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Abstract 

Odds ratios or p-values from individual observational studies can be combined to examine a common cause−effect 

research question in meta-analysis. However, reliability of individual studies used in meta-analysis should not be taken 

for granted as claimed cause−effect associations may not reproduce. An evaluation was undertaken on meta-analysis of 

base papers examining gas stove cooking (including nitrogen dioxide, NO2) and childhood asthma and wheeze 

associations. Numbers of hypotheses tested in 14 of 27 base papers (52%) used in meta-analysis of asthma and wheeze 

were counted. Test statistics used in the meta-analysis (40 odds ratios with 95% confidence limits) were converted to 

p-values and presented in p-value plots. The median (interquartile range) of possible numbers of hypotheses tested in 

the 14 base papers was 15,360 (6,336−49,152). None of the 14 base papers made mention of correcting for multiple 

testing, nor was any explanation offered if no multiple testing procedure was used. Given large numbers of hypotheses 

available, statistics drawn from base papers and used for meta-analysis are likely biased. Even so, p-value plots for gas 

stove−current asthma and gas stove−current wheeze associations show randomness consistent with unproven gas stove 

harms. The meta-analysis fails to provide reliable evidence for public health policy making on gas stove harms to 

children in North America. NO2 is not established as a biologically plausible explanation of a causal link with childhood 

asthma. Biases – multiple testing and p-hacking – cannot be ruled out as explanation for a gas stove−current asthma 

association claim. Selective reporting is another bias in published literature of gas stove–childhood respiratory health 

studies. 
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1. Introduction 

Population attributable fraction (PAF) is an epidemiologic measure describing the portion of all cases of a disease in a 

population attributed to a specific exposure (Mansournia & Altman, 2018). Gruenwald et al. (2023) estimated the PAF 

for current childhood asthma due to natural gas (gas) stove cooking in United States (US) at 12.7% (95% confidence 

interval 6.3–19.3%). This estimate was based on risk statistics from a Lin et al. (2013a) meta-analysis about indoor 

nitrogen dioxide (NO2) effects of gas cooking on asthma and wheeze. Cause−effect science claims made by Lin et al. in 

their meta-analysis were evaluated here for gas cooking−current asthma and gas cooking−current wheeze associations.  

1.1 Background 

Natural gas use – Gas is popular for cooking in over 40 million homes in the US (Lebel et al., 2022a) and 62% of 

homes in California (Lebel et al., 2022b). Emissions from gas stove cooking include: water vapor, nitrogen gas (N2), 

oxides of nitrogen (NO2 + nitric oxide), carbon monoxide, carbon dioxide, and trace amounts of methane, ethylene and 

aldehydes (Logue et al., 2014; Mullen et al., 2016; Poppendieck & Gong, 2018; Lebel et al., 2020, 2022a,b). Lebel et al. 

(2020, 2022a) estimate that 75% or more of total methane emissions from gas stoves and storage water heaters may 

occur when they are off. 

Gas consumption from residential, commercial, and industrial use in the US increased by 17% (58.3 to 68.4 Billion 

cubic feet per day) over the period 2003−2013 (British Petroleum, 2022). During this time, hospitalizations of children 

aged 0−17 years for asthma decreased by 50% and missed school days of children aged 5−17 years with asthma 

decreased by 20% in the US (CDC, 2018). 

Recent gas stove health policy and proposed regulations – Krasner et al. (2021) suggest warning labels are needed for 
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gas cooking stoves to address home indoor air quality. Position statements of the American Medical Association (2022) 

and the American Public Health Association (2022) take a precautionary approach recommending replacement of gas 

stoves with electric stoves in homes. 

In an early February 2023 notice of proposed rulemaking, the U.S. Department of Energy (DOE) proposed new energy 

conservation standards for stove appliances. These conservation standards limit how much energy gas and electric stove 

tops may consume in a year. For gas cooking tops, the conservation standards limit maximum allowable integrated 

annual energy consumption to 1,204 kBtu (kilo-British thermal units) per year; referred to as the “EL 2” standard (DOE, 

2023a).  

DOE (2023b) later released an updated analysis which suggests that half of the current gas cooking tops on the market 

would be prohibited under the standard. Environmental advocacy groups Appliance Standards Awareness Project and 

American Council for an Energy-Efficient Economy predict the rulemaking may lead to ~30% less energy consumption 

compared to least-efficient gas stoves in use today (deLaksi, 2023). 

1.2 Gas Stove (NO2)−Asthma Connection 

Asthma is a complex, chronic bronchial inflammatory phenomenon attributed to an allergic reaction characterized by 

airway spasm and swelling of airway walls along with hyper responsiveness (Noutsios & Floros, 2014). Allergens 

(molecules that stimulate allergic reactions) are the basic issue in asthma morbidity (Froidure et al., 2016). Pollen and 

plant parts; biological fragments shed from furry animals, rodents, cockroaches, dust mites; and fungal detritus can 

cause allergenic asthma reactions (Kanchongkittiphon et al., 2015; Kader et al., 2018). This is because the airways have 

an allergic response to carbon-based molecules. 

NO2 molecules are not carbonaceous and cannot trigger allergic reactions because they are not allergens. Individuals 

can also have allergies to ingested or contact substances that can produce asthma attacks. Classic examples are bee sting 

venom or peanut allergy that can produce asthma attacks and even the more severe allergic reaction – anaphylaxis. 

Reactive airways disease as a phenomenon is a spastic and congested airway condition that is brought on by airway 

hypersensitivity. This would include asthma. But it might be caused by asthma or inflammation of the airways separate 

from allergic asthma (e.g., continuous exposure to inhaled tobacco smoke or chemically irritating and damaging 

industrial gases). The difference between reactive airways disease and asthma is demonstrated clinically by history and 

allergy testing (AAFA, 2021). Asthma is also demonstrated by cold air, exercise, and methacholine challenge testing 

(AAFA, 2021; Mayo Clinic, 2022). 

Controlled exposure (chamber) studies of humans inhaling NO2 report airway responsiveness in asthmatics (e.g., 

Ezratty et al., 2014; Brown, 2015). Several published reviews of chambers studies note ambiguity (uncertainty) in the 

role of NO2 on airway responsiveness in asthmatics (e.g., Goodman et al., 2009, 2017, Hesterberg et al., 2009). Given 

the nature of asthmatics and their airway hyperactivity and sensitivity, chamber studies do not establish NO2 exposures 

as proof of causation of asthma. 

A recent, official American Thoracic Society (ATS) report reaffirms the ambiguous role of NO2 on childhood asthma. 

The report states (Thurston et al., 2020): “It is unclear whether direct effects of NO2 … explain the causal link with 

asthma”. The ATS report recognizes epidemiolocal associations of NO2 with childhood asthma. However, it is silent on 

biological plausibility of a NO2−childhood asthma link. There is no dispute about the role of allergy in causing asthma. 

1.3 Meta-Analysis 

Meta-analysis is a procedure for statistically combining data (test statistics) from individual studies that address a 

common research question or claim (Egger et al., 2001). An example of a common question or claim (i.e., cause−effect 

science claim) in a meta-analysis is whether a risk factor or intervention is causal of a disease. 

A meta-analysis evaluates a claim by taking a test statistic (e.g., risk ratio, odds ratio, hazard ratio, etc.) along with a 

measure of its reliability (e.g., confidence interval) from multiple individual studies (base papers) from literature. The 

test statistics are combined to give, theoretically, a more reliable estimate of cause−effect (Young & Kindzierski, 2019). 

It initially involves a systematic review of literature using specific methods to identify, select, and critically appraise 

relevant research, and to compile and analyze data from the selected studies (Moher et al., 2009). The meta-analysis 

component then selects and combines test statistics of the identified studies. 

One aspect of replication – performance of another study statistically confirming the same hypothesis or claim – is a 

foundation of science and replication of research is essential before cause−effect claims can be asserted (Moonesinghe 

et al., 2007). A well-designed and conducted meta-analysis is highly ranked in the medical evidence-based pyramid – 

similar to well-designed and conducted randomized trials, and above observational (case–control and cohort) studies 

(van Wely, 2014; Murad et al., 2016; Herner, 2019).  
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A hypothesis of meta-analysis is that test statistics taken from base papers for analysis are unbiased estimates of 

cause−effect (Boos & Stefanski, 2013). Given these characteristics, independent evaluation of published meta-analysis 

on a common research question has been used to assess the statistical reproducibility of a claim coming from that field 

of research (Young & Kindzierski, 2019; Kindzierski et al., 2021; Young et al., 2022a; Young & Kindzierski, 2022, 

Young & Kindzierski, 2023). 

1.4 Irreproducible Research 

Researchers have increasingly recognized that far too much published research is irreproducible or false (e.g., Ioannidis, 

2005; Ioannidis et al., 2011; Young & Karr, 2011; Begley & Ellis, 2012; Keown, 2012; Begley & Ioannidis, 2015; Iqbal 

et al., 2016; Randall & Welser, 2018; Stodden et al., 2018). Irreproducible research occurs in a wide range of scientific 

disciplines – general medicine, clinical sciences, oncology, nutrition, biology, psychological sciences (Young & 

Kindzierski, 2022).  

NASEM (2016) cites a number of factors that contribute to irreproducible research. These include:  

• Insufficient training in experimental design.  

• Misaligned incentives for publication and the implications for university tenure.  

• Intentional manipulation.  

• Poor data management and analysis.  

• Inadequate instances of statistical inference. 

The irreproducibility problem partly originates from scientists exploring large numbers of hypotheses and using 

multiple models without statistical correction in their analysis. This is referred to as multiple testing, multiple testing 

and multiple modelling, or multiplicity (Westfall & Young, 1993; Sainani, 2009; Patel & Ioannidis, 2014; Young & 

Kindzierski, 2019). 

Multiple testing can occur when scientists use their data set to test multiple outcomes, multiple predictors, different 

population subgroups, multiple statistical cause−effect models, or multiple confounders to cause−effect associations. It 

increases the likelihood of making a type I (false positive) error. 

1.5 Study Objectives 

Large observational data sets are potentially available to epidemiology researchers investigating cause−effect 

associations in humans. These investigations require strong statistical evidence to establish useful, replicable, and 

understandable cause−effect associations and research claims made from these associations. Strong statistical evidence 

is robust relative risks, RRs (or odds ratios, ORs), and confidence intervals that do not include 1.0.  RRs (or ORs) 

greater than 2 to 3 are usually recommended as robust enough in observational (uncontrolled) population studies to rule 

out bias and confounding (Doll & Peto, 1981; Ahlbom et al., 1990; Taubes, 1995; Bonita et al., 2006; Federal Judicial 

Center, 2011). 

Epidemiological studies discussed here are not founded on proven biological plausibility of NO2 causing childhood 

asthma. They are founded on a concept of what may be a cause of childhood respiratory disease and harm, e.g., gas 

stoves and whatever emissions they create. Accepting this as a concept, meta-analysis was used by Lin et al. (2013a) to 

claim the presence of an evidentiary correlation between NO2 from gas stove cooking and childhood asthma. 

Our evaluation involved using search space analysis (Young & Kindzierski, 2019) and p-value plotting (Schweder & 

Spjøtvoll, 1982) to assess the reproducibility of two Lin et al. meta-analysis cause−effect research claims. These claims 

were for gas stove cooking−current asthma and gas stove cooking−current wheeze associations. This was done to judge 

reliability of the Gruenwald et al. (2023) PAF estimate for current childhood asthma in the US due to gas stove cooking. 

2. Methods 

2.1 Data Sets 

Lin et al. (2013a) undertook a meta-analysis to quantify the association of indoor NO2 and gas stove cooking with 

childhood asthma and wheeze. They ran computer searches in two online databases (PubMed and the ISI Web of 

Knowledge) for the period 1977 up to 31 March 2013. They identified 1,064 articles from the databases, from which 

329 duplicates and/or non-English articles were excluded. They then selected 735 articles for abstract review and from 

this list, fully reviewed 171 articles. 

Lin et al. ultimately selected 41 articles (base papers) using asthma and wheeze as health outcomes for data abstraction, 

quality assessment and meta-analysis. The meta-analysis was published on 20 August 2013 in the International Journal 

of Epidemiology. As of 1 February 2023, the meta-analysis was listed as the second ‘most read’ article on their website 
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(https://academic.oup.com/ije). 

Using test statistics drawn from the 41 base papers, Lin et al. initially examined eight different cause−effect associations 

(outcomes) in their meta-analysis. These included:  

1)  Gas cooking−current asthma. 

2)  Gas cooking−lifetime asthma. 

3)  Indoor NO2−current asthma. 

4)  Indoor NO2−lifetime asthma. 

5)  Gas cooking−current wheeze. 

6)  Gas cooking−lifetime wheeze. 

7)  Indoor NO2−current wheeze.  

8)  Indoor NO2−lifetime wheeze.  

Our evaluation focused on two of eight outcomes: gas cooking−current asthma and gas cooking−current wheeze. Both 

outcomes had large enough data sets to allow informative p-value plots. In addition, gas cooking−current asthma was of 

interest because the Gruenwald et al. (2023) PAF is for current childhood asthma from gas stove cooking. Gas 

cooking−current wheeze was of interest as it provides an effective control check for p-value plotting. 

Lin et al. used the DerSimonian & Laird (1986) random effects method for combining test statistics in their 

meta-analysis. They combined test statistics from 11 base papers for a gas cooking−current asthma association and 

declared the result significant (OR = 1.42; 95% confidence interval, CI = 1.23–1.64). Also, they combined test statistics 

from 22 base papers on a gas cooking−current wheeze association and declared the result non-significant (OR 1.07, 95% 

CI 0.99–1.15). 

Secondly, Lin et al. conducted additional statistical analysis (re-analysis) on a subset of their data using the same 

methods. This re-analysis was on six of the eight outcomes (gas cooking−lifetime wheeze and indoor NO2−lifetime 

wheeze associations were excluded). Also, this analysis excluded data for two base papers performed on asthmatics 

only and it included data for studies with confounder adjustments. 

Thirdly, Lin et al. conducted more statistical analysis on a different subset of their data with the same methods, this time 

focusing on just three of the eight outcomes: gas cooking−current asthma, gas cooking−lifetime asthma, and gas 

cooking−all asthma. This re-analysis examined differences in four factors: age groups (3 categories), study region (3 

categories), proportion of gas cooking (2 categories), and year of publication (2 categories). As shown later, subgroup 

analyses are problematic for causal claims. 

Gruenwald et al. (2023) selectively used test statistics from Lin et al. re-analyses of study region differences. They 

combined two (2) test statistics – one representing North American region studies (OR 1.36, 95% CI 0.76–2.43) and one 

representing European region studies (OR 1.34, 95% CI 1.13–1.60) – using inverse variance weighting. They excluded 

Asia-Pacific region study test statistics. The combined estimate using the two test statistics was OR 1.34, 95% CI 

1.12–1.57. 

2.2 Search Space Analysis (Numbers of Statistical Hypotheses Tests) of Base Papers 

Numbers of statistical hypotheses tested in a study needs to be estimated (counted) to assess the potential for multiple 

testing bias (Makin & de Xivry, 2019). Lin et al. (2013a) used 11 base papers in their meta-analysis of current asthma 

and 22 base papers in their meta-analysis of current wheeze. Attempts were made to obtain digital copies of all 11 base 

papers related to current asthma to count the number of hypotheses tested in each paper.  

Only ten of 11 papers could be obtained for counting. Six of these were also used for the current wheeze meta-analysis. 

An additional four base papers used for current wheeze – two published before 2000 and two after 2000 – were further 

randomly selected for counting. Appendix 1 lists all 14 Lin et al. base papers used for counting. 

The search space – number of hypotheses, NH, tested – in base papers used by Lin et al. was estimated (counted) as 

follows. Observational studies mostly use a direct statistical analysis strategy on data collected – e.g., what outcomes 

are related to predictors or risk factors. If a data set contains “O” outcomes and “P” predictors, O × P possible 

hypotheses can be tested. A covariate “C” (also called an adjustment factor) – such as age, weight, height, sex, etc. – can 

be included as a yes/no adjustment to see how it may modify each of the O × P hypotheses. Here a covariate is included 

or excluded; and a multiplier of 2 is assumed for each covariate considered.  

The 14 base papers were carefully read and counted for outcomes (O), predictors (P), and covariates (C). The search 

space (number of hypotheses considered in a base paper, NH) can be approximated as O × P × 2C. Each base paper was 
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then re-read with interest whether a paper:  

• Mentioned multiple testing in different forms (i.e., multiple hypotheses, multiple testing, multiple comparisons, 

multiplicity).  

• Mentioned correcting for this bias. 

Figure 1 provides an example of how the search space, NH, is estimated in an observational study after it is carefully 

read, and outcomes, predictors, and covariates are identified. The counts in Figure 1 and for the Lin et al. base papers 

are lower bound approximations (Young & Kindzierski, 2019), as they are only based on information that is reported in 

each study. 

A conventional threshold for statistical significance in most science disciplines is a p-value < 0.05. A false positive 

result should occur 5% of the time by chance using this threshold when multiple testing is undertaken on the same data 

set in the absence of any statistical corrections (Young & Kindzierski, 2022; Young et al., 2022b). The expected number 

of false positive (chance) findings in the Moshammer et al. (2010) study is estimated as 0.05 × NH = 0.5 × 461,440 = 

23,072. 

 

Moshammer et al. (2010) gas stove cooking–lung function study. 

Background – Meta-analysis of pooled data for 24,000 children aged 6–12 years from nine western countries (United States, 

Canada, Austria, Germany, the Netherlands, Poland, Hungary, Czech Republic, Slovakia).  

Outcomes (O) 

  Seven lung function measures – forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory 

flow (PEF), maximum mid-expiratory flow (MMEF), maximal expiratory flow (MEF) at 25% FVC, MEF at 50% FVC, and 

MEF at 75% FVC. All measures obtained using standard lung function test protocols of the American Thoracic Society 

(North America) or the European Respiratory Society (Europe). 

  Four statistical model formulations for each lung function measure – three ‘basic’ statistical models (using a data set for 

all 9 countries, using a data set for all countries excluding Austria, using a data set for all countries excluding United States), 

and an ‘adjusted’ statistical model using a data set for all countries. 

  ⸫ O = 7 lung function measures × 4 statistical models = 28. 

Predictors (P) 

  Stove type (either gas or electric); ⸫ P = 1. 

Covariates (C) 

  ‘Basic’ statistical models corrected for 7 confounders – age, weight, height, sex, seasonal trend, technician and/or 

instrument (if the study center used more than one) and study area. 

  ‘Adjusted’ statistical model corrected for 16 confounders – 7 previous confounders + 9 additional: smoking in pregnancy, 

recent respiratory infections, current medication, maximal parental education, household crowding, unventilated 

gas/oil/kerosene heater, mold, birth order, and ‘ever had a pet’. 

  ⸫ C = 7 (basic statistical models) and 16 (adjusted statistical model). 

Search space (NH) 

  Basic statistical models, sub-total NH = O × P × 2C = 7(3) × 1 × 27 = 2,688. 

  Adjusted statistical model, sub-total NH = O × P × 2C = 7(1) × 1 × 216 = 458,752. 

    Total NH = 2,688 + 458,752 = 461,440. 

Figure 1. Example of counting numbers of hypotheses tests in gas stove cooking observational studies 

 

2.3 Numbers of Statistical Hypotheses Tests in Cohort Population Data Sets 

Two base papers used in the current asthma meta-analysis (Willers et al., 2006; Lin et al., 2013b) utilized the PIAMA 

birth cohort data set for their studies. PIAMA (Prevention and Incidence of Asthma and Mite Allergy) is a prospective 

birth cohort started in 1998 with 3,963 newborns in the Netherlands (Brunekreef et al., 2002). 

A compounding multiple testing problem can occur with repeated use of cohort population data sets (Young & 

Kindzierski, 2022; Young et al., 2022b). It can be a lengthy and costly process to establish and follow a new cohort. 

However, it can be more efficient and less costly to use an existing cohort and simply add new 

measurements/observations and research questions (hypotheses) to it. It is possible over time to have many hypotheses 

tested on a given cohort as data for the cohort can be used repeatedly by independent researchers. 

A single published study for a particular cohort data set may only address the tip of the problem of numbers of 

hypotheses tested. Overall, there may be many other hypotheses at issue considering that the same cohort data set can 

be used many times for research. Many publications in literature for a single cohort data set suggests large number of 
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hypotheses examined with possibilities of large numbers of false positive (chance) findings present overall in literature 

(Young & Kindzierski, 2022; Young et al., 2022b). 

The potential multiple testing problem with cohort data sets was explored with the PIAMA birth cohort. The Advanced 

Search Builder capabilities of the PubMed search engine was used to identify the number of studies that used the 

PIAMA birth cohort data set and were published since its inception (NC). The term PIAMA[Title/Abstract] was used for 

the period 2000-2023 (search performed 1 February 2023). The total number of hypotheses tested on a cohort data set 

can be estimated as NC × NH,median, where NH,median is the median (or typical) number of hypotheses tested in a published 

cohort study. 

2.4 P-Value Plots 

In epidemiology it is traditional to use RRs (or ORs) and CIs instead of p-values from a hypothesis test to demonstrate 

or interpret statistical significance. RRs (or ORs) and CIs and p-values are constructed from the same data set, and they 

are interchangeable. Altman and Bland (2011a,b) show how one can be computed from the other. Alternatively, 

commercial statistical software packages – e.g., SAS or JMP (SAS Institute, Cary, NC), STATA (StataCorp LLC, 

College Station, TX) – can be used. Here, p-values were computed using JMP statistical software for all Lin et al. 

(2013a) data used in their meta-analyses of current asthma and current wheeze.  

P-value plots (Schweder & Spjøtvoll, 1982) were constructed to examine the distribution of the set of p-values for the 

studies. The p-value is a random variable derived from a distribution of the test statistic used to analyze data and to test 

a null hypothesis (Hung et al., 1997). In well-designed and conducted studies, the p-value is distributed uniformly over 

the interval 0 to 1 under the null hypothesis, no effect, regardless of sample size (Schweder & Spjøtvoll, 1982).  

Properly scaled, a distribution of p-values plotted against their ranks in a p-value plot should form a 45-degree line 

when there are no effects (Schweder & Spjøtvoll, 1982; Hung et al., 1997; Bordewijk et al., 2020). Researchers can use 

a p-value plot to visually examine the heterogeneity of the test statistics combined in a meta-analysis (Young & 

Kindzierski, 2019, 2022, 2023). 

The p-value plots constructed here were interpreted as follows (Young & Kindzierski, 2023): 

• Computed p-values are ordered from smallest to largest and plotted against the integers, 1, 2, 3,… 

• If p-value points follow an approximate 45-degree line, it is concluded that test statistics result from a random 

(chance) process and the data support the null hypothesis of no significant association or effect. 

• If p-value points follow approximately follow a line with a flat/shallow slope, where most (the majority) of 

p-values are small (< 0.05), then the data provides evidence for a real, statistically significant, association or 

effect. 

• If p-value points exhibit a bilinear shape (divides into two lines) and bias is present or can be established, the 

data is consistent with a mixture and a general (overall) research claim is not supported. Further, a small 

p-value reported for an overall claim in the meta-analysis may not be valid (Schweder & Spjøtvoll, 1982). 

Examples of p-value plots are provided in Appendix 2 to assist in interpretation of p-value plots constructed here. 

P-value plots in Appendix 2 represent ‘plausible null’ and ‘plausible true alternative’ hypothesis outcomes based on 

meta-analyses of observational and/or randomized trial data sets. Meta-analyses p-values supporting a plausible null 

hypothesis plot as an approximate 45-degree line. Whereas meta-analyses p-values supporting a plausible true 

alternative hypothesis plot as a line with a flat/shallow slope, where most (the majority) of p-values are small (< 0.05). 

The distribution of the p-value under the alternative hypothesis – where p-values are a measure of evidence against the 

null hypothesis – is a function of both sample size and the true value or range of true values of the tested parameter 

(Hung et al., 1997). P-value plots in Appendix 2 show distinct (single) sample distributions for each condition – i.e., 

null (chance or random) associations and true effects between two variables tested. P-value plots displaying patterns 

outside of those shown in Appendix 2 should be treated as ambiguous (uncertain). A research claim based on ambiguous 

evidence is unproven. 

3. Results 

3.1 Numbers of Hypotheses Tested in Base Papers (Counting) 

A total of 14 base papers were counted to estimate numbers of hypotheses tested. This, effectively, resulted in 10 of 11 

base papers (91%) for current asthma and 10 of 22 base papers (45%) for current wheeze being counted. Overall, 14 (or 

52%) of 27 individual base papers used by Lin et al. (2013a) were counted for the current asthma and current wheeze 

meta-analyses.  

A 5 to 20% sample from a population whose characteristics are known is considered acceptable for most research 
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purposes as it provides an ability to generalize for the population (Creswell 2003). It is reasonable to accept the Lin et al. 

judgment that their systematic review process selected 41 base papers with sufficiently consistent (i.e., known) 

characteristics for meta-analysis. On this basis, counting numbers of hypotheses tested in 52% of base papers used in 

their current asthma and current wheeze meta-analyses is considered more than adequate to assess the potential for 

multiple testing bias. 

Statistics for possible numbers of hypotheses tested in the 14 base papers are presented in Table 1. The median number 

(interquartile range, IQR) of possible numbers of hypotheses tested (Search Space) of the 14 base papers was 15,360 

(IQR 6,336−49,152). Given the large numbers of hypotheses tested, statistics drawn from the base papers and used for 

meta-analysis by Lin et al. are likely biased.  

Table 1. Characteristics of 14 base papers from Lin et al. (2013a) meta-analysis 

1st Author Year Region Outcomes Predictors Covariates Search Space, NH 

Current asthma: 

     Carlsten 2011 North America 3 1 13 24,576 

Diette 2007 North America 1 10 5 320 

Hessel 2001 North America 3 9 8 6,912 

Tavernier 2005 England 1 7 13 57,344 

Current asthma + wheeze: 

    Behrens 2005 Europe 16 7 5 3,584 

Dekker 1991 North America 6 4 9 12,288 

Lin 2013b Europe 198 3 9 304,128 

Melia 1977 Europe 12 1 9 6,144 

Spengler 2004 Russia 20 10 9 102,400 

Willers 2006 Europe 3 3 11 18,432 

Current wheeze: 

     Belanger 2006 North America 8 1 10 8,192 

Burr 1999 Europe 10 1 9 5,120 

Strachan 1996 Europe 9 1 11 18,432 

Wong 2004 Hong Kong, mainland China 2 2 15 131,072 

 

minimum= 1 1 5 320 

 

lower quartile= 3 3 8 6,336 

 

median= 5 6 9 15,360 

 

upper quartile= 15 9 11 49,152 

 

maximum= 198 10 13 304,128 

 

mean= 26 6 9 49,925 

 

n= 14 

   Notes: Search Space, NH = Outcomes  Predictors  2Covariates. 

For comparison purposes, possible numbers of hypotheses tested in environmental epidemiology health effects studies 

of NO2 and other air quality parameters have been reported elsewhere: 

• Asthma exacerbation, 17 base papers: median (IQR) = 15,360 (1,536–40,960), (Kindzierski et al., 2021). 

• Development of asthma, 19 base papers: median (IQR) = 13,824 (1,536−221,184), (Young et al., 2022a). 

• Heart attack, 34 base papers: median (IQR) = 12,288 (2,496−58,368) (Young & Kindzierski, 2019). 

Given these numbers, it appears routine for researchers to be able to test for many statistical hypotheses in 

environmental epidemiology health effects studies of NO2. Five percent of 15,360 possible hypotheses tested in a 

typical base paper used by Lin et al. (i.e., the median NH in Table 1) equals 768 chance findings that may be mistaken 

for real (statistically significant) results. Also, none of the 14 base papers reviewed (0%) made mention of correction for 

multiple testing nor did they provide any explanation if no multiple testing procedure was used. 

3.2 Number of Hypotheses Tested in Cohort Studies 

Regarding the two Lin et al. (2013a) base papers using the same PIAMA birth cohort data set for their studies, the 

PubMed search identified 146 listings (publications) for this cohort data set since 2000. Abstract for these listings were 

read online. Of these 146 listings, 107 explicitly used the PIAMA birth cohort data set to investigate various risk factor 
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research hypotheses (= NC). 

The Young at al. (2022a) study mentioned above examined effects of NO2 and other air quality parameters on 

development of asthma using cohort population data sets. Specifically, Young et al. counted possible numbers of 

hypotheses tested in 19 base papers representing 13 different population cohorts, including the PIAMA birth cohort. The 

median count reported by Young et al. (i.e., NH,median = 13,824) was used to estimate possible numbers of false positive 

findings in published PIAMA birth cohort studies. This was estimated as 5% × NC × NH,median = 5% × 107 × 13,824 = 

73,958 (almost 74,000). This represents the number of false positive (chance) findings that may be mistaken for real 

results across 107 PIAMA cohort studies in published literature.  

Bolland and Grey (2014) cautioned researchers about multiple testing limitations of cohort studies. The example they 

used was on published research on the Nurses’ Health Study cohort (NHS, Colditz & Hankinson, 2005). 

Bolland and Grey stated: “Investigators have published more than 1000 articles on the NHS, at a rate of more than 50 

papers/year for the last 10 years. … To date, more than 2000 hypotheses have been tested in these papers, and it seems 

likely that the number of statistical tests carried out would be in the tens of thousands. … Given the volume of 

hypotheses assessed and statistical tests undertaken, it seems likely that many results reported in NHS publications are 

false positives, and that the use of a threshold of p=0.05 for statistical significance is inappropriate without 

consideration of multiple statistical testing. … We suggest that authors of observational studies should report how many 

hypotheses have been tested previously in their cohort study, together with an estimate of the total number of statistical 

tests undertaken.” 

3.3 P-value Plots 

Tables 2 and 3 show ORs, CIs, and p-values estimated for Lin et al. (2013a) meta-analysis of gas stove−current asthma 

and gas stove−current wheeze. Altogether, 40 ORs and CIs (13 for current asthma, 27 for current wheeze) were 

converted to p-values and presented in p-value plots. Figures 2 and 3 show p-value plots for Lin et al. meta-analysis of 

gas stove−current asthma and gas stove−current wheeze. 

Table 2. Gas stove−current asthma effect odds ratios (ORs), confidence intervals (CIs) and p-values estimated for Lin et 

al. (2013a) meta-analysis 

# Base paper 1st author, year OR 5% CI 95% CI p-value 

1 Melia, boys, 1977 1.48 0.9 2.43 0.2188 

2 Melia, girls, 1977 1.53 0.79 2.96 0.3384 

3 Dekker, 1991 1.95 1.14 2.68 0.0156 

4 Hessel, 2001 1.7 1 3.1 0.1913 

5 McConnell, no wheeze, 2002 1.3 0.8 1.9 0.2850 

6 McConnell, wheeze, 2002 1.2 0.7 2 0.5465 

7 Spengler, 2004 2.28 1.04 5.01 0.2063 

8 Behrens, 2005 0.77 0.17 3.46 0.7841 

9 Tavernier, 2006 0.69 0.24 1.95 0.4773 

10 Willers, 2006 1.5 0.9 2.49 0.2177 

11 Diette, 2007 0.84 0.47 1.48 0.5346 

12 Carlsten, 2011 1.4 0.6 3.6 0.6012 

13 Lin, 2013 1.29 0.98 1.69 0.1093 

Notes: 5%/95% CI = 5th/95th percentile confidence intervals; bolded p-value <0.05. 

Figures 2 and 3 show no evidence of distinct (single) sample distributions for true effects between two variables (i.e., 

p-value points forming a line with a flat/shallow slope, where the majority of p-values are small, < 0.05). Appendix 2 

shows examples of p-value plots with true effects between two variables in observational studies. Both plots (Figures 2 

and 3) show evidence of distinct sample distributions for null effects between two variables. These plots are consistent 

with chance or random associations and unproven harms for gas stove cooking. 

When observational data are used in cause−effect health studies, strong statistical evidence is required to establish 

informative associations. This is also the case for research claims made from these associations. For a claim based on 

observational data to be considered true, it must overcome randomness (i.e., a statistical outcome due to chance). Both 

p-value plots show sample distributions consistent with randomness, not true effects. 

Table 3. Gas stove−current wheeze effect odds ratios (ORs), confidence intervals (CIs) and p-values estimated for Lin et 

al. (2013a) meta-analysis 
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# Base paper 1st author, year OR 5% CI 95% CI p-value 

1 Melia, boys, 1977 1.11 0.87 1.4 0.4159 

2 Melia, girls, 1977 1.55 1.16 2.07 0.0178 

3 Ware, 1984 1.1 0.97 1.24 0.1465 

4 Hosein, boys, 1989 0.61 0.4 0.94 0.0046 

5 Hosein, girls, 1989 0.64 0.38 1.08 0.0438 

6 Dekker, 1991 1.04 0.77 1.42 0.8094 

7 Strachan, 1995 0.86 0.61 1.23 0.3761 

8 Volkmer, 1995 1.16 1.01 1.32 0.0430 

9 Butland, 1997 1.34 0.95 1.89 0.1562 

10 Maier, 1997 0.9 0.5 1.6 0.7216 

11 Garrett, 1998 1.79 0.8 3.99 0.3301 

12 Burr, 1999 1.03 0.97 1.1 0.3657 

13 Zacharasiewicz, 1999 1.16 0.92 1.46 0.2454 

14 Pikhart, 2000 0.87 0.65 1.17 0.3271 

15 Ponsonby, 2001 1.08 0.75 1.55 0.6951 

16 Belanger, asthmatic mother, 2003 0.98 0.57 1.66 0.9427 

17 Belanger, non-asthmatic mother, 2003 1.31 0.91 1.88 0.2103 

18 Spengler, 2004 1.06 0.86 1.31 0.6012 

19 Wong, 2004 1.4 0.85 2.32 0.2828 

20 Behrens, boys, 2005 0.55 0.31 0.98 0.0085 

21 Behrens, girls, 2005 1.52 0.93 2.47 0.1856 

22 Belanger, multifamily home, 2006 2.27 1.15 4.47 0.1337 

23 Belanger, single-family home, 2006 0.61 0.35 1.05 0.0290 

24 Willers, 2006 0.99 0.74 1.32 0.9461 

25 Wong, 2007 1.68 1.03 2.75 0.1212 

26 Mitchell, 2009 0.93 0.81 1.07 0.2912 

27 Lin, 2013 1.06 0.92 1.22 0.4330 

Notes: 5%/95% CI = 5th/95th percentile confidence intervals; bolded p-value <0.05. 

Keep in mind that sample statistics (and the respective base papers) used in meta-analysis were identified by Lin et al. 

after rigorous systematic review (screening) of the scientific literature. That is to say, they were judged by Lin et al. as 

the most suitable and appropriate test statistics (and base papers) to address the research question of a gas stove 

cooking−current asthma (current wheeze) association. 

 

Figure 2. P-value plot for Lin et al. (2013a) meta-analysis of gas stove−current asthma effect 

Notes: 13 p-values overall; 1 p-value is < 0.05; 12 p-values are nulls (> 0.05). 
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Figure 3. P-value plot for Lin et al. (2013a) meta-analysis of gas stove−current wheeze effect 

Notes: 27 p-values overall; 6 of 27 p-values are significant (< 0.05); 4 p-values < 0.05, diamonds, are for negative 

effects – gas cooking decreases childhood wheeze; 21 of 27 p-values are nulls (> 0.05). 

4. Discussion 

4.1 Weak Statistical Associations 

Almost 20 years ago, Weed (2006) stated in the International Journal of Epidemiology: “epidemiology was once a 

legitimate science of disease causation, but no longer” and “we have found all the strong associations, with only the 

weak left to be discovered”. Notwithstanding this, influences of environmental factors to disease and death continue to 

be of interest to epidemiologists. None of the meta-analytic test statistics computed by Lin et al. (2013a) are robust 

enough to rule out bias and confounding (i.e., ORs greater than 2 to 3). 

Further, test statistics used for making cause−effect claims must overcome randomness. Test statistics used by Lin et al. 

do not overcome randomness when presented in p-value plots. Rather, they support unproven harms for NO2 from gas 

stove cooking and current asthma (and current wheeze). 

In 2000, the Committee on the Assessment of Asthma and Indoor Air of the Institute of Medicine (IOM, 2000) 

evaluated and summarized scientific evidence for interactions between indoor NO2 and development and/or 

exacerbation of asthma. At the time IOM concluded: “There is sufficient evidence of an association between brief 

high-level exposures to NO2 and increased airway responses to both nonspecific chemical irritants and inhaled 

allergens among asthmatic subjects. These effects have been observed in human chamber studies at concentrations that 

may occur only in poorly ventilated kitchens with gas appliances in use.” 

Since 2000, additional research on indoor exposures and asthma had been completed. Kanchongkittiphon et al. (2015) 

published an update of the IOM (2000) assessment. Kanchongkittiphon et al. stated: “Findings on gas stove use and 

exacerbation of asthma are too inconsistent to demonstrate associations” and “There is limited or suggestive evidence 

of an association between NO2 and exacerbation of asthma, although this association may be attributable to 

confounding by other consistently correlated emissions from gas stoves,” and “There is inadequate or insufficient 

evidence to determine whether an association exists between gas stove use and exacerbation of asthma.” 

Raju et al. (2020) and Garcia et al. (2021) published reviews on indoor air quality−childhood respiratory health studies. 

These reviews are recent with relevant features to our study – i) a focus on childhood asthma in developed countries 

(North America and Western Europe) and, ii) highlight gas stove cooking among sources.  

Similar to Kanchongkittiphon et al. (2015), Garcia et al. (2021) noted that controlled human NO2 exposure studies and 

individual observational studies of inferred NO2 exposures show insufficient evidence. This is due to inconsistent 

findings (i.e., studies showing positive and negative (null) associations) for gas stove cooking−asthma outcomes, 

particularly lung function in children. Pulmonary (lung) function examination is the main test physicians use to confirm 

asthma in children 5 years or older (Rothe et al., 2018; AAFP, 2020). 

An example of inconsistent findings mentioned by Garcia et al. is the Moshammer et al. (2010) gas stove cooking–lung 

function study shown in Figure 1. The Moshammer et al. study exhibits evidence of multiple testing bias (NH = 

461,440). Of the seven outcomes examined by Moshammer et al., only two – FVC and FEV1 – showed small gas stove 
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cooking−childhood lung function effects (<1% reduction using electric versus gas stove). These small effects were 

observed in basic statistical models and not in adjusted statistical models. Thus, the small effects may be entirely 

explained by false-positives or confounding. 

4.2 Selective Reporting 

Researchers have flexibility to use different methods during a study. They also have flexibility to only report those 

methods that yield positive results and disregard those that yield unfavorable results (Kavvoura et al., 2007; Ioannidis, 

2008; Contopoulos-Ioannidis et al., 2009; Ioannidis et al., 2011; Carp, 2012). This reporting preference involves a 

selective bias to highlight statistically significant findings and to avoid nonsignificant (null) findings in research 

(Kavvoura et al., 2007). What is reported can be challenging for public health policy makers to use because the 

significant findings may turn out to be nothing more than chance results (false positives). 

An example of selective reporting (also called selective outcome reporting) is apparent with the Raju et al. (2000) 

review. They refer to a Paulin et al. (2017) randomized control trial of 30 children aged 5−12 years and state: “Paulin 

and colleagues demonstrated that daily changes in household NO2 exposure were associated with gas stove/oven use 

and led to worsened asthma symptoms and nighttime inhaler use among children with asthma”. Yet Paulin et al. state in 

their abstract: “There were no associations between NO2 and lung function or asthma symptoms”. 

Paulin et al. used bivariate statistical models and multivariate statistical models (adjusted for gender, age, caregiver 

education, season). They examined four different outcomes between measured 24-hour indoor NO2 level and possible 

asthma symptoms in their data set. It is noted that moving adjustment factors (covariates) into and out of statistical 

analysis models – i.e., selectively controlling for covariates – is a form of p-hacking (Simmons et al., 2011; John et al., 

2012; Andrade, 2021). This relaxed practice can alter statistical significance between cause (NO2) and effect (lung 

function or asthma symptoms). 

Only one of the four Paulin et al. outcomes was reported by Raju et al. (2000) – nighttime inhaler use frequency – and it 

was statistically significant and was related to NO2 levels in both statistical models. Whereas the other three outcomes 

that Paulin et al. examined – occurrence of daytime asthma symptom determined by twice-daily measured FEV1, 

daytime inhaler use frequency, and nighttime awakening frequency – were not. It is unknown why Raju et al. did not 

mention these null findings. 

Another example of selective reporting is with both Raju et al. and Garcia et al. reviews. Both repeatedly discussed 

various child asthmatic studies in their reviews. However, both failed to acknowledge the Wong et al. (2013) ISAAC 

cooking fuel−asthma study and its null findings. Wong and other researchers across the world investigated the 

association between asthma and use of various cooking fuels, including gas stoves, as part of the International Study of 

Asthma and Allergies in Childhood (ISAAC). ISAAC researchers collected data on 512,707 primary and secondary 

school children from 108 cities in 47 countries between 1999 and 2004.  

Wong and other ISAAC researchers specifically examined and presented results for two statistical analysis models 

(initial adjusted models, final multivariate models) for gas stove−childhood asthma associations. Also, they examined 

two asthma outcomes (current symptoms of severe asthma and had asthma ever) for two age groups (6–7-year-olds and 

13–14 year-olds) in these statistical models. All model outcomes were non-significant. Wong et al. stated in their 

abstract: “we detected no evidence of an association between the use of gas as a cooking fuel and either asthma 

symptoms or asthma diagnosis”. 

A third example is with the Lin et al. (2013a) meta-analysis itself. The Wong et al. (2013) ISAAC study was published 

31 May 2013, almost three months prior to the Lin et al. meta-analysis (published 20 August 2013). The second listed 

co-author of both publications was the same person – B. Brunekreef, a senior researcher from Utrecht University, 

Utrecht, The Netherlands. It is unknown why Lin et al. failed to acknowledge the 2013 Wong et al. ISAAC study and its 

null findings, which Brunekreef (as a co-author of both studies) was aware of. 

4.3 P-hacking in Statistics 

P-hacking is a form of multiple hypothesis testing involving the search for significance during statistical analysis of data 

(Simmons et al. 2011; Hubbard, 2015; Harris, 2017, Streiner, 2018; Barnett & Wren, 2019; Moss & De Bin, 2021). 

P-hacking allows researchers to find statistically significant results with their data set even when studying a 

non-existent effect or association (Simonsohn et al., 2014). 

Examples of p-hacking strategies in research have been reported in literature. Some examples include (Hahn et al, 2000; 

Simmons et al. 2011; John et al., 2012; Motulsky, 2015; Teixeira, 2018; Andrade, 2021; Stefan & Schonbrodt, 2023): 

• Selectively choosing among dependent variables. 

• Selectively manipulating/transforming predictor or outcome variables. 
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• Choosing sample size. 

• Data trimming (selective exclusion of data outlying points). 

• Using many covariates or selectively controlling for covariates. 

• Selectively comparing different outcome variables. 

• Using a variety of statistical analysis models. 

• Selective reporting of significant results. 

• Transforming a variable, for example by computing its logarithm or reciprocal. 

• Conducting re-analysis on subsets of a data set. 

The last procedure, conducting re-analysis on subsets of a data set (Hahn et al, 2000; Andrade, 2021; Stefan & 

Schonbrodt, 2023) was a feature of the Lin et al (2013a) meta-analysis – see Section 2.1. When a data set is subdivided 

into subgroups and if a particular subgroup is re-analyzed, it can easily find via diligent searching statistically 

significant results by chance. Pocock et al. (2004) note that in epidemiology investigations “there is an increased risk of 

false claims of effect modification when several subgroup analyses are explored” … and … “there is a need to exercise 

restraint, viewing subgroup findings as exploratory and hypothesis generating rather than definitive”. 

Re-analysis on subsets of a data set by Lin et al. is also consistent with fishing expeditions – testing associations 

between combinations of variables in a data set with the hope of finding (and subsequently reporting) something 

statistically significant (Cormier & Pagano, 1999; Streiner, 2015; Andrade, 2021). Fishing expeditions tend to ignore 

some basic toxicological concepts like biological plausibility, magnitude of exposure to an investigated variable (e.g., 

gas stoves), genetics, locations of subjects, proximity to other causes, etc. When exposures are poorly defined and 

alternative explanations for a statistically significant association are ignored in these exercises, such associations would 

only be considered hypothesis generating and not proof of causation. 

Another problem with meta-analysis is that researchers are further away from data collection than are the original 

researchers of the base papers. This separation, combined with multiple base papers used for meta-analysis, makes it 

impracticable for meta-analysts, peer reviewers and readers of a meta-analysis to understand data quality and method 

limitations of the base papers unless they evaluate the base papers themselves (Nelson et al., 2018). Nelson et al. state 

that: “meta-analytic thinking not only fails to solve the problems of p-hacking, reporting errors, and fraud, it 

dramatically exacerbates them”. 

Part of the problem is that base paper researchers have flexibility to only report methods that yield favorable results and 

to disregard those that yield unfavorable results (see Section 4.2). Recall that a hypothesis of meta-analysis is that test 

statistics taken from base papers are unbiased estimates of cause−effect (Boos & Stefanski, 2013). This is clearly not the 

case in practice given researcher flexibility to ignore reporting unfavorable results. 

Another part of the problem is that when multiple testing is at play in the base papers, combining test statistics from 

these papers in meta-analysis can further worsen the effects of p-hacking. Multiple testing was a common feature of 

base papers used in the Lin et al. meta-analysis (see Table 1). On this problem, Nelson et al. state that: “The end result 

of a meta-analysis is as strong as the weakest link; if there is some garbage in, then there is only garbage out”. 

Multiple testing was a common feature of base papers used by Lin et al. in their meta-analysis. Re-analysis on subsets 

of a data set was a feature of the Lin et al meta-analysis itself. Given these features, multiple testing and p-hacking 

cannot be ruled out for test statistics presented by Lin et al. in support of their gas stove cooking−current asthma 

association claim. 

4.4 Implications 

The American Thoracic Society (Thurston et al., 2020) acknowledges an unclear (unproven) role of NO2 in explaining a 

causal link with childhood asthma. The Lin et al. (2013a) meta-analysis used test statistics from epidemiology 

cause−effect studies (base papers) founded on a concept that indoor NO2 may be bad and could cause childhood asthma, 

not on a concept of biological plausibility. 

Our evaluation revealed methodological biases in the base papers used by Lin et al. and in the meta-analysis itself. Base 

papers used by Lin et al. show evidence of multiple testing (large numbers of hypothesis tests conducted). None of the 

14 base papers we reviewed made any mention of this bias nor did they provide any explanation if no multiple testing 

procedure was used. The relaxed practice of multiple testing makes these types of studies likely to discover significant 

but false-positive associations. As to the meta-analysis itself, its methods show evidence of p-hacking. 

P-value plots for both gas stove–childhood asthma and gas stove–childhood wheeze effects – Figures 2 and 3– show 

random (chance) associations, not real effects. The Lin et al. meta-analysis finding of a ‘significant’ gas stove–current 
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asthma effect was not reproduced in a p-value plot (Figure 2). Whereas the meta-analysis finding of a nonsignificant gas 

stove–current wheeze effect was reproduced in a p-value plot (Figure 3).  

Published literature reviews and observational studies discussed here highlight inconsistent findings and selective 

reporting of gas stove–childhood respiratory health associations. Inconsistent findings – i.e., both positive and negative 

(null) associations – may, in part, be due to a weak or indeed non-existent relationship between gas stove cooking 

(including NO2) and childhood asthma outcomes.  

Inconsistent findings may also be partly due to flexibility (biases) in researcher methods – i.e., multiple testing, 

p-hacking, and selective reporting (i.e., disregarding of results of studies with null findings). Goodman et al. (2016) note 

that multiple testing (multiplicity) and incomplete (selective) reporting might be the largest contributor to the 

occurrence of nonreproducibility (falseness) of published research claims. 

Epidemiologists are not immune to unethical behavior (Bonita et al., 2006). Insufficient attention is paid by them to 

flexibility (biases) in their methods. This along with the practice of searching out and reporting weak statistical 

associations increases the potential for distorting the influences of chance and confounding in studies they publish 

(Bofetta et al., 2008).  

Biases in epidemiology methods discussed here can be remedied with honest efforts to improve research transparency. 

With regard to gas stove–childhood respiratory health studies, this includes providing transparent details about 

procedures and data, statistical or analytical methods to test hypotheses, and completeness of reporting. 

Concluding remarks – The Lin et al. (2013a) meta-analysis fails to provide reliable evidence for public health policy 

making on gas stove harms to children in North America. NO2 is not established as a biologically plausible explanation 

of a causal link with childhood asthma. Biases – multiple testing and p-hacking – cannot be ruled out as explanation for 

a gas stove−current asthma association claim. A p-value plot for gas stove–childhood asthma shows a random (chance) 

association, not a real effect. The Gruenwald et al. (2023) estimate of current childhood asthma PAF due to gas stove 

cooking in the US is without substantiation and should be disregarded. 
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