ 1} be a sequence of random vectors such that
supθ0∈Θc

Pθ0 (||ξn(θ0)|| > εn) = εn and {Zn(θ0) ∈ Rd : n ≥ 1} have Edgeworth expansions for each θ0 ∈ Θc with coefficients
of order O(1) and remainders of order εn = o(n−(s−2)/2) both uniformly over θ0 ∈ Θc. Then,

sup
θ0∈Θc

sup
C∈Cd

|Pθ0 (Zn(θ0) + ξn(θ0) ∈ C) − Pθ0 (Zn(θ0) ∈ C)| = o(n−(s−2)/2), (3.1)

where Cd denotes the class of all convex sets in Rd.

Proof.

Let P̃(z, θ0) = 1 +
∑s−2

i=1 n−i/2πni(z, θ0)φ(z) be an Edgeworth expansion to order s − 2 of {Zn(θ0) : n ≥ 1} where {πni(z, θ0) :
i = 1, ..., s − 2, n ≥ 1} are polynomials in z whose coefficients are O(1) uniformly over θ0 ∈ Θc such that

sup
θ0∈Θc

sup
C∈Cd

|Pθ0 (Zn(θ0) ∈ C) −
∫

C
(P̃(z, θ0))dz| = o(n−(s−2)/2), (3.2)

where φ(z) is the density function of a N(0,Σn(θ0)) random vector, Σn(θ0) has eigenvalues that are bounded away from zero
and infinity as n→ ∞ uniformly over θ0 ∈ Θc. Now, for any convex set C ∈ Rd and r > 0, let C+

r = {x ∈ Rd : ||x − y|| ≤ r}
for some y ∈ C. Let An(θ) = Zn(θ0) + ξn(θ0) and let Ωn = Pθ0 (An(θ) ∈ C) − Pθ0 (Zn(θ0) ∈ C). Then

sup
θ0∈Θc

sup
C∈Cd

Ωn = sup
θ0∈Θc

sup
C∈Cd

(Pθ0 (An(θ) ∈ C, ||ξn(θ0)|| ≤ εn) − Pθ0 (Zn(θ0) ∈ C))

+ Pθ0 (An(θ) ∈ C, ||ξn(θ0)|| > εn)
≤ sup

θ0∈Θc

sup
C∈Cd

(Pθ0 (Zn(θ0) ∈ C+
εn

) − Pθ0 (Zn(θ0) ∈ C))

+ sup
θ0∈ΘC

Pθ0 (||ξn(θ0)|| > εn).

(3.3)

By assumption, supθ0∈ΘC
Pθ0 (||ξn(θ0)|| > εn) = o(n−(s−2)/2). Because Zn(θ0) has an Edgeworth expansion with remainder

εn, the expression
supθ0∈Θc

supC∈Cd
(Pθ0 (Zn(θ0) ∈ C+

εn
) − Pθ0 (Zn(θ0) ∈ C)) in (3.3) is less than or equal to

sup
θ0∈Θc

sup
C∈Cd

∫
C+
εn

(P̃(z, θ0))dz −
∫

C
(P̃(z, θ0))dz

 + εn. (3.4)

We observe that φ(z) and its derivatives of all orders are bounded over z ∈ Rd and that by assumption the polynomials
{πni(z, θ0) : i = 1, ..., s − 2} have coefficient that are O(1) uniformly for θ0 ∈ Θc. Therefore, the expression in (3.4) is
O(ωn) = o(n−(s−2)/2) and consequently, supθ0∈Θc

supC∈Cd
(Pθ0 (Zn(θ0) + ξn(θ0) ∈ C) − Pθ0 (Zn(θ0) ∈ C)) ≤ εn holds.
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The t-statistic is given by τn(θ0,r) as in equation (2.3). Let 1
nU

+
n (θ0) denote the vector 1

nUn(θ0) of normalized Whittle
log-likelihood derivatives augmented to include the vector of expected values of all partial derivatives with respect to θ
of order s of 1

nLW (θ0, µ̂) (see (1.9)). The next lemma shows that τn(θ̂n,r) can be approximated by a smooth function of
1
nUn(θ0).

Lemma 3.2. Suppose Assumptions A1-A10 hold. Then, there is an infinitely differentiable function Γ̃ that satisfies
Γ̃(n−1Eθ0U

+
n (θ)) = 0 for n suffciently large and ∀θ0 ∈ Θc where Θc is some compact subset of the parameter space Θ, and

sup
θ0∈Θc

sup
C∈Cd

|Pθ0 (τn(θ̂0,r) ∈ C) − Pθ0 (
√

nΓ̃(n−1U+
n (θ0)) ∈ C)| = o(n1−s/2). (3.5)

Proof.
Let hn(θ) = 1

nLW (θ, µ̂) and h̃n(θ̂) = ∂
∂θ

hn(θ̂n). By Assumption A2, we have infθ0∈Θc Pθ0 (θ̂n ∈ Θ0) = 1 − o(n1−s/2), where
Θ0 denotes the interior of Θ and

inf
θ0∈Θc

Pθ0 (
∂

∂θ
hn(θ̂n) = 0) = 1 − o(n1−s/2). (3.6)

By Taylor’s expansion of h̃n(θ̂) about θ0 of order s − 1, there exists θ̄n that lies between θ̂n and θ0 such that

h̃n(θ̂) = h̃n(θ0) +

s−2∑
j=1

D j h̃n(θ0)
j!

(θ̂n − θ0, ..., θ̂n − θ0) +
Ds−1 h̃n(θ̄n)

(s − 1)!
(θ̂n − θ0, ..., θ̂n − θ0), (3.7)

where D j h̃n(θ0)(θ̂n − θ0, ..., θ̂n − θ0) denotes D j h̃n(θ0) as a j-linear map, whose coefficients are partial derivatives of h̃n(θ0)
of order j, applied to the j-tuple (θ̂n − θ0, ..., θ̂n − θ0).
Let,

ε1(θ0) =
1

(s − 1)!
(Ds−1 h̃n(θ̄n) − Ds−1 h̃n(θ0))(θ̂n − θ0, ..., θ̂n − θ0), and

ε2(θ0) =
1

(s − 1)!
(Ds−1 h̃n(θ0) − EDs−1 h̃n(θ0))(θ̂n − θ0, ..., θ̂n − θ0).

Then, (3.7) above can be written as

h̃n(θ̂) = h̃n(θ0) +
∑s−2

j=1
D j h̃n(θ0)

j! (θ̂n − θ0, ..., θ̂n − θ0)
+ 1

(s−1)! EDs−1 h̃n(θ̄n)(θ̂n − θ0, ..., θ̂n − θ0) + ε1(θ0) + ε2(θ0) = 0.
(3.8)

Note that, by definition, 1
nU

+
n (θ0) is the column vector whose elements are the non-redundant components of h̃n(θ0),

D1 h̃n(θ0), ..., Ds−2 h̃n(θ0) plus the components of EDs−1 h̃n(θ0). Let ζn(θ0) = ((ε1(θ0) + ε2(θ0))′, 0, .., 0)′ be conformable
withU+

n (θ0). Then, (3.8) can be written as

g
(

1
n
U+

n (θ0) + ζn(θ0), θ̂n − θ0

)
= 0, (3.9)

where g(., .) is an infinitely differentiable function that satisfies

g
(

1
n

Eθ0U
+
n (θ0), 0

)
= 0, (3.10)

for all n ≥ 1. From (3.8), we can see that the function g also satisfies

∂

∂x
g
(

1
n

Eθ0U
+
n (θ0), x

)
|x=0 =

1
n

Eθ0

∂

∂θ∂θ′
hn(θ0) (3.11)

where x = θ̂n − θ0. Using the information matrix equality, the right hand side of (3.11) converges to −Σ−1(θ0) as n → ∞,
and, hence, is negative definite for n large because the later is negative definite by Assumption A3, where Σ(θ) is the
asymptotic covariance matrix of the PWML estimator. Thus, since g(n−1Eθ0U

+
n (θ0), 0) = 0, the Implicit Function The-

orem can be applied to the function g(., .) at the point (n−1Eθ0U
+
n (θ0), 0). That is, there is an infinitely differentiable

function Ψ, defined near n−1Eθ0U
+
n (θ0), and that does not depend on n or θ0 such that

g(n−1Z+
n (θ0) + ζn(θ0),Ψ(n−1Z+

n (θ0) + ζn(θ0))) = 0, (3.12)
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where Ψ satisfies Ψ(n−1Eθ0U
+
n (θ0)) = 0. Combining (3.6), (3.9), and (3.12) we obtain

inf
θ0∈Θc

Pθ0 (θ̂n − θ0 = Ψ(n−1U+
n (θ0) + ζn(θ0))) = 1 − o(n1−s/2). (3.13)

We now apply Lemma 3.1 withZn(θ0) =
√

nΨ(n−1U+
n (θ0)) and ξn(θ0) =

√
n(Ψ(n−1U+

n (θ0) + ζn(θ0)) − Ψ(n−1U+
n (θ0))) to

obtain
|Pθ0 (

√
nΨ(n−1U+

n (θ0) + ζn(θ0)) ∈ C) − Pθ0 (
√

nΨ(n−1U+
n (θ0)) ∈ C)| = o(n−(s−2)/2), (3.14)

uniformly over θ0 ∈ Θc and C ∈ Cd.

We are now ready to approximate the t-statistic τn(θ0,r) by a smooth function of U+
n (θ0)/n. Because the τn(θ0,r) is a

function of θ̂n (see (2.3)), taking a Taylor expansion of τn(θ0,r)/
√

n about θ̂n = θ0 to order s − 1, where the highest-order
term involves the expectation of the partial derivatives, we obtain

τn(θ0,r) =
√

n(Ã(n−1U+
n (θ0), θ̂n − θ0) + ρ̃n(θ0)), (3.15)

where Ã is an infinitely differentiable function that does not depend on θ0, Ã(n−1U+
n (θ0), 0) = 0 for large n, ρ̃n(θ0) is the

remainder term in the Taylor expansion, and ||̃ρn(θ0)|| = O(||θ̂n − θ0||
s). Combining (3.11) with (3.15) gives

τn(θ0,r) =
√

n(Ã(n−1U+
n (θ0),Ψ(n−1U+

n (θ0) + εn(θ0)) + ρ̃n(θ0)). (3.16)

Again we apply Lemma 3.1 withZn(θ0) =
√

nÃ(n−1U+
n (θ0),Ψ(n−1U+

n (θ0))) to obtain

sup
θ0∈Θc,C∈Cd

|Pθ0 (Zn(θ0) + ρ̃n(θ0) ∈ C) − Pθ0 (Zn(θ0) ∈ C)| = o(n1−s/2). (3.17)

Define a function Ψ′ by Ψ′(x) = (Ã(x),Ψ(x)). Then Ψ′(.) is infinitely differentiable and satisfies

Ψ′( 1
n Eθ0U

+
n (θ0)) = Ã( 1

n Eθ0U
+
n (θ0),Ψ( 1

n Eθ0U
+
n (θ0))) = Ã( 1

n Eθ0U
+
n (θ0), 0) = 0, (3.18)

for all n large. Combining (3.17) and (3.18) gives the result of Lemma 3.2. �

Let δ > 0 and let dist(θ,Θc) = inf{||θ − θc|| : θc ∈ Θc}. For Θc a compact subset of the parameter space let Θ+
c = {θ ∈ Rr :

dist(θ,Θc) ≤ δ} be a compact subset of the parameter space Θ that is larger than Θc by a radius of δ. Let B(θ, ε) denote
an open ball of radius ε > 0 centered at θ. To obtain the coverage probability errors of bootstrap confidence intervals we
need to establish asymptotic expansion of the bootstrap t-statistic of our model that holds uniformly for the true parameter
lying in the larger set Θ+

c . The next lemma is essentially Lemma 11 of Andrews et al. (2006) and is used to establish
such expansion of the bootstrap t-statistic provided in Lemma 3.4 (b) below which in turn is used in the proof of the main
results of this paper given in Theorems 3.6 and 3.7.

Lemma 3.3. Suppose supθ0∈Θc
Pθ0 (θ̂n < B(θ0, δ)) = o(n−(s−2)/2), where Θc is a compact subset of Θ and δ is as in the

definition of Θ+
c , and {λn(θ) : n ≥ 1} is a sequence of non-random real functions on Θ+

c that satisfies supθ∈Θ+
c
|λn(θ)| =

o(n−(s−2)/2). Then, for all ε > 0,
sup
θ0∈Θc

Pθ0 (|λn(θ̂n)| > n−(s−2)/2ε) = o(n−(s−2)/2)).

We now determine the error bounds between the parametric bootstrap t-statistic and its formal asymptotic expansion.
We first introduce some additional notations. Let G(x) = Pθ0 (τn(θ0,r) ≤ x), G̃(x) = Φ(x) +

∑s−2
j=1 n− j/2P j(∆, κ̄n(θ0))Φ(x),

G∗(x) = P∗
θ̂n

(τ∗n(θ̂n,r) ≤ x), and G̃∗(x) = Φ(x) +
∑s−2

j=1 n− j/2P j(∆, κ̄n(θ̂n))Φ(x), where G̃(x) and G̃∗(x) are formal Edgeworth
expansions of G(x) and G∗(x), respectively.

Lemma 3.4. Suppose Assumptions A1-A10 hold, and let s ≥ 3 be an integer which satisfies assumptions A2 and A4.
Then, for all ε > 0,
(a) supθ0∈Θc

supx∈R |G(x) − G̃(x)| = o(n1−s/2).
(b) Pθ0

(
supx∈R |G

∗(x) − G̃∗(x)| > n1−s/2ε
)

= o(n1−s/2)
uniformly over θ0 ∈ Θc.
Proof.
(a) We observe that

|G(x) − G̃(x)| ≤ |G(x) − Pθ0

√
nΨ(n−1U+

n (θ0)) ≤ x)|

+ |Pθ0 (
√

nΨ(n−1U+
n (θ0)) ≤ z) − G̃(x)|.

(3.19)
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The first term of the right hand side of (3.19) is o(n1−s/2) because it is just the statement of (3.5) proved in Lemma 3.2,
and the second term is also o(n1−s/2) because it is shown in the proof of Lemma 3.2 that n1/2Ψ(n−1U+

n (θ0)) possesses an
Edgeworth expansion with an error o(n1−s/2), and thus (3.19) follows.

Part (b) of the lemma follows from Lemma 3.3 above with

λn(θ̂n) = supx∈R |G
∗(x) − G̃∗(x)|. (3.20)

upon checking the conditions of the lemma. The first condition of Lemma 3.3 holds by Assumption A2 and the second
condition holds by Lemma 3.2.

Lemma 3.5. Suppose Assumptions A1-A10 hold, and let Θc and s ≥ 3 be as given in Assumptions A2 and A4. Then, for
all ε > 0,

sup
θ0∈Θc

Pθ0 (
√

n||κ̄n(θ̂n) − κ̄n(θ0|| > ln(n)ε) = o(n−(s−2)/2),

where κ̄n(θ) denotes the vector of cumulants of the PWLL function.

Proof
Let κ̄n(θ)η denote an element of κ̄n(θ). By a mean value expansion, for all θ0 ∈ Θc and all θ ∈ Θ+

c such that ||θ − θ0|| < δ
(where δ and Θ+

c are as defined in the paragraph preceding Lemma 3.3), |κ̄n(θ)η − κ̄n(θ0)η| ≤ Kn||θ − θ0||, where

Kn = sup
θ∈Θ+

c ,i=1,...,dim(θ)
|
∂

∂θi
κ̄n(θ)η|. (3.21)

We first show that Kn is a constant that satisfies lim supn→∞ Kn < ∞. But this holds provided that

sup
θ∈Θc

|
∂

∂θi
κn(θ)η| = O(n) (3.22)

for all i ≤ dim(θ).

We assume for the moment that (3.22) holds and establish the lemma. Let γ > 0 satisfy

γ <
ε

√
dim(κ̄) lim supn→∞ Kn

< ∞,

where, dim(κ̄) denotes the dimension of κ̄n(θ). We have

supθ0∈Θc
Pθ0 (
√

n||κ̄n(θ̂n) − κ̄n(θ0|| > ln(n)ε)
≤ supθ0∈Θc

Pθ0 (
√

n||κ̄n(θ̂n) − κ̄n(θ0|| > ln(n)ε,
√

n||θ − θ0|| ≤ ln(n)γ)
+ supθ0∈Θc

√
n||θ − θ0|| ≤ ln(n)γ)

≤ supθ0∈Θc
Pθ0 (
√

dim(κ̄) lim supn→∞ Kn
√

n||θ̂n − θ0|| > ln(n)ε,
√

n||θ − θ0|| ≤ ln(n)γ)
+o(n−(s−2)/2)
= o(n−(s−2)/2)

(3.23)

where, the second inequality above uses (3.21) and Assumption A2 and the last equality holds because

Pθ0 (
√

dimκ̄ lim sup
n→∞

Knn1/2||θ̃n − θ0|| > ln(n)ε, n1/2||θ − θ0|| ≤ ln(n)γ) = 0,

since γ < ε
√

dimκ̄ lim supn→∞ Kn
. To complete the proof it remains to prove that (3.22) holds. Suppose κn(θ)η is a cumulant of

order two or greater. By Lemma 6 (c) of Andrew et al. (2006) and the chain rule, ∂
∂θi
κn(θ)η is a finite sum of terms of the

form

Cq

 q∏
r=1

(MnḠrMnT̄r)

 ,
whereMn, G, and Tn are as given in equations (2.5-2.7), Ḡr equals either Gn,ν(ηr)(θ) or ∂

∂θi
Gn,ν(ηr)(θ) and T̄r equals either

Tn((2π)−2 f −1
θ ) or ∂

∂θi
Tn((2π)−2 f −1

θ ).

We observe thatGn,ν(ηr)(θ) and ∂
∂θi
Gn,ν(ηr)(θ) have the same form because they are both partial derivatives of− 1

2Tn((2π)−2 f −1
θ ),

(see (2.7)). It follows that ∂
∂θi
κn(θ)η has the same form as κn(θ)η itself. (3.22) now follows from Lemma 6 (c) of Andrews
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et al. (2006). �
We now state the main bootstrap coverage probability results of this paper.

Theorem 3.6. Suppose Assumptions A1-A10 hold, and let s ≥ 3 be an integer which satisfies assumptions A2 and A4.
Let Θc be a compact subset of Θ as stated in Assumptions A2 and A9. Then, for s = 5 we have

sup
θ0∈Θc

|Pθ0 (θ0 ∈ I2(θ̂n)) − (1 − α)| = o(n−3/2 ln(n)). (3.24)

Proof.

We first note that Pθ0 (θ0,r ∈ I2(θ̂n)) = Pθ0 (|tn(θ0,r)| ≤ z∗t,α). To prove (3.24) it suffices to show that the later equals
1 − α + o(n−3/2 ln(n)) uniformly over θ0 ∈ Θc.

Let H5(θ̂n) = 1 +
∑3

i=1 n−i/2P j(∆, κ̄n(θ̂n)) where P j(∆, κ̄n(θ)) is as defined in the paragraph preceding Lemma 3.1. Using
Lemma 3.4 (b) with s = 5 and the fact that Pθ̂n

(|t∗n(θ̂n,r)| ≤ z) = Pθ̂n
(t∗n(θ̂n,r) ≤ z)−Pθ̂n

(t∗n(θ̂n,r) ≤ −z), we obtain for all ε > 0:

sup
θ0∈Θ

Pθ0

(
sup
z∈R
|P∗
θ̂n

(|t∗n(θ̂n,r)| ≤ z) − [H5(θ̂)](Φ(z) − Φ(−z))| > n−3/2ε
)

= o(n−3/2). (3.25)

We observe that because P j(∆, κ̄n(θ̂n))(Φ(z)) is an even function for odd j (see the paragraph preceding Lemma 3.1), it
follows that P1(∆, κ̄n(θ̂n))(Φ(z) − Φ(−z)) = P3(∆, κ̄n(θ̂n))(Φ(z) − Φ(−z)) = 0. Therefore, (3.25) above is equivalent to:

sup
θ0∈Θ

Pθ0

(
sup
z∈R
|P∗
θ̂n

(|t∗n(θ̂n,r)| ≤ z) − [1 + n−1P2(∆, κ̄n(θ̂n))](Φ(z) − Φ(−z))| > n−3/2ε

)
= o(n−3/2). (3.26)

Likewise, using Lemma 3.4 (a) and Lemma 3.5 we obtain, respectively, (3.27) and (3.28) below

sup
θ0∈Θc

sup
z∈R
|Pθ0 (|tn(θ0,r)| ≤ z) − [1 + n−1P2(∆, κ̄n(θ0)))](Φ(z) − Φ(−z))| = o(n−3/2), (3.27)

sup
θ0∈Θc

Pθ0

(
sup
z∈R
|[P2(∆, κ̄n(θ̂n)) − P2(∆, κ̄n(θ0))](Φ(z) − Φ(−z))| > n−1/2 ln(n)ε

)
= o(n−3/2). (3.28)

Combining (3.26), (3.27), and (3.28) above we obtain:

sup
θ0∈Θ

Pθ0

(
sup
z∈R
|P∗
θ̂n

(|t∗n(θ̂n,r)| ≤ z) − Pθ0 (|tn(θ0,r)| ≤ z)| > n−3/2 ln(n)ε
)

= o(n−3/2). (3.29)

Now, let S(z) = H5(θ̂n)Φ(z). S is essentailly an Edgeworth expansion of the bootstrap t-statistic t∗n(θ̂n) given in Lemma
3.4 (b). Since S is continuous in z, there exists z̃τ,α such that S(z̃τ,α) = 1 − α. Using this and the definition of z∗τ,α (see the
last paragraph of section (2.2)), we have:

|P∗
θ̂n

(t∗n(θ̂n,r) ≤ z̃τ,α) − S(z̃))| = |P∗
θ̂n

(t∗n(θ̂n,r) ≤ z̃τ,α) − (1 − α)|

≥ |P∗
θ̂n

(t∗n(θ̂n,r) ≤ z∗τ,α) − (1 − α)|.
(3.30)

Moreover, by Lemma 3.4 (b) we obtain:

sup
θ0∈Θc

Pθ0

(
sup
z∈R
|P∗
θ̂n

(t∗n(θ̂n,r) ≤ z∗τ,α) − (1 − α)| > n−3/2ε

)
= o(n−3/2). (3.31)

Taking z = z∗τ,α in (3.29) and combining it with (3.31) yields:

sup
θ0∈Θc

Pθ0 (|1 − α − Pθ0 (tn(θ0,r) ≤ z∗τ,α)| > n−3/2 ln(n)ε) = o(n−3/2). (3.32)

Hence for large n, (3.32) reduces to:
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|1 − α − Pθ0 (tn(θ0,r) ≤ z∗τ,α)| < n−3/2 ln(n)ε, which establishes (3.24). �
Theorem 3.7. Suppose Assumptions A1-A10 hold, and let s ≥ 3 be an integer which satisfies assumptions A2 and A4.
Let Θc be a compact subset of Θ as stated in Assumptions A2 and A9. Then, for s = 4 we have

sup
θ0∈Θc

|Pθ0 (θ0 ∈ I1(θ̂n)) − (1 − α)| = o(n−1 ln(n)). (3.33)

Proof. The proof is analogous to that of Theorem 3.6 above and therefore some details are omitted.
Let H4(θ̂n) = 1 +

∑2
i=1 n−i/2P j(∆, κ̄n(θ̂n)). By Lemma 3.4 (b) with s = 4 we obtain for all ε > 0:

sup
θ0∈Θ

Pθ0

(
sup
z∈R
|P∗
θ̂n

(|t∗n(θ̂n,r)| ≤ z) − [H4(θ̂)](Φ(z) − Φ(−z))| > n−1ε
)

= o(n−1). (3.34)

Moreover, by Lemma 3.4 (a) and Lemma 3.5 with s = 4, respectively, and using the evenness of P j(∆, κ̄n(θ))(Φ(z)−Φ(−z))
for j = 1 we obtain:

sup
θ0∈Θc

sup
z∈R
|Pθ0 (|tn(θ0,r)| ≤ z) − H4(θ0)(Φ(z) − Φ(−z))| = o(n−1), (3.35)

and

sup
θ0∈Θc

Pθ0

(
sup
z∈R
|[P2(∆, κ̄n(θ̂n)) − P2(∆, κ̄n(θ0))](Φ(z) − Φ(−z))| > n−1/2 ln(n)ε

)
= o(n−1). (3.36)

Combining (3.34), (3.35), and (3.36) above we obtain:

sup
θ0∈Θ

Pθ0

(
sup
z∈R
|P∗
θ̂n

(|t∗n(θ̂n,r)| ≤ z) − Pθ0 (|tn(θ0,r)| ≤ z)| > n−1 ln(n)ε
)

= o(n−1). (3.37)

Observing the similarities between equations (3.37) above and (3.29) in the proof of Theorem 3.6 we can see that the
remainder of the proof follows analogously to establish (3.33). �

Comments: 1. For s = 3 it can be analogously shown that the error in (3.24) and (3.33) is o(n−1/2).

2. Theorems 3.6 and 3.7 provide coverage probability errors for parametric bootstrap confidence intervals as well as
boostrap tests based on the t-statistic tn(θh,r). For parametric values θ0 for which θ0,r = θh,r, we have Pθ0 (θ0,r ∈ I2(θ̂n)) =

Pθ0 (|tn(θh,r)| ≤ z∗τ,α). Similar results hold for upper level bootstrap confidnce intervals and tests. Therefore, Theorems
3.6 and 3.7 also establish bounds, respectively, on the rejection error rates of symmetric two-sided and upper one-sided
bootstrap tests.
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